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Abstract. Horizontal Data Partitioning is an optimization technique
well suited to optimize star-join queries in Relational Data Warehouses.
Most works focus on a static selection of a fragmentation schema. How-
ever, due to the evolution of data warehouses and the ad hoc nature
of queries, the development of incremental algorithms for fragmentation
schema selection has become a necessity. In this work, we present a Frag-
mentation Algebra containing all operators needed to update a schema
when a new query arrives. To identify queries which should trigger a
schema update, we introduce the notion of query profiling.

1 Introduction

In the era of big data, there is a need to develop new models, data structures,
algorithms, and tools for processing, analyzing, mining and understanding this
huge amount of data using High Performance Computing (HPC). The diversity
of HPC platforms contributes in developing a new issue related to the deploy-
ment of data on relevant platform to satisfy the requirements of end users in
terms of query processing and data manageability. Horizontal Data Partition-
ing (HDP ) is a pre-condition for deploying data on many platform: central-
ized [17], parallel [9], distributed [16], cloud [8], etc. The problem of horizontal
data partitioning (PHDP) has been largely studied in the literature in different
database contexts: OLTP databases [15], data warehouses [3], scientific and sta-
tistical databases []. Horizontal data partitioning consists in fragmenting a table,
an index or a materialized view, into partitions (fragments) [17]. Besides, many
Database Management Systems DBMS implements it (Oracle, DB2, SQLServer,
Sybase, PostgreSQL and MySQL). Two main types of horizontal partitioning are
distinguished [5]: primary partitioning and derived partitioning. In the primary
table partitioning, a table is partitioned according to its attributes. It optimizes
selection operations and used in rewriting queries in distributed and parallel
databases [16]. The referential partitioning allows partitioning a table according
to the primary partitioning of another table if a relationship parent-child exists.

Several partitioning modes exist to support primary horizontal partitioning
in centralized and parallel platforms: Range, List and Hash. These modes are
combined to form the composite modes. The derived partitioning is also sup-
ported by commercial DBMS such as Oracle.
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The PHDP is formalized as follows: given a database/data warehouse schema,
a set of a priori known queries, and a partitioning constraints that limits the num-
ber of final fragments, the PHDP consists in fragmenting the tables of the given
schema into sets of fragments such as the overall query processing cost is min-
imized and the number of the final fragments does not exceed the partitioning
constraint. The obtained fragments are disjoint and the union of all fragments
belonging to a set of fragments is equal to the schema of its corresponding
table. By examining the literature, we get three main observations: (i) Most
partitioning algorithms consider a well-known set of queries to perform a static
selection. However, the ad-hoc nature of the OLAP and scientific queries calls
for the development of incremental data partitioning algorithms. (ii) Partition-
ing algorithms use simple data structures. Business or scientific projects (such
as Dark Energy Survey1) manage extremely large databases with hundreds of
attributes candidates for partitioning process and need more sophisticated data
structures. (iii) Direct deployment of the partitioning results is time consuming.
The partitioning result needs to be rapidly deployed on the target platforms.
To satisfy these objectives, some naive solutions may exist like adapting the
existing partitioning solutions by incorporating a threshold indicating the time
where the repartitioning is needed as in []. Our vision differs from the tradi-
tional approaches since we are driven by the previously mentioned observations.
As a consequence, we propose a flexible coding that adapts to any partitioning
schema. Using this coding, we develop an algebra where operators capture any
change of the partitioning schema due to workload evolution. We also introduce
the notion of query profiling used together with our algebra to derive a new
fragmentation schema from the current one. The operators of this algebra are
easily implemented in the target platform. For our study, we consider a data
warehouse schema implemented in Oracle 11G.

2 Related work

Horizontal Data Partitioning is a non-redundant technique used in physical de-
sign of data warehouses. It is based on reorganization of data in order to optimize
star join queries, which contain multiple complex joins and selection operations
performed on a facts table and several dimension tables of a star-schema data
warehouse. The horizontal data partitioning was first announced as a logical de-
sign technique of relational and object databases [14]. Due to the efficiency of
this technique in optimizing data processing, it is used in physical design of data
warehouse. Besides, many Database Management Systems DBMS implement
it (Oracle, DB2, SQLServer, Sybase, PostgreSQL and MySQL). Commercial
DBMS use referential partitioning to optimize star-join queries [12].

In order to optimize star join queries, which involve restrictions and joins,
using HDP , authors in [3] show that the best partitioning scenario of a rela-
tional data warehouse is performed as follow : a primary partitioning of the
dimension tables is performed, followed by a reference partitioning of the fact

1 http://www.darkenergysurvey.org
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table according to the dimension tables’ fragmentation schema. Therefore, the
horizontal data partitioning got a lot of attention from academic and industrial
communities. We can classify these works into two categories according to the
selection nature.

Static selection: This category includes the majority of HDP works. These
works define a static selection that can’t deal with changes occurring on the
RDW , specially the execution of new queries that don’t exist in the current
workload. Four main approaches can be considered (a) minterm generation al-
gorithms [5, 16], (b) affinity-based algorithms [3, 14] (c) cost-model driven algo-
rithms [1, 6, 2, 11] and (d) data mining driven algorithms [13].

Incremental selection: Due to the evolution of data warehouse and the
ad hoc nature of the queries entered online, the development of incremental
algorithms for fragmentation schema selection becomes a necessity. Authors in
[14] deal with distributed database redesign. They propose simple heuristics to
deal with merging and splitting fragments. Authors in [18] propose a dynamic
design of distributed data warehouses. This approach is composed of three con-
cepts: (a) Dynamic process of extraction, transformation and load activated each
time there is a change in data sources. (b) Bases of knowledge to store history
of the data warehouse. (c) Dynamic process of fragmentation and replication
activated each time there is a change in the workload. The main issue of this
approach is that the fragmentation is triggered for each change which causes
a high maintenance cost, and may be unnecessary some cases where a change
in the workload eventually leads to the same schema. Authors in [10] propose
to deal with workload evolution by defining a refragmentation approach of re-
lational centralized data warehouses. This approach is based on storing recent
statistical information. First, only the facts table is partitioned using the ’By
Range’ Oracle mode on one of its foreign keys. Second, histograms are built
observing queries’ access to different fragments. At a given time, using a cost
model and the histograms, a refragmentation is performed if the evaluation of
criterion representing the queries cost is satisfied. Then, the histograms are up-
dated to store the occurred changes. In this work, the fragmentation of the fact
table is performed By Range according to only one foreign key of one dimension
table. But the OLAP queries contain complex star joins operations between facts
table and many dimension tables. Therefore, a beneficial fragmentation should
be performed according to many dimensions tables. Also, the refragmentation
in based on the same fragmentation attribute. A refragmentation on another
attribute could be more beneficial to deal with the workload evolution. In our
work [4], we propose an incremental selection of fragmentation schema based on
Genetic Algorithms GA that is triggered after every changes on the workload.
As stated before, this causes a high maintenance cost and may be unnecessary
in some cases. As a consequence, we propose a new incremental fragmentation
approach that analyze first the query profile to determine if a refragmentation
of the RDW is needed. Our approach is based on a Fragmentation Algebra that
models all the operations required to update a fragmentation schema.
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3 Fragmentation Algebra FA

In [4], we introduced an incremental selection of a Fragmentation Schema based
on a flexible encoding. A current FS is represented by an array that contains
the fragmentation attributes and their sets of sub-domains. An attribute associ-
ated to one of its sub-domain set make a selection predicate that is part of the
fragmentation schema of a dimension table. We encode the schema by affect-
ing a number to each sub-domain. The sub-domains with the same number will
be merged into one sub-domain. This encoding is used in a selection algorithm
based on Genetic Algorithm.

The main problem of the incremental approach that we presented in [4] is
the computation of a new fragmentation schema using GA after every change
that occurs on the workload. Since the HDP selection is NP-Hard, computing
a new selection of FS costs time and resources. Each new query executed on
the RDW can cause an extension or a reduction of the fragmentation schema
by adding/deleting new attributes, adding/deleting new sub-domains or split-
ting/merging existing sub-domains. Also, new queries may have the same defi-
nition than existing ones. This means that some queries shouldn’t trigger a new
HDP selection. In order to determine the exact actions required after the ex-
ecution of a given query, we define a Fragmentation Algebra that contains all
possible operations on a fragmentation schema. We first define a flexible encod-
ing of the fragmentation schema on which we can perform a Reduction or an
Evolution. Then, we present the Algebra operators and their properties.

3.1 Flexible encoding

Let’s consider a data warehouse RDW with a facts table F and d dimensions
tables D = {D1, D2, · · · , Dd}. A fragmentation schema is defined on non-key
dimension attributes A = {A1, · · · , An}. Each attribute Ai has a set of possible
values called Attribute Domain Dom(Ai). Dom(Ai) can be partitioned into mi

sub-domains Dom(Ai) = {SDi
1, SD

i
2, · · · , SD

i
mi

}. For instance, if we consider
the attribute City of a given table Clients, the domain partitioning is given as
follows:

- Dom(City)= {’Alger’, ’Oran’, ’Blida’, ’Kala’, ’Annaba’, ’Jijel’}
Thus, an attribute and a sub-domain make a selection predicate used to

specify the fragmentation schema of a dimension table in a RDW . According
to this, we define a Data Structure that represents the Maximal Fragmentation
Schema MFS of dimension tables (table 1). The number of fact table fragments
is the product of dimensions fragments numbers (

∏n

1 mi).

3.2 Schema reduction and evolution

In Data Warehousing context, the number of fragmentation attributes is very
large (tens or hundreds of attributes). Moreover, the amount of data stored
in a RDW is huge. As a consequence, the number of facts table fragments in
the MFS is very large too. Suppose a MFS defined on 30 attributes, where
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A1 SD1

1 SD1

2 · · · SD
1

m1

A2 SD2

1 SD2

2 · · · SD
2

m2

. . . . .

. . . . .

. . . . .

An SDn

1 SDn

2 · · · SD
n

mn

Table 1. Maximal Fragmentation Schema MFS

each attribute has 10 sub-domains. The number of facts table fragments is∏n

1 mi =
∏30

1 10 = 1030, which is impossible to manage. Therefore, a fragmen-
tation schema can be not maximal by merging sub-domains or excluding some
attributes from the fragmentation process. We can obtain a reduced fragmenta-
tion schema as illustrated in table 2. We denote by Elsei all other values of the
attribute Ai not specified in the sub-domains. For the fragmentation schema of
the table 2, the sets Elsei are specified as follows:

– Else1 = {SD1
1, · · · , SD

1
m1

} \ {SD1
1, SD

1
2, SD

1
3, SD

1
5, SD

1
4, SD

1
6}

– Else2 = {SD2
1, · · · , SD

2
m2

} \ {SD2
1, SD

2
2}

– Else3 = {SD3
1, · · · , SD

3
m3

} \ {SD3
1, SD

3
3, SD

3
5, SD

3
7, SD

3
9, SD

3
8}

– Else4 = {SD4
1, · · · , SD

4
m4

} \ {SD4
1, SD

4
2}

A1 SD1

1 SD1

2 , SD
1

3 , SD
1

5 SD1

4 , SD
1

6 Else1

A2 SD2

1 SD2

2 Else2

A3 SD3

1 , SD
3

3 SD3

5 SD3

7 , SD
3

9 SD3

8 Else3

A4 SD4

1 SD4

2 Else4
Table 2. Reduction of the fragmentation schema MFS to FS

The transition from the MFS schema to the FS schema is called Reduction
of the Fragmentation Schema (RFS). It includes the following operations: (1)
remove the attributes A5, · · · , An, (2) merge the sub-domains of the attributes
A1, A2, A3 and A4. On the other hand, the fragmentation schema can evolve
by adding new fragmentation attributes or splitting the different sets of sub-
attributes. We present in the table 3 the evolution of the fragmentation schema
FS given in the table 2.

The transition from the schema FS to the schema FS′ is called Evolution
of the Fragmentation Schema (EFS). EFS is a dual operation of the reduction
operation that involves the following operations: (1) add the attribute A5 and
the sub-domains Dom(A5) = {SD5

1, · · · , SD
5
m5

}, (2) merge the sub-domains of
A5 into two sets {SD5

1, SD
5
2} and Else5 = {SD5

1, · · · , SD
5
m5

} \ {SD5
1, SD

5
2}, (3)

split the set of sub-domains of A3 {SD3
7, SD

3
9} into two sets, (4) merge the two

sets {SD3
5} and {SD3

7} into {SD3
5, SD

3
7} and (5) merge the two sets {SD3

8} and
{SD3

9} into {SD3
8, SD

3
9}
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A1 SD1

1 SD1

2 , SD
1

3 , SD
1

5 SD1

4 , SD
1

6 Else1

A2 SD2

1 SD2

2 Else2

A3 SD3

1 , SD
3

3 SD3

5 , SD
3

7 SD3

9 , SD
3

8 Else3

A4 SD4

1 SD4

2 Else4

A5 SD5

1 , SD
5

2 Else5
Table 3. Evolution of the fragmentation schema FS to FS′

3.3 Operators description

Let FS a fragmentation schema. In order to perform an evolution EFS or a
reduction RFS, we define a set of operators that represent an Algebra of Frag-
mentation AF . We consider the attribute Ai where 1 < i < n, n the number
of different attributes, and mi the number of sub-domains of Ai. Each opera-
tor takes a fragmentations schema FS as input and produces a fragmentation
schema FS′

- Add A(Ai, {SD
i
j1
, · · · , SDi

jp
})(FS) : add the attribute Ai to the fragmentation

schema FS including the set of sub-domains {SDi
j1
, · · · , SDi

jp
}, which implies

creating the set Elsei = {SDi
1, · · · , SD

i
mi

} \ {SDi
j1
, · · · , SDi

jp
}.

- Add SD(Ai, {SD
i
j1
, · · · , SDi

jp
})(FS) : add to the attribute Ai a set of sub-

domains {SDi
j1
, · · · , SDi

jp
} and delete it from the set Elsei.

- Split Dom(Ai, {SD
i
j1
, · · · , SDi

jp
}, {SDi

k1
, · · · , SDi

ks
})(FS) : split the set of sub-

domains {SDi
j1
, · · · , SDi

jp
} of the attribute Ai into two sets of sub-domains

{SDi
k1
, · · · , SDi

ks
} and {SDi

j1
, · · · , SDi

jp
}\{SDi

k1
, · · · , SDi

ks
}, where {k1, · · · , ks}

⊂ {j1, · · · , jp}.
- Merge Dom(Ai, {SD

i
j1
, · · · , SDi

jp
}, {SDi

k1
, · · · , SDi

ks
})(FS) : merge the two

sets {SDi
j1
, · · · , SDi

jp
} and {SDi

k1
, · · · , SDi

ks
} into one, where {j1, · · · , jp} ⊂

[1,mi] and {k1, · · · , ks} ⊂ [1,mi].
- Del A(Ai)(FS) : delete the attribute Ai from the fragmentation schema FS.
- Del SD(Ai, {SD

i
j1
, · · · , SDi

jp
})(FS) : delete from the attribute Ai the set con-

taining the sub-domains {SDi
j1
, · · · , SDi

jp
} and include it in the set Elsei.

Using this Algebra, we can express the schema evolution EFS of the schema
FS (table 2) into the schema FS′ (table 3) as follows:

FS′ = EFS(FS) =
Merge Dom(A3, {SD

3
8}, {SD

3
9})◦ Merge Dom(A3, {SD

3
5}, {SD

3
7})◦

Split Dom(FS,A3, {SD
3
7, SD

3
9})◦ Add A(A5, {SD

5
1, SD

5
3})(FS).

We can classify these algebra’s operations into two categories:
1. Evolution operations: the operations required to perform anEFS areAdd A(),
Add SD() and Split Dom().
2. Reduction operations: the operations required to perform a RFS are Del A(),
Del SD() and Merge Dom().

Another classification would be between vertical operations (Add A,Del A)
and horizontal operations (Add SD, Split SD,Merge Dom,Del Dom).
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3.4 Operators properties

We now give notable properties of the previously introduced operators. Those
properties will be useful for optimization purposes such as rewriting of opera-
tions, query scheduling or discarding mutually canceling operations.

In all that follows, we assume the operators make sense on a given current
schema.

Inverse operators We introduce the identity operator Id(FS) (which leaves
the fragmentation schema unchanged), as the identity element of our algebra.

1. Del A (resp. Add A) is the left (resp. right) inverse of Add A (resp. Del A).
The two operators are not commutative in the general case.
Del A ◦Add A = Id.

2. Split Dom(Ai, Set1, Set2) and Merge Dom(Ai, Set1, Set2) are inverse op-
erators.

3. Del SD(Ai, {SD
i
j}) and Add SD(Ai, {SD

i
j}) are inverse operators.

Equivalence rules

1. Operators involving different attributes, or involving the same attribute but
different subdomains, are commutative.

2. Merge Dom(Ai, Set1, Set2)◦Add SD(Ai, Set2)◦Add SD(Ai, Set1) is equiv-
alent to Add SD(Ai, Set1 ∪ Set2).

3. More generaly, a sequence of Add SD operations ending with the correspond-
ing Merge Dom operation is equivalent to adding the union of subdomains.

4. Deleting a set of subdomains of Ai is equivalent to merging the set with the
current Elsei.
Del SD(Ai, Set1) = Merge Dom(Ai, Set1, Elsei)

5. Deleting an attribute is equivalent to successively merging all subdomains
of this attribute.
Del A(Ai) = Merge Dom(Ai, SD

i
1, Elsei)◦. . .◦Merge Dom(Ai, SD

i
mi

, Elsei)

4 Queries Profiling

When new queries are executed on the RDW , the fragmentation schema may be
updated in order to take into account the workload changes. According to the
executed queries, the fragmentation schema can be updated using a reduction
RFS, an Evolution EFS or both. If the definition of the executed queries is
similar to the current workload, no changes are required. In order to determine
the required operations to adapt a fragmentation schema to the workload evolu-
tion, we analyze the new executed query to determine all the Algebra operations
required. We give the general description of a star join query as follows:

SELECT *
FROM F, D1, D2, ..., Dd

WHERE F.ID1=D1.ID1 AND F.ID2=D2.ID2 ... AND F.IDd=Dd.IDd
AND (A1 op V11 OR A1 op V12 ... OR A1 op V1k1)

AND (A2 op V21 OR A2 op V22 ... OR A2 op V1k2) ...
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AND (An op Vn1 OR An op Vn1 ... OR An op Vnkn)
[ORDER BY ... ]
[GROUP BY ... ]

[HAVING ... ]

The fragmentation schema is defined on the fragmentation attributes and their
sub-domains appearing in the selection predicates of the WHERE clause. When
executing a new query, changes are defined by the selection predicates Ai op Vij .
Each attribute’s value Vij can equal or be contained in a sub-domain SDi

j. There-

fore, the general expression of a selection predicate is Ai op {SDi
j1
, · · · , SDi

jp
}.

Let’s consider a new queryQ executed on a data warehouse partitioned according
to a fragmentation schema FS. The execution of Q may require adding new at-
tributes, new sub-domains contained in Elsei, merging or splitting sub-domains’
sets and/or deleting infrequent attributes or sub-domains. We study the possible
Algebra Operations induced by the selection predicates Ai op {SDi

j1
, · · · , SDi

jp
}.

– Ai doesn’t appears in FS : this attribute is added to the fragmentation
schema by the operation Add A(Ai, {SD

i
j1
, · · · , SDi

jp
})(FS).

– Ai appears in FS: We verify if the set of sub-domains {SDi
j1
, · · · , SDi

jp
}

requires Algebra operations.
– All sub-domains contained in {SDi

j1
, · · · , SDi

jp
} appear as a set in FS: no

operations.

– The set {SDi
j1
, · · · , SDi

jp
} is included in a set {SDi

L1
· · · , SDi

Lm
} in FS:

This set is split using the operation Split Dom(Ai, {SD
i
L1
, · · · , SDi

Lm
},

{SDi
j1
, · · · , SDi

jp
})(FS)

– All sub-domains contained in {SDi
j1
, · · · , SDi

jp
} appear in t sub-sets

SubSet1, · · · , SubSett in FS, where SubSet1 ∪ SubSet2 ∪ · · · ∪ SubSett =
{SDi

j1
, · · · , SDi

jp
}: the t seb-sets are merged by the operation

Merge Dom(Ai, SubSet1) ◦Merge Dom(Ai, SubSet2)◦
... ◦Merge Dom(Ai, SubSett)(FS).

– A sub-set of sub-domains {SDi
k1
, · · · , SDi

ks
} doesn’t appear in FS, where

{SDi
k1
, · · · , SDi

ks
} ⊂ {SDi

j1
, · · · , SDi

jp
}: the sub-domains contained in this

sub-set are all in Elsei. The sub-set is added to FS using the operation
Add SD(Ai, {SD

i
k1
, · · · , SDi

ks
})(FS)

– There in no sub-domain of {SDi
j1
, · · · , SDi

jp
} that appears in FS: the sub-

domains are all in Elsei. The set is added to FS using the operation
Add SD(Ai, {SD

i
j1
, · · · , SDi

jp
})(FS).

– An attribute Aj is no more frequently used by the workload: for each at-
tribute, we calculate the use rate by the workload. If the attribute is used by
less then 20% of the workload, it’s deleted using the operationDel A(Aj)(FS).

– A set of sub-domains {SDi
R1

, · · · , SDi
Rh

} of the attribute Ai is no more
frequently used by the workload: for each set, we calculate the use rate by
the workload. If the set is used by less then 20% of the workload, it’s removed
using the operation Del SD(Ai, {SD

i
j1
, · · · , SDi

jp
})(FS).

– All the sub-domains of Ai are merged into one set to form the set Elsei: this
may happen after operations Merge Dom() and/or Del SD() were applied
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In this case no fragmentation is defined on Ai. This attribute is removed
using the operation Del A(Aj)(FS).

Once we know all possible Algebra Operationsinduce by the query Q, we
deduce ifQ causes aRFS, anEFS, both or none. As a consequence, we elaborate
four query profiles:

1. Evolution queries: this profile describes queries that require the opera-
tions Add A(), Add SD() and/or Split Dom(). When an Evolution query is
executed on the RDW , an EFS of the current RDW schema is needed. As
consequence, the number of facts table fragments will increase.

2. Reduction queries: this profile describes queries that require the opera-
tions Del A(), Del SD() and Merge Dom(). When a Reduction query is
executed on the RDW , an RFS of the current RDW schema is needed.
Therefore, the number of facts table fragments will decrease.

3. Mixed queries: a Mixed query implies both Evolution and Reduction oper-
ations (Add A(), Add SD(), Split Dom(),Del A(),Del SD() andMerge Dom()).
The number of facts table fragments can either increase or decrease.

4. Neutral queries: a Neutral query doesn’t affect the currentRDW fragmen-
tation schema. Let’s consider a selection predicate Ai op {SDi

j1
, · · · , SDi

jp
}

in a query. This query is neutral if Ai appears in FS and all sub-domains,
contained in {SDi

j1
, · · · , SDi

jp
}, appear as a set in FS or the operations de-

fined leaves the fragmentation schema unchanged. For instance, if the query
requires two inverse operators like Del A and Add A, the identity operator
Id(FS) is obtained which has no effect on the fragmentation schema. Two op-
erators Del A (resp. Del SD) and Add A (resp. Add SD) can be obtained,
when executing one query, if the attribute A (resp. the set {SDi

j1
, · · · , SDi

jp
})

is no more frequently used by the workload which requires the operator
Del A (resp. Del SD) but a selection predicate is defined on the attribute
A (resp. the set {SDi

j1
, · · · , SDi

jp
}) which generate the operatorAdd A (resp.

Add SD).

Example 1. Let’s consider a data warehouse with a facts table Sales and two
dimension tables: Client and Product. We give the current fragmentation schema
FS1 of the RDW in table 4. We consider four queries. For each query we give
its description, its profile and the Algebra’s operations required to adapt the
current fragmentation schema FS1 to the changes given by each query (table
5).

Gender M F

City Alger Oran Else2
Table 4. Example of a fragmentation schema FS1
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Query Algebra Operations Profile

SELECT *
FROM Client C, Product P, Sales S Add Dom(City, {Blida})(FS1) Evolution
WHERE S.IdC=C.Id And S.IdP=P.Id Add A(PName, {P1})(FS1)
And C.City=’Blida’ And P.PName=’P1’

SELECT * FROM Client C, Sales S Merge Dom(City, {Alger}, Reduction
WHERE S.IdC=C.Id {Oran})(FS1)
And C.City=’Alger’ Or C.City=’Oran’

SELECT *
FROM Client C, Product P, Sales S Merge Dom(City, {Alger}, Mixed
WHERE S.IdC=C.Id And S.IdP=P.Id {Oran})(FS1)
And C.City=’Alger’ Or C.City=’Oran’
And P.PName=’P1’

Add A(FS1, PName, {P1})

SELECT * FROM Client C, Sales S
WHERE S.IdC=C.Id / Neutral
And C.City=’Alger’

Table 5. Queries Profiles

5 Incremental selection of Fragmentation Schema based

on Queries Profiling GAQP

We assume that a new query Qi is executed on a partitioned RDW . In order
to adapt the current fragmentation schema of the data warehouse, we analyze
Qi using our Algebra in order to determine the query profile. According to the
profile, we decide of the physical operations to perform in order to update the
fragmentation schema. We present an algorithm that summarizes the Incremen-
tal selection of fragmentation schema using query profiling. This algorithm uses
the classic fragmentation schema selection based on Genetic Algorithms that we
presented in our previous work [4].

In order to illustrate our Incremental selection based on query profiling, we
present an architecture that summarizes the steps to perform when the workload
evolves (figure 1). When a new query Qi is executed on the RDW , its profile
is determined based on the Algebra. If the query profile is ”Neutral” or ”Re-
duction”, no selection and no implementation on the RDW is required, since
cost gain will be marginal compared to the time needed to select and implement
a new schema. However, if the query profile is ”Evolution” or ”Mixed”, a new
fragmentation schema NewFS is computed. Then, if the NewFS has a number
of fact fragments that violates the constraint B, a new selection of fragmen-
tation schema based on genetic algorithm is performed. Finally, the obtained
fragmentation schema is implemented on the RDW .
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Incremental Selection of FS based on Queries Profiling

Input:

Algebra : a set of the Algebra operators
Q : the workload containing m queries
Qi : the new executed query
FS : the current fragmentation schema of the RDW

RDW : data that compose the Cost Model used in the Genetic Algorithms
B : maximum number of fact fragments

Output: Fragmentation schema of the dimensions tables NewFS.
Notations:

AnalyseQProfile: returns the query profile according to the Algebra of Fragmentation
ComputeNewFS: returns a new FS using the current FS and the new query Qi

FragmentationSelectionGA: Select an Optimal FS using Genetic Algorithms
NBfragments: Compute the number of facts fragments generated by the entered FS

Begin

QueryProfil ← AnalyseQProfile(Algebra, Qi);
if QueryProfil=”Neutral” then

Break; {End Algorithm}
end if

NewFS ← ComputeNewFS(FS, Qi);
if QueryProfil=”Evolution” or QueryProfil=”Mixed” then

if NBfragments(NewFS)> B then

NewFS ← FragmentationSelectionGA(Q ∪ {Qi}, FS, RDW , B);
end if

end if

End
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Fig. 1. Architecture of Incremental Fragmentation Selection based on Queries Profiling

6 Portability of the Fragmentation Algebra under Oracle

11g

We consider a data warehouse partitioned according to a fragmentation schema
FS. When updating a schema FS into a new schema FS′ by an EFS or a RFS,
it’s important to know the physical operations to perform in order to physically
implement the schema FS′ on the RDW . Since the physical operations depend
on the Database Management System, we consider the DBMS Oracle 11g2

Given a fragment P , the physical operations that could be performed are
given as follows:

– Split(P, Ct): horizontal fragmentation of P into two disjoint fragments P1
and P2 according to the criteria Ct. Let’s consider P a fragment of the table
Client. Split(P, City=’Algiers’) generates P1 that contain clients of the city
Algiers and P2 that contains the other clients.

– Merge(P1, P2): merge P1 and P2 into one fragment.

– Move(P, TBS): move P to the table-space TBS, if there is no more space
for P in the current tablespace. This operation is performed after a Merge
fragment, or if new tuples are inserted into P .

– Extend(P): extend the fragment P .

– Create(P): create a new fragment to store new inserted instances that don’t
belong to any existing fragment.

2 Managing Partitioned Tables and Indexes http://docs.oracle.com/cd/B10501_01/
server.920/a96521/partiti.htm
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In the general case, evolution in the data warehouse could be a workload evolu-
tion or a data evolution. Each evolution requires specific operations.

– Data Evolution means adding new tuples into the RDW . As a conse-
quence, fragments could be extended, moved into another table-space or
created. The physical operations required are Move, Extend and Create.

– Workload Evolution causes adding new fragmentation attributes and do-
mains or changing the use frequency of attributes by queries. As a result,
implementing a new fragmentation schema on a partitioned RDW required
merging/splitting fragments and moving fragments because of merging op-
erations (operations Split, Merge and Move).

In this work we focused on Workload evolution. We need the three operations
Split, Merge and Move. For each operation we give the corresponding syntax in
Oracle 11g. In what follows, P is a fragment or a table.

– Split(P, Ct): Suppose a partitioned table Client to split. The SQL syntax
for this operation is:

ALTER TABLE Client

SPLIT PARTITION City VALUES (’Alger’)

INTO

( PARTITION Client1, PARTITION Client2 );

– Merge(P1, P2): The SQL syntax for this operation is given as follows:

ALTER TABLE Client

MERGE PARTITIONS Client1, Client2 INTO PARTITION Client3;

– Move(P, TBS): The SQL syntax for this operation is given as follows:

ALTER TABLE Client

MOVE PARTITION Client1 TABLESPACE tbs_2;

According to this, we interpret the Algebra of Fragmentation in the physical
level. For each operation on the Algebra, we give the physical operations needed
to physically implement the Algebra operation on the RDW . For this purpose,
we define two new operations Identify Part(Ct) and Mergeable(P1, P2, Ai)
given as follows:

– Identify Part(Ct): Identify the fragment characterized by the predicates
specified in Ct. Assuming the following operation Identify Part(”City =
Algiers”). This operation returns a set of fragments P1, ..., PL which satisfy
the criterion ”City = Algiers”.

– Mergeable(P1, P2, Ai): boolean function that returns ”true” if the two frag-
ments P1 and P2 can be merged on the attribute Ai. It returns ’false’ oth-
erwise. Two fragments are called mergeable if they are identified by the
same combination of selection predicates except for a single predicate. This
predicate is defined on the merge attribute Ai.
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Example 2. Considering a partitioned dimension Client according to the
fragmentation schema shown in figure 2. The fragmentation attributes and
domains are given as follows:
- Dom(Gender)= ’F’,’M’
- Dom(City)= ’Alger’, ’Oran’, ’Blida’, ’Kala’, ’Annaba’, Jijel’
We apply the operations Identify Part(Ct) and Mergeable(P1, P2, Ai) on

Fig. 2. (a) Fragmentation schema FSc, (b) Partitioned dimension Client

the Client schema of figure 2.(b). The results are given as follows:
- Identify Part(City = Blida) = Client1, Client2.
- Identify Part(City = Alger) = Client1.
- Identify Part(Gender = F ) = Client2, Client4.
- Mergeable(Client1, Client2, Gender) = True.
- Mergeable(Client1, Client2, City) = False.
- Mergeable(Client1, Client3, City) = True.
- Mergeable(Client1, Client4, Gender) = False.
- Mergeable(Client1, Client4, City) = False.

We present the physical implementation of the Algebra’s operations.

1. Add A(FS,Ai, {SD
i
j1
, · · · , SDi

jp
}): add an attribute Ai requires identifying

the fragment(s) containing one or more sub-domains from the set {SDi
j1
, · · · , SDi

jp
},

then partition these fragments into two sub-fragments each, where the first
sub-fragment is identified by the selection predicate Ai in (SDi

j1
, · · · , SDi

jp
)

and the second one in is defined by the predicate Ai in (Elsei). We give the
corresponding algorithm.

Ens Part = Identify Part(Ai in (SDi
j1
, · · · , SDi

jp
))

for each P in Ens Part do
Split(P, Ai in (SDi

j1
, · · · , SDi

jp
))

end for
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Example 3. Considering the fragmentation schema of the table Client FSc

presented in figure 2.(a). We perform the Evolution of FSc into FSc1.
FSc1 = EFS(FSc) = Add A(FSc, Job, {M1,M2}).Where Dom(Job)={’M1’,
’M2’, ’M3’, ’M4’, ’M5’}. The new scheme FSc1 is given in figure 3. We give
the algorithm execution result :

Ens Part = Identify Part(Job in (M1,M2)) = {Client1, Client2}
Split(Client1, Job in (M1,M2))
Split(Client2, Job in (M1,M2))

Fig. 3. (a) FSc1 : EFS on FSc, (b )Partitioned table Client according to FSc1

2. Add SD(FS,Ai, SD
i
j): this operation requires partitioning all fragments iden-

tified by the predicate Ai = SDi
j into two fragments. The corresponding

algorithm is given as follows:

Ens Part = Identify Part(Ai = SDi
j)

for each P in Ens Part do
Split(P, Ai = SDi

j)
end for

Example 4. Consider the following schema evolution:
FSc2 = EFS(SFc1) = Add SD(FSc1, City, {Kala}). The fragmentation
schema update is given in the figure 4. The corresponding physical operation
are given in the algorithm execution result.

Ens Part = Identify Part(City = Kala) = {Client3, Client4}
Split(Client3, City = Kala)
Split(Client4, City = Kala)

3. Split Dom(FS,Ai, {SD
i
j1
, · · · , SDi

jp
}, {SDi

k1
, · · · , SDi

ks
}): split the set of sub-

domains {SDi
j1
, · · · , SDi

jp
} of the attribute Ai into two sets of sub-domains
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Fig. 4. (a) FSc2 : EFS on FSc1, (b) Partitioned table Client according to FSc2

{SDi
k1
, · · · , SDi

ks
} and {SDi

j1
, · · · , SDi

jp
}\{SDi

k1
, · · · , SDi

ks
}, where {k1, · · · , ks}

⊂ {j1, · · · , jp}. Physically, this operation is performed by splitting the frag-
ment(s) identified by the predicate (Ai in (SDi

k1
, · · · , SDi

ks
))

Ens Part = Identify Part(Ai in (SDi
k1
, · · · , SDi

ks
))

for each P in Ens Part do
Split(P, Ai in (SDi

k1
, · · · , SDi

ks
))

end for

Example 5. Consider the following schema evolution:
FSc3 = EFS(SFc2) = Split Dom(FSc2, {Alger,Oran,Blida}, {Blida}).
The fragmentation schema FSc3 is given in the figure 5. The corresponding
physical operations are given in the algorithm execution result.

Ens Part= Identify Part(City = Blida) = {Client11, Client21, Client22}
Split(Client11, City = Blida)
Split(Client21, City = Blida)
Split(Client22, City = Blida)

4. Merge Dom(FS,Ai, {SD
i
j1
, · · · , SDi

jp
}, {SDi

k1
, · · · , SDi

ks
}) : Merge the two

sets {SDi
j1
, · · · , SDi

jp
} and {SDi

k1
, · · · , SDi

ks
} into one, where {j1, · · · , jp}

⊂ [1,mi] and {k1, · · · , ks} ⊂ [1,mi]. This operation required merging the
fragment identified by (Ai in {SDi

j1
, · · · , SDi

jp
}) with those identified by

(Ai in {SDi
k1
, · · · , SDi

ks
}) if they are mergeable. Non-mergeable fragments

are left unchanged.

Ens Part1 = Identify Part(Ai in (SDi
j1
, · · · , SDi

jp
))

Ens Part2 = Identify Part(Ai in (SDi
k1
, · · · , SDi

ks
))
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Fig. 5. (a) FSc3 : EFS on FSc2, (b) Partitioned table Client according to FSc3

for each P1 in Ens Part1 do
for each P2 in Ens Part2 do

if ((Mergeable(P1, P2, Ai) and (Ens Part1 6= ⊘) and (Ens Part2 6=
⊘) then

Merge(P1,P2)
Ens Part1 = Ens Part1 - {P1}
Ens Part2 = Ens Part2 - {P2}

end if
end for

end for

Example 6. Consider the following schema Reduction:
FSc4 = RFS(SFc3) = Merge Dom(FSc3, {Alger,Oran}, {Blida}). The
fragmentation schema FSc4 is given in the figure 6. The corresponding phys-
ical operations are given in the algorithm execution result.

Ens Part1 = Identify Part(City in (Alger,Oran)) = {Client111, Client211, Client12},
Ens Part2 = Identify Part(City = Blida) = {Client112, Client212, Client22},
Mergeable(Client111, Client112, City) = True ,
Merge(Client111, Client112),
Ens Part2 = {Client211, Client12},Ens Part2 = {Client212, Client22},
Mergeable(Client211, Client22, City) = False,
Mergeable(Client12, Client212, City) = False,
Mergeable(Client12, Client22, City) = False,
Mergeable(Client211, Client212, City) = True,
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Merge(Client211, Client212),
Ens Part1 = {Client12}, Ens Part2 = {Client22},
Mergeable(Client12, Client22, City) = False

Fig. 6. (a) FSc4 : RFS on FSc3, (b) Partitioned table Client according to FSc4

5. Del A(FS,Ai) : to remove the attribute Ai from a FS, we need to create a
new fragmentation schema where all the sub-domains of Ai are merged into
a single set. We express this by using the logical operation Merge Dom. The
algorithm for deleting an attribute of fragmentation is given as follows:

for each SDi
j in Dom(Ai) do

Merge Dom(Ai, SD
i
j, SD

i
(j+1))

end for

Example 7. Consider the following schema Reduction:
FSc5 = EFS(SFc4) = Del A(FSc4, Job). The fragmentation schema FSc5
is given in the figure 7. The corresponding physical operation are given as
follows:

Merge Dom(Job, {M1,M2}, Else3):

Ens Part1 = Identify Part(Job in (M1,M2))) = {Client11, Client21},
Ens Part2 = Identify Part(Job in Else3) = {Client12, Client22, Client31,
Client41, Client32, Client42},
Mergeable(Client11, Client12, Job) = True,
Merge(Client11, Client12),
Ens Part1 = {Client21},
Ens Part2 = {Client22, Client31, Client41, Client32, Client42},



Algebra-based Approach for Incremental Data Warehouse Partitioning 19

Mergeable(Client21, Client22, Job) = True,
Merge(Client21, Client22),
Ens Part1 = { },
Ens Part2 = {Client31, Client41, Client32, Client42},

Fig. 7. (a) FSc5 : RFS on FSc4, (b) Partitioned table Client according to FSc5

6. Del SD(FS,Ai, {SD
i
j1
, · · · , SDi

jp
}) : delete from Ai the set containing the

sub-domains {SDi
j1
, · · · , SDi

jp
} and include it in the set Elsei. This can be

expressed by the operation Merge Dom(Ai, {SD
i
j1
, · · · , SDi

jp
}, Elsei).

Example 8. Consider the following schema Reduction:
FSc6 = EFS(SFc5) =Del SD(FSc5,Kala) =Merge Dom(City, {Kala}, Else2).
The fragmentation schema FSc6 is given in the figure 8. The corresponding
physical operation are given as follows:

Ens Part1 = Identify Part(City = Kala) = {Client31, Client41},
Ens Part2 = Identify Part(City in Else3) = {Client32, Client42},
Mergeable(Client31, Client32, City) = True,
Merge(Client31, Client32),
Ens Part1 = {Client41},
Ens Part2 = {Client42},
Mergeable(Client41, Client42, City) = True,
Merge(Client41, Client42),
Ens Part1 = { },
Ens Part2 = { },
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Fig. 8. (a) FSc6 : RFS on FSc5, (b) Partitioned table Client according to FSc6

7 Experimentation under Oracle 11g

In order to evaluate our incremental selection based on Queries Profiling, we con-
duct experimental tests on a real data warehouse from the APB1 benchmark [7]
under the DBMS Oracle 11g. The data warehouse based on a star schema con-
tains a facts table Actvars (24 786 000 tuples) and 4 dimension tables Prodlevel
(9000 tuples), Custlevel (900 tuples), Timelevel (24 tuples) and Chanlevel (9
tuples). The genetic algorithm is implemented using the JAVA API JGAP. In
this study, we aim to evaluate the efficiency of the queries profiling performed
using the fragmentation algebra. To well analyze the queries, we first conduct
small-scale tests on a workload of 8 queries, then we realize larger-scale tests
on a workload of 60 queries. The 60 queries generate 18 indexable attributes
(Line, Day, Week, Country, Depart, Type, Sort, Class, Group, Family, Division,
Year, Month, Quarter, Retailer, City, Gender and All) that respectively have
the following cardinalities : 15, 31, 52, 11, 25, 25, 4, 605, 300, 75, 4, 2, 12, 4, 99,
4, 2, 3.

7.1 Small-scale tests

In this experiment, we first consider an empty workload. Then, we suppose that
eight new queries are successively executed on the RDW . We give the attributes
and the profile of each query (table 6, left). Under a constraint B = 40, the
three first queries Q1, Q2 and Q3 triggers an incremental selection. These queries
have an Evolution profile, since the constraint B has not yet been violated. The
Queries Q4 and Q7 are Mixed and requires an incremental selection where the
queries Q5, Q6 and Q8 have respectively a Neutral, Reduction and Neutral pro-
files and don’t require a new RDW partitioning. We compare the Incremental
Selection based on Queries Profiling GAQP to the classic incremental selection
GA (both selections use the same genetic algorithm). For each new query and
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Query Attributes Profile

Q1 Group Evolution

Q2 Month, Quarter Evolution

Q3 Month, Class Evolution

Q4 City, Gender Mixed

Q5 Month, Year, City, Class Neutral

Q6 Class, Gender Reduction

Q7 City, Gender, Class Mixed

Q8 City, Gender, Group Neutral

Queries Profile

Q46, Q47, Q49, Q55, Neutral
Q56, Q57, Q60

Q48, Q50, Q52, Q51, Mixed
Q58, Q59

Q53, Q54 Reduction

Table 6. Workloads descriptions and queries profiles

each selection, we note the cost optimization rate of the executed queries illus-
trated in figure 9. We notice that the optimization of the workload cost given by
both GA and GAQP is globally the same. This shows that profiling doesn’t in-
fluence the quality of the solution selected by the incremental selection process.
Next, we compare the two selections according to the Maintenance Time. The
maintenance time is the time required to effectively implement a fragmentation
schema on the data warehouse under Oracle 11g. After the execution of each
query and for each selection (GA and GAQP ), we implement under Oracle 11g
the new fragmentation schema on the RDW and we note the maintenance time.
Results are given in figure 10. For the GA selection, each query requires a selec-
tion and implementation of a new fragmentation schema, the global maintenance
time after the execution of the ten queries is 193.6 minutes which correspond to
3 hours and 13 minutes. For the GAQP selection, the queries with the profiles
Reduction and Neutral don’t trigger a new incremental selection, so no changes
occur on the RDW . The global maintenance time is 109.3 minutes (1 hours and
49 minutes). As a result, the GAQP selection reduces the global maintenance
time by 43.5% compared to GA selection.
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7.2 Larger-scale tests

We consider a workload of 45 queries executed on a partitioned RDW . The cur-
rent fragmentation schema of the RDW is obtained by a static selection using
the 45 queries with a constraint B = 100. After that, we suppose that 15 new
queries are successively executed on the RDW . We perform the two selections
(GA and GAQP ). We also implement an existing approach: the incremental
fragmentation selection named DD based on the dynamic design of data ware-
houses proposed in [18] that we adapt in a centralized context. For each selection
and each new query, we store the cost optimization rate of the executed queries
(figure 11) and the Maintenance Time under Oracle11g (figure 12). Profiles of
the new queries are given in table 6, right. According to the result given by

 0

 20

 40

 60

 80

 100

Q46
Q47

Q48
Q49

Q50
Q51

Q52
Q53

Q54
Q65

Q56
Q57

Q58
Q59

Q60

C
os

t o
pt

im
iz

at
io

n 
ra

te
   

(%
)

New queries

DD
GA
GAQP

Fig. 11. Cost optimization rate (case
60 queries)

 0

 20

 40

 60

 80

 100

Q46
Q47

Q48
Q49

Q50
Q51

Q52
Q53

Q54
Q65

Q56
Q57

Q58
Q59

Q60

M
ai

nt
en

an
ce

 T
im

e 
   

(m
in

ut
es

)

New Query

DD
GA
GAQP

Fig. 12. Maintenance Time under Ora-
cle11g (case 60 queries)

figure 11, the workload costs obtained by the three selections are similar. First
the incremental selection of fragmentation schema in DD, GA and GAQP are
all based on the horizontal fragmentation selection approach proposed in [3].
Second, the queries profiling doesn’t affect the quality of any selected fragmen-
tation schema. But, when analyzing the results of the figure 12, we notice that
the GAQP selection gives a better maintenance time then the GA and DD se-
lection. The global maintenance time of GA and DD selections is respectively
678 minutes (11 hours and 18 minutes) and 697 minutes (11 hours and 37 min-
utes) when the global maintenance time of GAQP selection is 331 minutes (5
hours and 31 minutes) which reduces the global maintenance time by 52%. This
is due to the fact that GA and DD perform a selection of a new fragmentation
schema after the execution of each new query. On the other hand, among the 15
queries only 6 queries trigger a new incremental selection (Mixed profile) for the
selection GAPQ. The queries with a Reduction or Neutral profiles don’t require
any changes on the RDW .

Therefore, according to the important parameter namely the maintenance
time required to implement a new fragmentation schema on a partitioned RDW ,
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the GAQP approach is better than the classic GA incremental selection and the
existing approach DD.

8 Conclusion

This work deals with incremental selection of a horizontal data partitioning
schema in the context of data warehouse modeling by a star schema. We pro-
pose a Fragmentation Algebra containing all possible operations that can be
performed on a fragmentation schema in order to take into account workload
evolution. Using our Algebra, we define Queries Profiling. According to the pro-
file of a new executed query, we determine if a selection of a new fragmentation
schema is required. We give the architecture of the incremental selection of frag-
mentation schema based on queries profiling and the Fragmentation Algebra.
Then, we give an insight of the physical operations required to implement the
Algebra operations under Oracle 11g. Finally, we conduct an experimental study
under the DBMS Oracle 11g to show the efficiency of the queries profiling. We
showed that using queries profiling reduces by more than 50% the global main-
tenance time required to implement a new selection fragmentation schema on a
partitioned RDW .

In this work, we deal with workload evolution. One perspective is to consider
other changes occurred on the data warehouse such as data evolution.
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