
Handling Behavioral Semantics in Persistent

Meta-Modeling Systems

Youness Bazhar

LIAS - ISAE ENSMA

Futuroscope, FRANCE

Email: bazhary@ensma.fr

Abstract—The increasing number of information systems mod-
eling formalisms raises several problems such as data integration
or data exchange. To address these problems, several meta-
modeling systems have been proposed. However, few of them
use a database as a back-end repository in order to offer a
persistent solution for addressing over sized models. Yet, with
the growing size of data manipulated in information systems,
there is a need to exploit databases properties like scalability
and querying capabilities. In this paper, we present persistent
meta-modeling systems with their meta-modeling capabilities. We
show that these systems support the definition of structural and
descriptive semantics of models, but they can not express the
behavioral semantics of models. Therefore, the aim of our work
is to combine benefits of classic modeling systems, typically their
capability to express behavioral semantics of models elements,
together with advantages of databases i.e. their scalability and
querying capabilities. Our approach focuses on the capability
to dynamically introduce new operators that could be exploited
by model-based databases exploitation languages. In particular,
such operators could be implemented with an external program
stored outside the database, or with a web service. As a
consequence of this extension, we will be able to perform model
transformations in database, trigger web services from relational
databases, information exchange and data integration could be
also supported in a persistent context.

I. INTRODUCTION

Several modeling techniques and/or notations are currently

used in models design. UML for object-oriented software engi-

neering and made generally for system design, BPMN for busi-

ness process specification or Entity-Relationship for database

modeling are some examples of such modeling techniques

and notations. The diversity of such model notations raises

two major problems : data integration of multiple models and

data exchange between models. Addressing these problems

requires the manipulation of models as primary objects. As a

consequence, many model management systems (MMS) have

been developed during the last two decades [1], [2], [3], [4].

These systems handle not only models and data, but also meta-

models specifying the structure of these models, and support

model manipulations. When these systems are equipped with

operators for models processing (embedded in an exploitation

language), model manipulations become possible. However,

current MMS present two limitations. (1) Most existing MMS

do not use a database to store all the data. Therefore, only

models and data that fit in memory can be handled by these

MMS. Yet many domains such as e-commerce or engineering

produce over sized models and data. Thus, a major challenge

is to efficiently manipulate models describing large data sets.

(2) The supported operators for model management and the

definition of the structural and behavioral semantics of model

elements are often provided by external tools using a given

specific technology. Yet these operators may pre-exist in the

MMS and thus there is a need to be able to integrate them even

if they are implemented with various technologies (e.g, as web

services or stored procedures). To tackle these two challenges,

our work proposes to use a persistent solution within database

systems. More precisely, the solution we suggest is based

on the OntoDB/OntoQL meta-modeling system. OntoDB is

a model-based database with a prototype implemented on the

PostgreSQL Database Management System (DBMS) as back-

end repository. If this system supports the structural manipu-

lation of data, models and meta-models through its associated

language OntoQL, the definition of the behavior of models

elements is not yet supported. Consequently, this system is

not complete (in the computational sense) and needs to be

extended in order to support the expression of behavioral se-

mantics (e.g. operations, constraints, expressions, derivations,

etc.). Since this system supports the manipulation of models

through its meta-modeling capabilities, this extension will

complement the OntoDB/OntoQL meta-modeling system and

will allow us to process models in order to achieve operations

such as model transformations, data integration, constraints

checking, etc. The remainder of this paper is organized as

follows. Section II presents a running example. Section III

presents requirements for a complete meta-modeling system.

Section IV exposes classic meta-modeling systems using the

running example presented in section II. Section V addresses

persistent meta-modeling systems. It presents model-based

databases and their associated exploitation languages. The

same section introduces the OntoDB/OntoQL persistent meta-

modeling system (PMMS) on which our approach is based. It

describes how this system supports the storage and the ma-

nipulation of meta-models, models and instances in the same

database. Then we show, through an example, the limitations

of this platform to define the behavior of models elements.

Based on this motivating example, section VI presents our

research agenda together with our approach of extending

persistent meta-modeling systems and the expected results.

Finally, Section VII is devoted to a conclusion.

117

OWLProperty

uri : STRING

OWLClass

uri : STRING

**

superClasses

domain

*

*

unionOf

UnionClass

unionOfClasses(OWLClass[]) : OWLClass

*

*

Fig. 1. A fragment of a simplified OWL meta-model

II. A RUNNING EXAMPLE

As a running example, let’s consider the simplified OWL

meta-model presented in figure1. The structural definition

of this meta-model is the following. It defines three enti-

ties OWLProperty, OWLClass and UnionClass with

different attributes. An OWLClass may have many OWL

properties and many super classes. The UnionClass entity

inherits from the OWLClass entity and is linked to several

OWLClass through the unionOf attribute. This meta-model

has also a behavioral semantics. In particular a UnionClass

is an OWLClass that is derived from the union of several

classes. This class may become a super class of the classes

that it unifies and its instances can be computed from the

instances of these classes. Using this example, the two next

sections review existing MMS and show their limitations.

III. REQUIREMENTS FOR A COMPLETE META-MODELING

SYSTEM

A complete model management system should offer meta-

modeling capabilities, i.e. the creation and manipulation of

meta-models and models with their structural, descriptive and

behavioral semantics. Moreover, users need a flexible approach

to define the behavior of model elements since it can be

expressed with an external program, written with a given

programming language, stored outside the database or with

a web service. To define more precisely, the requirements for

a complete persistent meta-modeling system we propose the

following criteria.

1) Capability to express the structural and descriptive se-

mantics of meta-models and models elements.

2) Capability to express the behavioral semantics of meta-

models and models elements.

3) Persistence of the structural and descriptive semantics

of model elements in a persistent environment, typically

in a database.

4) Persistence of the behavioral semantics of model ele-

ments in a database.

5) Capability to define the behavioral semantics with a

web service, an external program written with various

programming language and stored outside the database,

and the capability to define the behavioral semantics

with both declarative languages (e.g., deductive rules)

or procedural languages (e.g., Java or C++)

6) Capability to express constraints definition on meta-

models and models elements and check them.

IV. CLASSIC META-MODELING SYSTEMS (CMMS)

Classic meta-modeling systems are systems that operate

in programming environments. They are equipped with

a modeling language that supports the creation and the

manipulation of models and their instances. This category

of modeling systems supports both the definition of the

structural semantics of a model and its behavioral semantics.

The behavioral semantics can usually be expressed through

a programming language (e.g. Java or C++). These systems

offer also the possibility to define and check constraints on

models.

We propose a classification of classic meta-modeling systems

into the following two different categories.

Three-levels systems are systems where the meta-model

part is fixed (e.g., Papyrus [5]). These systems support the

definition of models with their instances conforming to

meta-models supported in the meta-model level.

Four-levels systems. Unlike the two-levels or three-levels

systems, this system category is compatible with the MOF [6]

architecture where the meta-model part is not frozen (eg

EMF [7], Kermeta [8]). Therefore, these systems support the

creation of new meta-models.

If we want to manage both the meta-model presented in

section II with the ontology that instanciate this meta-model

and their instances (three levels of modeling), only four-

levels systems can be used. We choose to use EMF to

implement this example. Figure 2 gives the representation of

the structural and descriptive semantics of the meta-model

of our example. EMF also offers the possibility to define

Fig. 2. Our running example defined with EMF

the behavioral semantics of model elements with the Java

programming language. For example, the following operation

can be defined to encode that a UnionClass class becomes

a super class of the classes it unifies.

118

public static OWLClass unionOfClasses(List<OWLClass>

owlClasses){

owlClass OWLClass = new OWLClass();

owlClass.setUnionOf(owlClasses);

for (OWLClass oc : owlClasses){

oc.addSuperClass(owlClass);

}

return owlclass;

}

This example shows that some classic meta-modeling

systems supports the definition of structural, descriptive

and behavioral semantics of models elements. However,

these systems present two limitations. First, the behavioral

semantics of model elements can only be defined with a

given programming language (e.g, Java for EMF). Yet, these

behavioral semantics could also be implemented in external

tools. For example, the unionOfClasses operation is

implemented in several reasoners such as RACER in Lisp

or FACT in C++. Second, these systems do not provide

a persistent storage in a database for the three levels

of modeling (meta-model, model and instances) with an

exploitation language that supports the manipulation of all

these levels.

V. PERSISTENT META-MODELING SYSTEMS (PMMS)

By persistent meta-modeling systems we mean databases,

named model-based databases (MBDB), dedicated to the stor-

age of meta-models, models and instances and an associated

exploitation language that supports the management (create,

update, delete and query) of meta-models, models and in-

stances.

A. Model-based databases

Three types of MBDBs architectures have been identified

in the literature.

Type1 MBDB (Figure3) stores models and their instances in

a single part. For example, Jena [9] uses a triple table to store

these two levels of information. In these MBDBs the meta-

model is fixed and can not be accessed.

Type2 MBDB (Figure4) separates the representation of the

Models

+

Instances

Models

+

Instances

Fig. 3. Type1 MBDB architecture

Models InstancesModels Instances

Fig. 4. Type2 MBDB architecture

model and instance levels (e.g., Sesame [10], RDFSuite [11],

OntoMS [12], SOR [13], DLDB [14]). Indeed, this meta-

schema is composed of a set of tables that are used to store

models. Another database schema is used to store instances.

Thus, this architecture respects the separation of the three

modeling levels. Models stored in a MBDBs type2 conform

to the meta-model supported by the MBDB. But, in these

MBDBs, the meta-schema is fixed but can be accessed.

Type3 MBDB (Figure5) stores explicitly the four modeling

Meta-models

Models Instances

Fig. 5. Type3 MBDB architecture

levels of the MOF [6] (e.g., OntoDB [15]). This architecture

contains three parts: an extensible meta-model part dedicated

to store different meta-models, a model part and a data

part devoted to store respectively models and their instances.

In this MBDB architecture, all the modeling levels can be

manipulated.

Up to now, model-based databases only store the structural and

descriptive semantics of meta-models and models. They do not

take into account the behavioral semantics of models elements.

Next subsection addresses the exploitation languages part and

presents the associated MBDBs exploitation languages that

are used to create and manipulate meta-models, models and

instances.

B. MBDBs Exploitation languages

Model-based databases are equipped with exploitation lan-

guages to manage meta-models, models and instances. Particu-

larly, these languages support the creation of meta-models and

models by defining their structural and descriptive semantics.

Some languages provide predefined operators and functions

encoded in native languages (e.g. Rondo [2]) to express behav-

ioral semantics of meta-models and models elements, but these

operators are in some cases, not powerful enough to express

the behavior of model elements. Other languages express

the behavior using deduction rules (eg. Datalog [16]). Thus,

MBDBs exploitation languages did not follow the evolution of

structures and descriptors. Indeed, they do not offer the same

capabilities of expressiveness as the one offered by languages

of the classic meta-modeling systems, particularly for the

definition of the behavioral semantics. Moreover, MBDBs

exploitation languages do not offer the capability to define

and check constraints on models. They do not support the

multi-language aspect to support different programming lan-

guages or web services to implement the behavior of a model

element. Consequently, MBDBs exploitation languages need

to overcome these limitations. Indeed, they should support

the expression of behavioral semantics while keeping the

flexibility of the implementation. They should as well support

the definition of constraints on models. Table I shows the

capabilities offered by CMMS and PMMS compared to the

criteria identified in section III.

C. The OntoDB/OntoQL persistent meta-modeling system

This subsection presents the OntoDB/OntoQL persistent

meta-modeling system on which our approach is based. It

119

1 2 3 4 5 6

CMMS YES YES NO NO NO YES

PMMS YES NO YES NO - NO

TABLE I
LIMITATION OF EXISTING MMS ACCORDING TO OUR CRITERIA

Meta-

models

Models Instances

Meta-base

OWLClass

uri : STRING

OWLProperty

uri : STRING

superClasses

properties *1

*

*

Student

studentNumber : STRING

Professor

professorNumber : STRING

Person

name : STRING

age : INTEGER

sex : STRING

Student1 : Student

name = ‘toto’

age = 20

Sex = ‘M’

studentNumber = ‘ST567’

Professor1 : Professor

name = ‘tata’

age = 30

Sex = ‘F’

professorNumber = ‘PR345’

Meta-models (M2)

Models (M1)

Instances (M0)

Fig. 6. Storing data of different modeling levels in OntoDB

exposes the OntoDB [15] model-based database that supports

the storage of meta-models, models and instances in the same

database, together with its associated exploitation language

OntoQL [17]. Then, we show through our running example the

limits of this system concerning the definition of the behavioral

semantics of meta-model.

1) The OntoDB model-based database:

Entity

oid name

1 OWLClass

2 OWLProperty

Attribute

oid name

3 properties

4 superClasses

5 uri

6 uri

OWLClass

oid uri superClasses Properties

7 Person 10, 11, 12

8 Student 7 10, 11, 12, 13

9 Professor 7 10, 11, 12, 14

OWLProperty

oid uri

10 name

11 age

12 sex

13 studentNumber

14 professorNumber

Student

oid name age sex studentNumber

16 toto 20 M ST567

Professor

oid name age sex professorNumber

15 tata 30 F PR345

Person

oid name age sex

15 tata 30 F

16 toto 20 M

Meta-Model level (M2)

Model level (M1)

Instance level (M0)

Fig. 7. Representing data of the different modeling levels in OntoDB MBDB

OntoDB is an operational type3 MBDB whose architecture

is divided into four parts as illustrated in Figure 6. The first

part is the traditional part available in all DBMS, namely the

system catalog. It contains the system tables used to manage

all the data contained in the database. The other parts of the

OntoDB architecture represent different levels of abstraction

of information: meta-model, model and instance levels. In the

repository, data related to the different levels of information

are stored in relational tables of OntoDB thanks to the services

offered by the meta-model part. In the example of Fig-

ure 6, three modeling levels are represented. The meta-model

level defines two entities: OWLClass and OWLProperty.

OWLClass is the abstract description of one or many similar

objects. Classes are organized in a hierarchy linked by an

inheritance relationship (superClasses). OWLProperty

describes properties of a class. The model level defines the

Person, Student and Professor classes with various

properties as instances of the meta-model previously defined.

Finally, the instance level defines instances of the Student

and Professor classes.

2) The OntoQL meta-modeling language: Since the whole

data of OntoDB are stored in a database, one can think

that SQL could be used to manipulate them. In this case,

users need to have a deep knowledge of the internal table

representation used by OntoDB to encode the three modeling

levels. To overcome this limitation, OntoDB is equipped

with an exploitation language named OntoQL that hides the

internal representations and directly manipulates concepts of

different levels. This language can be used to create meta-

models, models and instances. The following two OntoQL

statements illustrate how the meta-model part of OntoDB is

extended with the OWLPRoperty and OWLClass concepts:

CREATE ENTITY #OWLProperty (#uri STRING);

CREATE ENTITY #OWLClass (#uri STRING, #superClasses

REF(#Class) ARRAY, #properties REF(#OWLProperty) ARRAY);

After creating the meta-model, we are able to instantiate it.

The next statements show an example of the meta-model

instantiation.

CREATE #OWLClass Person (name STRING, age INT, sex

STRING);

CREATE #OWLClass Student UNDER Person (stdtNumber INT);

CREATE #OWLClass Professor UNDER Person (ProfNumber

INT);

Models instances can be defined by simple SQL statements

as it is presented bellow:

INSERT INTO Professor VALUES (’tata’, ’F’, 30, ’PR345’);

INSERT INTO Student VALUES (’toto’, ’M’, 20, ’ST567’);

The first two statements define the meta-model. The

entity OWLClass is defined with an uri and the classes

it extends superClasses (references to other classes).

The entity OWLProperty has also an uri and is linked to

classes it describes. In these queries, the names of entities

and descriptions of entities are prefixed by the character #.

Indeed, the meta-model level of OntoDB can be extended

and modified and thus this level of information is not

encoded as keywords of the OntoQL language. The next

three statements define the different classes of our example

with their properties using the CREATE #OWLClass clause.

A class is defined as a subclass of an other one using the

keyword UNDER. Finally, the last two statements define

120

instances of our classes using an INSERT INTO syntax

similar to the one of SQL. Figure 7 shows how data of

the different modeling levels are represented in the OntoDB

MBDB. Notice that OntoDB separates the four modeling

levels of the MOF architecture and only the meta meta-model

level is frozen.

D. Limitation of the OntoQL/OntoDB meta-modeling system

As shown in the previous section, OntoQL can be used to

create meta-models, models and instances and store them in

OntoDB. However, we only saw that OntoQL can express the

structural semantics of models and meta-models elements. Let

us consider, for example, the UnionClass constructor. It

supports the definition of a class as a union of other classes.

Using this constructor, a class called SchoolMember could

be defined as the union of the Professor and Student

classes of our example. The OntoQL statement to extend the

meta-model with this new constructor is:

CREATE ENTITY #UnionClass UNDER #OWLClass (#unionOf

REF(#OWLClass) ARRAY);

This OntoQL statement states that the structure of this

constructor (i.e, an UnionClass is defined by a set of

classes). However, we can not state within this statement

nor within any other OntoQL statement that the resulting

class of the union operation becomes a super class of classes

that it unifies, and the instances of an UnionClass can

be computed as the union of the instances of the classes

(Instances(C) = Instances(C1) U Instances(C2)) used in

its definition. Thus, OntoQL can not define the behavioral

semantics of meta-models and models elements. This

semantics could be defined by operations, like functions or

procedures, and implemented with web services or external

programs stored inside or outside the OntoDB database.

The former is already available in some database systems

but the later is still not available. For example, we should

be allowed to define the semantics of the unionOfClasses

operator through a statement such as :

CREATE UnionClass SchoolMember

AS unionOfClasses (Professor, Student)

Where unionOfClasses is an operation for which

the implementation could be internal/external procedures

or web service invocation. Therefore, extending OntoQL

to support web services, procedures, functions triggering

and constraints checking will make it possible to offer the

definition of the behavioral semantics of model elements.

Offering such a capability is the main objective of our thesis.

VI. RESEARCH AGENDA

A. Objectives

We have seen that persistent meta-modeling systems do

not support the dynamic definition and storage of behavioral

semantics and the definition and checking of constraints. These

systems should therefore be extended to be as complete as

classic four-levels meta-modeling systems. Indeed, MBDBs

should provide structures to store information about behavioral

semantics and constraints, and their associated exploitation

languages should be extended to hold the expression of con-

straints and behavior with procedural and multi-language as-

pects. This extension will complement type3 MBDBs architec-

ture and their associated exploitation languages. Consequently,

we will be able to process models and achieve operations like

model transformations, data integration, migration of instances

in persistent environment while ensuring scalability, etc. The

objective of our work is to be able to define and store

the behavioral semantics of models elements and implement

it with any language (Java, C++, etc) in order to exploit

the power of different languages. Operations expressing the

behavior of a concept may be defined and stored either inside

the database (as internal programs written in a procedural

language like PL/SQL), or outside the database by associating

a web service as behavior or an external program.

B. Extending persistent meta-modeling systems

To fulfill the objectives previously presented, our research

agenda is organized in the following way. The first part of

our agenda is divided into two steps. First step consists on

extending the meta meta-model part of MBDB to allow the

storage of behavior. Second step consists on extending the

exploitation language meta-model with a behavior meta-model

supporting the creation and the invocation of operations, and

constraints definition and checking. Once the previous steps

are achieved, the second part of our research agenda consists

in freezing the syntax of our extension of the exploitation

language, implementing it and proposing a case study with

a significant amount of data in order to validate our work

and show the differences between classic systems and our

persistent meta-modeling system.

C. Prototyping

Currently, the first steps are already experimented. Indeed,

we have already demonstrated on the OntoDB/OntoQL system

the feasibility of our proposed approach using a set of OntoQL

statements using web service implementation and external Java

function. We are currently formalizing our proposal before

moving to the second part. We overview the first steps we

have followed.

1) Extending OntoDB:

We have extended OntoDB architecture with the entity Opera-

tion at the meta meta-model level. This extension allows us to

store information about concepts behaviors (operations names,

input types, output types) and their implementations details

like a web service location, the operation name of the service

to invoke, the location of a JAVA function, etc. Figure 8 shows

the new entity (Operation) added at the meta meta-model level

of the OntoDB MBDB.

2) Extending OntoQL: We have extended the OntoQL

exploitation language with the support of operation creation.

The following statement shows an example of creating an

121

Entity

oid name

… …

Attribute

oid name

… …

Operation

oid name inputs output

… … … …

Meta-Model level (M2)

Model level (M1) Instance level (M0)

meta-base

Fig. 8. The extension of the meta meta-model level of OntoDB with the
Operation entity

operation with OntoQL.

CREATE OPERATION UnionOfClasses

INPUTS REF(#OWLClass) ARRAY

OUTPUT REF(#OWLClass);

OntoDBBehavior API

Web services,

Java programs,

…

OntoQL

Extension with

Behavioral semantics

definition capability

Extension with

Operation entity

Fig. 9. The behavior API

We are currently working on extending OntoQL to integrate

the support of operations invocations in OntoQL statements

to exploit operations defined. In this direction, we are setting

up an application programming interface (API) (Figure 9) that

interacts with the external world (web services and external

programs). This API will overcome problems of mapping data

types defined in the OntoDB/OntoQL system and data types

used in the external implementations. It will establish data

types correspondences between those defined in our systems

and those defined in the external environment. The API will

also define a format for data exchange.

VII. CONCLUSION

In this paper we have introduced our work on meta-

modeling systems. Our objective is to design a complete meta-

modeling system that (1) manages all data in a database

to get benefits from the properties of databases (2) and is

able to define the dynamic semantics of model elements

through procedural components. Our research agenda consists

in defining different meta-models to support a wide range of

procedural components that can be defined inside or outside

the repository with different programming languages. Since

these procedural components can be applied on stored models,

our proposed extension could be used to perform model

transformations in databases and thus to transform a big

amount of data. As a perspective of this work, we expect to

apply our approach to manage models in databases like in

classic systems. Indeed, we expect to apply our approach to

perform model transformations inside a MBDB.

REFERENCES

[1] M. A. Jeusfeld, M. Jarke, and J. Mylopoulos, Metamodeling for Method

Engineering. MIT press, 2009.
[2] S. Melnik, E. Rahm, and P. A. Bernstein, “Rondo: a programming

platform for generic model management,” in Proc. of the 2003 ACM

SIGMOD International Conference on Management of Data (SIGMOD

2003), 2003.
[3] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model

transformation tool,” Sci. Comput. Program., vol. 72, no. 1-2, pp. 31–39,
2008.

[4] P. Atzeni, P. Cappellari, and P. A. Bernstein, “Model independent schema
and data translation (extended abstract),” in SEBD, 2005, pp. 177–183.

[5] Www.papyrusuml.org/.
[6] Http://www.omg.org/mof/.
[7] Www.eclipse.org/emf/.
[8] Www.kermeta.org/.
[9] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and

K. Wilkinson, “Jena: Implementing the Semantic Web Recommen-
dations,” in Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters (WWW’04). New York,
NY, USA: ACM Press, 2004, pp. 74–83.

[10] J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema,” in Pro-

ceedings of the 1st International Semantic Web Conference (ISWC’02),
ser. Lecture Notes in Computer Science, I. Horrocks and J. Hendler,
Eds., no. 2342. Springer Verlag, July 2002, pp. 54–68.

[11] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and
K. Tolle, “The ICS-FORTH RDFSuite: Managing Voluminous RDF
Description Bases,” in Proceedings of the 2nd International Workshop

on the Semantic Web, 2001, pp. 1–13.
[12] M. J. Park, J. H. Lee, C. H. Lee, J. Lin, O. Serres, and C. W. Chung,

“An Efficient and Scalable Management of Ontology,” in Proceedings

of the 12th International Conference on Database Systems for Advanced

Applications (DASFAA’07), ser. Lecture Notes in Computer Science, vol.
4443. Springer, 2007, pp. 975–980.

[13] J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan, and Y. Yu,
“Sor: a practical system for ontology storage, reasoning and search,”
2007, pp. 1402–1405.

[14] Z. Pan and J. Heflin, “DLDB: Extending Relational Databases to
Support Semantic Web Queries,” in Proceedings of the 1st International

Workshop on Practical and Scalable Semantic Systems (PSSS’03), 2003,
pp. 109–113.

[15] H. Dehainsala, G. Pierra, and L. Bellatreche, “Ontodb: An ontology-
based database for data intensive applications,” in Proc. of the 12th Int.

Conf. on Database Systems for Advanced Applications (DASFAA’07).

LNCS. Springer, 2007.
[16] M. Jarke, M. A. Jeusfeld, H. W. Nissen, C. Quix, and

M. Staudt, “Metamodelling with datalog and classes: conceptbase
at the age of 21,” in Proceedings of the Second international

conference on Object databases, ser. ICOODB’09. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 95–112. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1883713.1883719

[17] S. Jean, Y. Aı̈t-Ameur, and G. Pierra, “A language
for ontology-based metamodeling systems,” in Proceedings

of the 14th east European conference on Advances in

databases and information systems, ser. ADBIS’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 247–261. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1885872.1885894

122

