
Algebra-based Approach for Incremental Data

Warehouse Partitioning

Rima Bouchakri1,2, Ladjel Bellatreche1, and Zoé Faget1

LIAS/ENSMA – Poitiers University, Futuroscope, France
LCSI/ESI – High School of Computer Science – Algiers, Algeria

(rima.bouchakri, bellatreche, zoe.faget)@ensma.fr

Abstract. Horizontal Data Partitioning is an optimization technique
well suited to optimize star-join queries in Relational Data Warehouses.
Most important studies were concentrated on the static selection of a
fragmentation schema, where they assume the knowledge of the work-
load. However, due to the ad-hoc nature of queries, the development
of incremental algorithms for fragmentation schema selection has be-
come a necessity. In this work, we present a Fragmentation Algebra with
a set of operators defined on a flexible encoding of any fragmentation
schema. This algebra is invoked when new queries change the content
of the encoding. We conduct experiments to evaluate the efficiency and
effectiveness of our finding.

1 Introduction

In the era of Big Data, there is a need to develop new models, data structures,
algorithms, and tools for processing, analyzing, mining and understanding this
huge amount of data using High Performance Computing (HPC). The diversity
of HPC platforms contributes in developing a new well established phase in the
database life cycle which is the deployment phase. It consists in selecting the best
platform to satisfy the requirements of end users in terms of query processing
and data manageability. Horizontal Data Partitioning (HDP) is a pre-condition
for deploying a database/data warehouse on any platform: centralized [16], par-
allel [7], distributed [14], cloud [6], etc. The problem of HDP (PHDP) has been
largely studied in the literature in different database contexts: OLTP databases
[13], data warehouses [1], scientific and statistical databases [15]. It consists in
fragmenting a table, an index or a materialized view, into partitions (fragments),
where each fragment contains a subset of tuples [16]. Many commercial (Oracle,
DB2, SQLServer, Sybase) and academic DBMS (PostgreSQL and MySQL) im-
plement it. Two main types of HDP are distinguished [3]: primary HDP and
derived HDP. In the first partitioning, a given table is partitioned based on its
own attributes. The primary HDP optimizes selection operations and is used
in rewriting queries in distributed and parallel databases [14]. When the result
of a fragmentation of a given table is propagated to another table, this parti-
tioning is called derived HDP. This partitioning is feasible when a parent-child
relationship exists between the two involved tables.

2 Rima Bouchakri, Ladjel Bellatreche, and Zoé Faget

Several HDP modes exist to support both primary and derived HDP in
centralized and parallel platforms (e.g., Teradata). For the primary HDP, we
find simple mode (Range, List, Hash) and composite mode (Range-Range, List-
Range, etc.). Derived partitioning has been recently supported by commercial
DBMS under the name of referential partitioning (the Oracle11G case).

Historically, the formalization of the PHDP follows the evolution of database
technology. In traditional databases, the PHDP has been formalized as fol-
lows: given a table T of a given database schema and a set of a priori known
queries, the PHDP consists in fragmenting T into fragments such as the overall
query processing cost is minimized. In the relational data warehouse (RDW),
the PHDP got more attention, where algorithms were proposed to partition the
whole schema. This is due to the characteristics of star join queries that involves
simultaneously restrictions on the dimension tables and joins between the fact
and dimension tables. To avoid a large number of final fragments, a constraint
on this number has been added. As a consequence, a new formalization of the
PHDP has been proposed [1]: given a data warehouse schema, a set of a priori
known queries, and constraint that limits the number of the final fragments,
PHDP consists in fragmenting the fact table based on the partitioning schemes
of dimension tables such as the overall query processing cost is minimized and
the final fragments does not exceed the constraint. The obtained fragments are
disjoint and the union of all fragments belonging to a set of fragments is equal
to the schema of its corresponding table.

By examining the literature, we get three main observations: (i) Most par-
titioning algorithms consider a well-known set of queries to perform a static
selection. However, the ad-hoc nature of the OLAP and scientific queries calls
for the development of incremental data partitioning algorithms. (ii) Partition-
ing algorithms use simple data structures mainly involving the attributes used to
partition either table or a schema. Note that business or scientific projects (such
as Dark Energy Survey1) manage extremely large databases with hundreds of
attributes candidates for partitioning process and need more sophisticated data
structures to support incremental algorithms. (iii) The question of deployment
on the target platform of the resulting partition is ignored, especially for the dy-
namic context. Our vision is to propose an integrated solution for PHDP that
satisfies the these three objectives. Instead of spending time on developing algo-
rithms, we claim that the presence of a flexible encoding for any HDP schema
and the development of algebra whose operators are applied on that coding to
capture any change of the partitioning schema when the workload evolves. To
manage workload evolution, we introduce the notion of query profiling which
studies of the impact of a new arrival query on the encoding (expanding it,
keeping it as it is, or reducing it). These operations will be managed by the pro-
posed algebra. Another advantage of our algebra is its contribution to deploy our
solution. Each evolution of the encoding can be easily translated according to
the target platform. For our study, we consider a RDW deployed on Oracle 11G.
This paper is organized as follows: Section 2 reviews the most important works

1 http://www.darkenergysurvey.org

Algebra-based Approach for Incremental Data Warehouse Partitioning 3

on static and incremental selection of HDP schema. Section 3 describes our al-
gebra and its properties for managing any fragmentation schema in the dynamic
context. Section 4 describes the management of the arrival of new queries by the
use of our encoding and algebra. In section 5, we present in details our algorithm
that uses the notion of query profiles. In Section 6, we conduct experiments to
show the efficiency and effectiveness of our proposal. Section 7 concludes the
paper.

2 Related work

As we said before, HDP got a lot of attention from academic and industrial
communities, in developing algorithms. These algorithms may be classified into
two categories according to the selection nature: static selection and dynamic

selection. The static selection got the lion part of the works. It supposes that the
inputs of the PHDP (the schema of the database/warehouse and the workload)
are known in advance and fixed. Four main approaches can be considered: (a)
minterm generation algorithms [3, 14], (b) affinity-based algorithms [1, 11], (c)
cost-model driven algorithms [4, 1, 9] and (d) data mining driven algorithms [10].
For more details, refer to [1].

To take into account the evolution of the inputs of the PHDP, dynamic
selection has been proposed. The studies in this category may also be divided
into two groups: dynamic selection when the database schema evolves and dy-
namic selection when the workload changes. Authors in [11] deal with distributed
database redesign when queries change. They propose simple heuristics to man-
age the impact of these changes on fragments. Authors in [17] propose a dynamic
design of distributed data warehouses. The main issue of this approach is that
the fragmentation is triggered for each change. This approach may cause a high
maintenance cost, and may be unnecessary in some cases where a change in
the workload eventually leads to the same schema. Authors in [8] propose to
re-fragment a relational centralized data warehouses when query change occurs.
This approach is based on storing recent statistics. First, only the facts table is
partitioned using only Range mode on one of its foreign keys. Second, histograms
are built to observe the access behavior of queries to different fragments. At a
given time and by the means of a cost model and the histograms, the data
warehouse schema is re-partitioned. Then, the histograms are updated to store
the occurred changes. The issues regarding the deployment of this solution are
ignored. In our work [2], we propose an incremental selection of fragmentation
schema based on Genetic Algorithms GA that is triggered after every changes on
the workload. This approach may have the same limitation as for [17]. Couple
of studies were proposed when the database schema evolves. In [12], the au-
thors proposed a dynamic algorithm for partitioning continuously growing large
databases. A heuristic is proposed to efficiently distribute new arriving data,
based on its affinity with the different fragments in the application.

In this paper, we focus on handling query changes. The main contribution of
our approach is that the re-fragmentation is launched if and only if the profile

4 Rima Bouchakri, Ladjel Bellatreche, and Zoé Faget

of the new arrival query is different than the previous ones used to perform the
partitioning. This profiling is based on our algebra, presented in the next section.

3 Fragmentation Algebra

Let us consider a RDW with a fact table F and d dimensions tables D =
{D1, D2, · · · , Dd}. A fragmentation schema is the result of theRDW partitioning
process. It is defined on non-key dimension attributes A = {A1, · · · , An}. Each
attribute Ai has a Domain, called Dom(Ai). Dom(Ai) can be partitioned into
mi sub-domainsDom(Ai) = {SDi

1, SD
i
2, · · · , SD

i
mi

}. For instance, if we consider
the attribute City of a given table Clients, the domain partitioning is given as fol-
lows: Dom(City) = {′Alger′,′ Oran′,′ Blida′,′ Kala′,′ Annaba′,′ Jijel′}. Based
on these notions, we define a Data Structure that represents the Maximal Frag-
mentation Schema MFS of dimension tables (table 1). The number of fact table
fragments is then the product of the numbers of dimensions fragments (

∏n

1
mi).

A1 SD1

1 SD1

2 · · · SD
1

m1

A2 SD2

1 SD2

2 · · · SD
2

m2

.

.

.

An SDn

1 SDn

2 · · · SD
n

mn

Table 1. Maximal Fragmentation Schema MFS

A similar encoding has been proposed in [2] where an incremental genetic
algorithm used this encoding. The main drawback of this work is that the ge-
netic algorithm is executed every time changes on the workload occur. Note
that a new query may cause an extension or a reduction of the fragmentation
schema by adding/deleting new attributes, adding/deleting new sub-domains or
splitting/merging existing sub-domains. Also, new queries may have the same
definition than existing ones. This means that some queries should not trigger
a new HDP selection. In order to determine the exact actions required after
the arrival of a given query, we define a Fragmentation Algebra that contains all
possible operations defined on a HDP schema.

3.1 Schema reduction and evolution

In a RDW, the number of fragmentation attributes may be very large (hundreds
of attributes). As a consequence, the number of fact table fragments in the
Maximal Fragmentation Schema (MFS)is very large too. Suppose a MFS with
30 attributes, where each attribute has 10 sub-domains. The number of fact
table fragments is

∏n

1
mi =

∏30

1
10 = 1030, which is impossible to manage.

Algebra-based Approach for Incremental Data Warehouse Partitioning 5

Therefore, a fragmentation schema can be not maximal by merging sub-domains
or excluding some attributes from the fragmentation process. We can obtain a
reduced fragmentation schema as illustrated in table 2. We denote by Elsei
all other values of the attribute Ai not specified in the sub-domains. For the
fragmentation schema of the table 2, the sets Elsei are specified as follows:

– Else1 = {SD1
1, · · · , SD

1
m1

} \ {SD1
1, SD

1
2, SD

1
3, SD

1
5, SD

1
4, SD

1
6}

– Else2 = {SD2
1, · · · , SD

2
m2

} \ {SD2
1, SD

2
2}

– Else3 = {SD3
1, · · · , SD

3
m3

} \ {SD3
1, SD

3
3, SD

3
5, SD

3
7, SD

3
9, SD

3
8}

– Else4 = {SD4
1, · · · , SD

4
m4

} \ {SD4
1, SD

4
2}

A1 SD1

1 SD1

2, SD
1

3, SD
1

5 SD1

4, SD
1

6 Else1

A2 SD2

1 SD2

2 Else2

A3 SD3

1, SD
3

3 SD3

5 SD3

7, SD
3

9 SD3

8 Else3

A4 SD4

1 SD4

2 Else4
Table 2. Reduction of the HDP schema MFS to FS

The transition from the MFS to the fragmentation schema FS is called
the Reduction of the fragmentation Schema (RFS). It includes the following
operations: (1) remove the attributes A5, · · · , An, (2) merge the sub-domains of
the attributes A1, A2, A3 and A4. On the other hand, the fragmentation schema
can evolve by adding new fragmentation attributes or splitting the different sets
of sub-attributes. We present in the table 3 the evolution of the fragmentation
schema FS given in the table 2.

A1 SD1

1 SD1

2, SD
1

3, SD
1

5 SD1

4, SD
1

6 Else1

A2 SD2

1 SD2

2 Else2

A3 SD3

1, SD
3

3 SD3

5, SD
3

7 SD3

9, SD
3

8 Else3

A4 SD4

1 SD4

2 Else4

A5 SD5

1, SD
5

2 Else5
Table 3. Evolution of the fragmentation schema FS to FS′

The transition from the schema FS to the schema FS′ is called Evolution of
the HDP Schema (EFS). EFS is a dual operation of the reduction operation
that involves the following operations: (1) add the attribute A5 and the sub-
domains Dom(A5) = {SD5

1, · · · , SD
5
m5

}, (2) merge the sub-domains of A5 into
two sets {SD5

1, SD
5
2} and Else5 = {SD5

1, · · · , SD
5
m5

} \ {SD5
1, SD

5
2}, (3) split

the set of sub-domains of A3 {SD3
7, SD

3
9} into two sets, (4) merge the two sets

{SD3
5} and {SD3

7} into {SD3
5, SD

3
7} and (5) merge the two sets {SD3

8} and
{SD3

9} into {SD3
8, SD

3
9}

6 Rima Bouchakri, Ladjel Bellatreche, and Zoé Faget

3.2 Operators description

Let FS be a fragmentation schema. In order to perform an evolution EFS or
a reduction RFS, we define a set of operators that represents an Algebra of
fragmentation AF). We consider the attribute Ai (1 < i < n), where n repre-
sents the number of different attributes, and mi the number of sub-domains of
Ai. Each operator takes a fragmentation schema FS as input and produces a
fragmentation schema FS′

- Add A(Ai, {SD
i
j1
, · · · , SDi

jp
})(FS) : add the attribute Ai to the fragmentation

schema FS including the set of sub-domains {SDi
j1
, · · · , SDi

jp
}, which implies

creating the set Elsei = {SDi
1, · · · , SD

i
mi

} \ {SDi
j1
, · · · , SDi

jp
}.

- Add SD(Ai, {SD
i
j1
, · · · , SDi

jp
})(FS) : add to the attribute Ai a set of sub-

domains {SDi
j1
, · · · , SDi

jp
} and delete it from the set Elsei.

- Split Dom(Ai, {SD
i
j1
, · · · , SDi

jp
}, {SDi

k1
, · · · , SDi

ks
})(FS) : split the set of sub-

domains {SDi
j1
, · · · , SDi

jp
} of the attribute Ai into two sets of sub-domains

{SDi
k1
, · · · , SDi

ks
} and {SDi

j1
, · · · , SDi

jp
}\{SDi

k1
, · · · , SDi

ks
}, where {k1, · · · , ks}

⊂ {j1, · · · , jp}.
- Merge Dom(Ai, {SD

i
j1
, · · · , SDi

jp
}, {SDi

k1
, · · · , SDi

ks
})(FS) : merge the two

sets {SDi
j1
, · · · , SDi

jp
} and {SDi

k1
, · · · , SDi

ks
} into one, where {j1, · · · , jp} ⊂

[1,mi] and {k1, · · · , ks} ⊂ [1,mi].
- Del A(Ai)(FS) : delete the attribute Ai from the HDP schema FS.
- Del SD(Ai, {SD

i
j1
, · · · , SDi

jp
})(FS) : delete from the attribute Ai the set con-

taining the sub-domains {SDi
j1
, · · · , SDi

jp
} and include it in the set Elsei.

Using this Algebra, we can express the schema evolution EFS of the schema
FS (table 2) into the schema FS′ (table 3) as follows:
FS′ = EFS(FS) =
Merge Dom(A3, {SD

3
8}, {SD

3
9})◦ Merge Dom(A3, {SD

3
5}, {SD

3
7})◦

Split Dom(FS,A3, {SD
3
7, SD

3
9})◦ Add A(A5, {SD

5
1, SD

5
3})(FS).

We can classify these algebra’s operations into two categories:
1. Evolution operations: the operations required to perform an EFS are
Add A(), Add SD() and Split Dom().
2. Reduction operations: the operations required to perform a RFS are
Del A(), Del SD() and Merge Dom().
Another classification would be between vertical operations (Add A,Del A) and
horizontal operations (Add SD, Split SD,Merge Dom,Del Dom).

3.3 Operators properties

We now give notable properties of the previously introduced operators. Those
properties will be useful for optimization purposes such as rewriting of opera-
tions, query scheduling or discarding mutually canceling operations. In all that
follows, we assume the operators make sense on a given current schema.

Inverse operators We introduce the identity operator Id(FS) (which leaves
the fragmentation schema unchanged), as the identity element of our algebra.

Algebra-based Approach for Incremental Data Warehouse Partitioning 7

1. Del A (resp. Add A) is the left (resp. right) inverse of Add A (resp. Del A).
The two operators are not commutative in the general case.
Del A ◦Add A = Id.

2. Split Dom(Ai, Set1, Set2) and Merge Dom(Ai, Set1, Set2) are inverse op-
erators.

3. Del SD(Ai, {SD
i
j}) and Add SD(Ai, {SD

i
j}) are inverse operators.

Equivalence rules

1. Operators involving different attributes, or involving the same attribute but
different subdomains, are commutative.

2. Merge Dom(Ai, Set1, Set2)◦Add SD(Ai, Set2)◦Add SD(Ai, Set1) is equiv-
alent to Add SD(Ai, Set1 ∪ Set2).

3. More generaly, a sequence of Add SD operations ending with the correspond-
ing Merge Dom operation is equivalent to adding the union of subdomains.

4. Deleting a set of subdomains of Ai is equivalent to merging the set with the
current Elsei.
Del SD(Ai, Set1) = Merge Dom(Ai, Set1, Elsei)

5. Deleting an attribute is equivalent to successively merging all subdomains
of this attribute.
Del A(Ai) = Merge Dom(Ai, SD

i
1, Elsei)◦. . .◦Merge Dom(Ai, SD

i
mi

, Elsei)

4 Queries Profiling

When new queries are executed on the RDW , the fragmentation schema may be
updated in order to take into account the workload changes. According to the
executed queries, the fragmentation schema can be updated using a reduction
RFS, an Evolution EFS or both. If the definition of the executed queries is
similar to the current workload, no changes are required. In order to determine
the required operations to adapt a fragmentation schema to the workload evolu-
tion, we analyze the new executed query to determine all the Algebra operations
required. We give the general description of a star join query as follows:

SELECT *
FROM F, D1, D2, ..., Dd
WHERE F.ID1=D1.ID1 AND F.ID2=D2.ID2 ... AND F.IDd=Dd.IDd
AND (A1 op V11 OR A1 op V12 ... OR A1 op V1k1)
AND (A2 op V21 OR A2 op V22 ... OR A2 op V1k2) ...
AND (An op Vn1 OR An op Vn1 ... OR An op Vnkn)
[ORDER BY ...]
[GROUP BY ...]
[HAVING ...]

The fragmentation schema is defined on the fragmentation attributes and their
sub-domains appearing in the selection predicates of the WHERE clause. When
executing a new query, changes are defined by the selection predicates Ai op Vij

(1 < i < n and 1 < j < ki). Each attribute’s value Vij can equal or be contained
in a sub-domain SDi

j . Therefore, the general expression of a selection predicate

is Ai op {SDi
j1
, · · · , SDi

jp
}. Let’s consider a new query Q executed on a RDW

partitioned according to a fragmentation schema FS. The execution of Q may

8 Rima Bouchakri, Ladjel Bellatreche, and Zoé Faget

require adding new attributes, new sub-domains contained in Elsei, merging or
splitting sub-domains’ sets and/or deleting infrequent attributes or sub-domains.
We study the possible Algebra Operations induced by the selection predicates
Ai op {SDi

j1
, · · · , SDi

jp
}.

– Ai does not appear in FS: this attribute is added to the fragmentation
schema by the operation Add A(Ai, {SD

i
j1
, · · · , SDi

jp
})(FS).

– Ai appears in FS: We verify if the set of sub-domains {SDi
j1
, · · · , SDi

jp
}

requires Algebra operations.
– All sub-domains contained in {SDi

j1
, · · · , SDi

jp
} appear as a set in FS: no

operations.
– The set {SDi

j1
, · · · , SDi

jp
} is included in a set {SDi

L1
· · · , SDi

Lm
} in FS:

This set is split using the operation Split Dom(Ai, {SD
i
L1
, · · · , SDi

Lm
},

{SDi
j1
, · · · , SDi

jp
})(FS)

– All sub-domains contained in {SDi
j1
, · · · , SDi

jp
} appear in t sub-sets

SubSet1, · · · , SubSett in FS, where SubSet1 ∪ SubSet2 ∪ · · · ∪ SubSett =
{SDi

j1
, · · · , SDi

jp
}: the t seb-sets are merged by the operation

Merge Dom(Ai, SubSet1) ◦Merge Dom(Ai, SubSet2)◦
... ◦Merge Dom(Ai, SubSett)(FS).

– A sub-set of sub-domains {SDi
k1
, · · · , SDi

ks
} doesn’t appear in FS, where

{SDi
k1
, · · · , SDi

ks
} ⊂ {SDi

j1
, · · · , SDi

jp
}: the sub-domains contained in this

sub-set are all in Elsei. The sub-set is added to FS using the operation
Add SD(Ai, {SD

i
k1
, · · · , SDi

ks
})(FS)

– There in no sub-domain of {SDi
j1
, · · · , SDi

jp
} that appears in FS: the sub-

domains are all in Elsei. The set is added to FS using the operation
Add SD(Ai, {SD

i
j1
, · · · , SDi

jp
})(FS).

– An attribute Aj is no more frequently used by the workload: for each at-
tribute, we calculate the use rate by the workload. If the attribute is used by
less then 20% of the workload, it’s deleted using the operationDel A(Aj)(FS).

– A set of sub-domains {SDi
R1

, · · · , SDi
Rh

} of the attribute Ai is no more
frequently used by the workload: for each set, we calculate the use rate by
the workload. If the set is used by less then 20% of the workload, it’s removed
using the operation Del SD(Ai, {SD

i
j1
, · · · , SDi

jp
})(FS).

– All the sub-domains of Ai are merged into one set to form the set Elsei: this
may happen after operations Merge Dom() and/or Del SD() were applied
In this case no fragmentation is defined on Ai. This attribute is removed
using the operation Del A(Aj)(FS).

Once we know all possible Algebra Operations induce by the query Qi, we de-
duce if Qi causes a RFS, an EFS, both or none. As a consequence, we elaborate
four query profiles:

1. Evolution queries: this profile describes queries that require the opera-
tions Add A(), Add SD() and/or Split Dom(). When an Evolution query
is executed on the RDW, an EFS of the current schema is needed. As
consequence, the number of facts table fragments will increase.

Algebra-based Approach for Incremental Data Warehouse Partitioning 9

2. Reduction queries: this profile describes queries that require the opera-
tions Del A(), Del SD() and Merge Dom(). When a Reduction query is
executed on the RDW , an RFS of the current schema is needed. Therefore,
the number of facts table fragments will decrease.

3. Mixed queries: a Mixed query implies both Evolution and Reduction oper-
ations (Add A(),Add SD(), Split Dom(),Del A(),Del SD() andMerge Dom()).
The number of facts table fragments can either increase or decrease.

4. Neutral queries: a Neutral query does not affect the current RDW frag-
mentation schema. Let us consider a selection predicateAi op {SDi

j1
, · · · , SDi

jp
}

in a query. This query is neutral if Ai appears in FS and all sub-domains,
contained in {SDi

j1
, · · · , SDi

jp
}, appear as a set in FS or the operations de-

fined leaves the HDP schema unchanged. For instance, if the query requires
two inverse operators like Del A and Add A, the identity operator Id(FS)
is obtained which has no effect on the fragmentation schema. Two operators
Del A (resp. Del SD) and Add A (resp. Add SD) can be obtained, when
executing one query, if the attribute A (resp. the set {SDi

j1
, · · · , SDi

jp
})

is no more frequently used by the workload which requires the operator
Del A (resp. Del SD) but a selection predicate is defined on the attribute
A (resp. the set {SDi

j1
, · · · , SDi

jp
}) which generate the operator Add A (resp.

Add SD).

Example 1. Let us consider a data warehouse with a fact table Sales and two
dimension tables: Client and Product. We give the current fragmentation schema
FS1 of the RDW in table 4. We consider four queries. For each query we give
its description, its profile and the Algebra’s operations required to adapt the
current fragmentation schema FS1 to the changes given by each query (table
5).

Gender M F

City Alger Oran Else2
Table 4. Example of a fragmentation schema FS1

5 Queries Profiling-based Incremental Algorithm

We assume that a new query Qi is executed on a partitioned RDW represented
by a current HDP Schema called FSt. In order to adapt the current fragmenta-
tion schema of the RDW , we analyze Qi using our Algebra in order to determine
the query profile. According to the profile, we decide of the physical operations
to perform in order to update the RDW schema. We present an algorithm that
summarizes the Incremental selection of RDW schema using query profiling.
This algorithm uses the classic RDW schema selection based on Genetic Algo-
rithms [2]. Some functions are needed to implement our algorithm:

10 Rima Bouchakri, Ladjel Bellatreche, and Zoé Faget

Query Algebra Operations Profile

SELECT *
FROM Client C, Product P, Sales S Add Dom(City, {Blida})(FS1) Evolution
WHERE S.IdC=C.Id And S.IdP=P.Id Add A(PName, {P1})(FS1)
And C.City=’Blida’ And P.PName=’P1’

SELECT * FROM Client C, Sales S Merge Dom(City, {Alger}, Reduction
WHERE S.IdC=C.Id {Oran})(FS1)
And C.City=’Alger’ Or C.City=’Oran’

SELECT *
FROM Client C, Product P, Sales S Merge Dom(City, {Alger}, Mixed
WHERE S.IdC=C.Id And S.IdP=P.Id {Oran})(FS1)
And C.City=’Alger’ Or C.City=’Oran’
And P.PName=’P1’

Add A(FS1, PName, {P1})

SELECT * FROM Client C, Sales S
WHERE S.IdC=C.Id / Neutral
And C.City=’Alger’

Table 5. Queries Profiles

– AnalyseQProfile(Algebra, Qi): returns the profile of the query Qi based on
the Algebra.

– ComputeNewFS(FS,Qi): returns a new fragmentation Schema FSt+1 using
the current Schema FSt and the new query Qi.

– FragmentationSelectionGA (Q, FS, RDW, B): Selects the best fragmentation
Schema using Genetic Algorithm.

– NBfragments(FS): returns the number of fact fragments of a given fragmen-
tation Schema FS.

In order to illustrate our Incremental selection based on query profiling, we
present an architecture that summarizes the steps to perform when the workload
evolves (figure 1). When a new query Qi is executed on the RDW , its profile
is determined based on the Algebra. If the query profile is ”Neutral” or ”Re-
duction”, no selection and no implementation on the RDW is required, since
cost gain will be marginal compared to the time needed to select and implement
a new schema. However, if the query profile is ”Evolution” or ”Mixed”, a new
fragmentation schema NewFS is computed. Then, if the NewFS has a number
of fact fragments that violates the constraint B, a new selection of fragmen-
tation schema based on genetic algorithm is performed. Finally, the obtained
fragmentation schema is implemented on the RDW.

Our algebra operators are direclty deployed in Oracle11G. We choose Ora-
cle11G, since it is the pionner that supports the referencial paritioning2. Due to
lack of space, we cannot detail here how all operators are physically implemented
under Oracle 11g The interested reader can refer to our technical document3.

2 http://docs.oracle.com/cd/B10501_01/server.920/a96521/partiti.htm
3 http://www.lias-lab.fr/~bellatreche/LongDexa2014.pdf

Algebra-based Approach for Incremental Data Warehouse Partitioning 11

Incremental Selection of FS based on Queries Profiling

Input:

Algebra : a set of the Algebra operators
Q : the workload containing m queries
Qi : the new executed query
FS : the current fragmentation schema of the RDW

RDW : data that compose the Cost Model used in the Genetic Algorithms
B : maximum number of fact fragments

Output: Fragmentation schema of the dimensions tables NewFS.
Begin

QueryProfil ← AnalyseQProfile(Algebra, Qi);
if QueryProfil=”Neutral” then

Break; {End Algorithm}
end if

NewFS ← ComputeNewFS(FS, Qi);
if QueryProfil=”Evolution” or QueryProfil=”Mixed” then

if NBfragments(NewFS)> B then

NewFS ← FragmentationSelectionGA(Q ∪ {Qi}, FS, RDW, B);
end if

end if

End

6 Experimentation under Oracle 11g

In order to evaluate our incremental selection based on Queries Profiling, we con-
duct experimental tests on aRDW schema of the APB1 benchmark [5] under the
DBMS Oracle 11g. The RDW based on a star schema contains a facts table Act-
vars (24 786 000 tuples) and 4 dimension tables Prodlevel (9000 tuples), Custlevel
(900 tuples), Timelevel (24 tuples) and Chanlevel (9 tuples). The genetic algo-
rithm is implemented using the JAVA API JGAP (jgap.sourceforge.net). In
this study, we aim at evaluating the efficiency of the queries profiling performed
using our fragmentation algebra. To well analyze the queries, we first conduct
small-scale tests on a workload of 8 queries, then we realize larger-scale tests
on a workload of 60 queries. The 60 queries generate 18 indexable attributes

(Line, Day,Week, Country, Depart, Type, Sort, Class, Group, Family, Division,
Year, Month, Quarter, Retailer, City, Gender and All) that respectively have
the following cardinalities : 15, 31, 52, 11, 25, 25, 4, 605, 300, 75, 4, 2, 12, 4, 99,
4, 2, 3.

6.1 Small-scale tests

In this experiment, we first consider an empty workload. Then, we suppose
that eight new queries are successively executed on the RDW . We give the at-
tributes and the profile of each query (table 6, left). Under a constraint B = 40,
the three first queries Q1, Q2 and Q3 triggers an incremental selection. These

12 Rima Bouchakri, Ladjel Bellatreche, and Zoé Faget

RDW
Workload Q

Generation of Current

HDP Schema

Current

schema FS

New query Qi

Identification of

the Profile of Qi
Algebra

Profile(Qi)

Nature

of the

Profile

Generation of New

HDP Schema

New HDP

schema FS

Apply Genetic

Algorithm

Final HDP

Schema

No Partitioning

Reduction or neutral

Evolution

or

Mixed Profile

Add Qi into Q

Analyze the

Query

Attributes and

sub-domains

Fig. 1. Architecture of Incremental Fragmentation Schema Selection based on Queries
Profiling

Query Attributes Profile

Q1 Group Evolution

Q2 Month, Quarter Evolution

Q3 Month, Class Evolution

Q4 City, Gender Mixed

Q5 Month, Year, City, Class Neutral

Q6 Class, Gender Reduction

Q7 City, Gender, Class Mixed

Q8 City, Gender, Group Neutral

Queries Profile

Q46, Q47, Q49, Q55, Neutral
Q56, Q57, Q60

Q48, Q50, Q52, Q51, Mixed
Q58, Q59

Q53, Q54 Reduction

Table 6. Workloads descriptions and queries profiles

queries have an Evolution profile, since the constraint B has not yet been vio-
lated. The Queries Q4 and Q7 are Mixed and requires an incremental selection
where the queries Q5, Q6 and Q8 have respectively a Neutral, Reduction and
Neutral profiles and don’t require a new RDW partitioning. We compare the
Incremental Selection based on Queries Profiling GAQP to the classic incre-
mental selection GA (both selections use the same genetic algorithm). For each
new query and each selection, we write down the cost optimization rate of the
executed queries illustrated in figure 2. We notice that the optimization of the
workload cost given by both GA and GAQP is globally the same. This shows
that profiling does not influence the quality of the solution selected by the in-
cremental selection process. Next, we compare the two selections according to
the Maintenance Time. The maintenance time is the time required to effectively
implement a fragmentation schema on the data warehouse under Oracle 11g.
After the execution of each query and for each selection (GA and GAQP), we
implement under Oracle 11g the new fragmentation schema on the RDW and

Algebra-based Approach for Incremental Data Warehouse Partitioning 13

we write down the maintenance time. Results are given in figure 3. For the GA

selection, each query requires a selection and implementation of a new fragmen-
tation schema, the global maintenance time after the execution of the ten queries
is 193.6 minutes which correspond to 3 hours and 13 minutes. For the GAQP se-
lection, the queries with the profiles Reduction and Neutral do not trigger a new
incremental selection, so no changes occur on theRDW. The global maintenance
time is 109.3 minutes (1 hours and 49 minutes). As a result, the GAQP selection
reduces the global maintenance time by 43.5% compared to GA selection.

 0

 20

 40

 60

 80

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

C
os

t o
pt

im
iz

at
io

n
ra

te

(%
)

New queries

GA
GAQP

Fig. 2. Cost optimization rate (case 8
queries)

 0

 5

 10

 15

 20

 25

 30

 35

 40

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

M
ai

nt
en

an
ce

 T
im

e

(m
in

ut
es

)

New Query

GA
GAQP

Fig. 3. Maintenance Time under Oracle11g
(case 8 queries)

6.2 Larger-scale tests

We consider a workload of 45 queries executed on a partitioned RDW. The cur-
rent fragmentation schema of the RDW is obtained by a static selection using
the 45 queries with a constraint B = 100. After that, we suppose that 15 new
queries are successively executed on the RDW . We perform the two selections
(GA andGAQP). We also implement an existing approach: the incremental frag-
mentation selection named DD based on the dynamic design of RDW proposed
in [17] that we adapt in a centralized context. For each selection and each new
query, we store the cost optimization rate of the executed queries (figure 4) and
the Maintenance Time under Oracle11g (figure 5). Profiles of the new queries are
given in table 6, right. According to the result given by figure 4, the workload
costs obtained by the three selections are similar. First the incremental selection
of fragmentation schema in DD, GA and GAQP are all based on the horizontal
fragmentation selection approach proposed in [1]. Second, the queries profiling
does not affect the quality of any selected fragmentation schema. But, when
analyzing the results of the figure 5, we notice that the GAQP selection gives
a better maintenance time then the GA and DD selection. The global main-
tenance time of GA and DD selections is respectively 678 minutes (11 hours
and 18 minutes) and 697 minutes (11 hours and 37 minutes) when the global

14 Rima Bouchakri, Ladjel Bellatreche, and Zoé Faget

 0

 20

 40

 60

 80

 100

Q46
Q47

Q48
Q49

Q50
Q51

Q52
Q53

Q54
Q65

Q56
Q57

Q58
Q59

Q60

C
os

t o
pt

im
iz

at
io

n
ra

te

(%
)

New queries

DD
GA
GAQP

Fig. 4. Cost optimization rate (case 60
queries)

 0

 20

 40

 60

 80

 100

Q46
Q47

Q48
Q49

Q50
Q51

Q52
Q53

Q54
Q65

Q56
Q57

Q58
Q59

Q60

M
ai

nt
en

an
ce

 T
im

e

(m
in

ut
es

)

New Query

DD
GA
GAQP

Fig. 5. Maintenance Time under Oracle11g
(case 60 queries)

maintenance time of GAQP selection is 331 minutes (5 hours and 31 minutes)
which reduces the global maintenance time by 52%. This is due to the fact that
GA and DD perform a selection of a new fragmentation schema after the execu-
tion of each new query. On the other hand, among the 15 queries only 6 queries
trigger a new incremental selection (Mixed profile) for the selection GAPQ. The
queries with a Reduction or Neutral profiles do not require any changes on the
RDW.

Therefore, according to the important parameter namely the maintenance
time required to implement a new fragmentation schema on a partitioned RDW ,
the GAQP approach is better than the classic GA incremental selection and the
existing approach DD.

7 Conclusion

This work deals with incremental selection of a horizontal data partitioning
schema in the context of data warehouse modelled by a star schema. We pro-
pose a Fragmentation Algebra containing all possible operations that can be
performed on a fragmentation schema in order to take into account workload
evolution. Using our Algebra, we define Queries Profiling. According to the pro-
file of a new executed query, we determine if a selection of a new fragmentation
schema is required. We give the architecture of the incremental selection of frag-
mentation schema based on queries profiling and the Fragmentation Algebra.
Then, we give an insight of the physical operations required to implement the
Algebra operations under Oracle 11g. Finally, we conduct an experimental study
under the DBMS Oracle 11g to show the efficiency of the queries profiling. We
showed that using queries profiling reduces by more than 50% the global main-
tenance time required to implement a new selection fragmentation schema on a
partitioned RDW .

We are currently working on the problem of incremental horizontal data
partitioning by considering the evolution of the data warehouse schema and its
instances using solutions issued from graph theory as in [6].

Algebra-based Approach for Incremental Data Warehouse Partitioning 15

References

1. L. Bellatreche, K. Boukhalfa, and P. Richard. Referential horizontal partitioning
selection problem in data warehouses: Hardness study and selection algorithms.
International Journal of Data Warehousing and Mining, 5(4):1–23, March 2009.

2. R. Bouchakri, L. Bellatreche, Z. Faget, and S. Breß. A coding template for handling
static and incremental horizontal partitioning in data warehouses. To appear in
Journal of Decision Systems (JDS) Vol. 22, 2013.

3. S. Ceri, M. Negri, and G. Pelagatti. Horizontal data partitioning in database de-
sign. Proceedings of the ACM SIGMOD International Conference on Management
of Data. SIGPLAN Notices, pages 128–136, 1982.

4. C.-H. Cheng, W.-K. Lee, and K.-F. Wong. A genetic algorithm-based cluster-
ing approach for database partitioning. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 32(3):215–230, 2002.

5. O. Council. Apb-1 olap benchmark, release ii.
http://www.olapcouncil.org/research/bmarkly.htm, 1998.

6. C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H. Balakr-
ishnan, and N. Zeldovich. Relational cloud: a database service for the cloud. In
CIDR, pages 235–240, 2011.

7. C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism: a workload-driven
approach to database replication and partitioning. PVLDB, 3(1):48–57, 2010.

8. H. Derrar, M. Ahmed-Nacer, and O. Boussaid. Dynamic distributed data ware-
house design. Journal of Intelligent Information and Database Systems, Vol.7,
No.1, 2013.

9. A. Dimovski, G. Velinov, and D. Sahpaski. Horizontal partitioning by predicate
abstraction and its application to data warehouse design. In Advances in Databases
and Information Systems, pages 164–175. Springer, 2011.

10. H.Mahboubi and J. Darmont. Data mining-based fragmentation of xml data ware-
houses. In ACM 11th International Workshop on Data Warehousing and OLAP
(DOLAP’08), pages 9–16, 2008.

11. K. Karlapalem, S. B. Navathe, and M. Ammar. Optimal redesign policies to sup-
port dynamic processing of applications on a distributed database system. Infor-
mation Systems, 21(4):353–367, 1996.

12. M. Liroz-Gistau, R. Akbarinia, E. Pacitti, F. Porto, and P. Valduriez. Dynamic
workload-based partitioning for large-scale databases. In DEXA (2), pages 183–
190, 2012.

13. M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems : Second
Edition. Prentice Hall, 1999.

14. M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems: Second
Edition. Prentice Hall International, Inc., 1999.

15. E. Papadomanolakis and A. Ailamaki. Autopart: Automating schema design for
large scientific databases using data partitioning. In In Proceedings of the 16th
International Conference on Scientific and Statistical Database Management (SS-
DBM), pages 383–392. IEEE Computer Society, 2004.

16. A. Sanjay, V. R. Narasayya, and B. Yang. Integrating vertical and horizontal
partitioning into automated physical database design. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 359–370, June
2004.

17. K. Tekaya. Dynamic distributed data warehouse design. IRMA International
Conference, 2007.

