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Abstract. Parallel databases play an important role in delivering per-
formance required by data warehousing applications. Such performance
can not be accomplished without a good scheme for fragmentation and
allocation of data. Both problems are NP-hard problems and optimal
solutions are impractical in real life situations. These two problems were
addressed extensively in research and there are a lot of heuristic based
efficient solutions that provide good results. In these solutions, the frag-
mentation and allocation were done separately. In our previous work,
we proposed a genetic solution that solves both problems simultane-
ously which we refer to as a the joint solution. The joint solution was
tested on some known benchmarks using internal simulations of a paral-
lel database. These simulations are not reliable since it lacked the real life
aspects of parallelism. This paper addresses this issue by applying our
joint solution on the Teradata DBMS. We experiment the SSB bench-
mark (TPC-H like) on a Teradata appliance running TD 13.10. The re-
sults shows a significant improvement over previous results that performs
fragmentation and allocation sequentially.

1 Introduction

Data warehousing is becoming more complex in terms of applications and data
size. The parallelism is one of the relevant solutions to deal with mountains of
data managed by warehouse and complex queries. More and more organizations
are relying on parallel processing technologies to achieve the performance, scal-
ability, and reliability they need [13]. Most of the major commercial database
systems support parallelism (Teradata, Oracle, IBM, Microsoft, Sybase, etc.).
Rather than relying on a single monolithic processor, parallel systems exploit
fast and inexpensive micro processors to achieve high performance.



Designing parallel databases was widely studied in the contexts of OLTP
(On-Line Transaction Processing) [1,7,11,12,14,15,17,19] and OLAP (On-Line
Analytical Processing) [2,4,10,13,21,22,20]. Most of these studies are usually
performed from theoretical point of view. On the other words, none deployment
on real parallel database machine is given.

The main important steps that designers need to perform to construct parallel
data warehouses are: (i) the choice of the hardware platform, (ii) the partition-
ing of data warehouse schema, (iii) the allocation of the generated fragments,
(iv) the load balancing over the nodes of the chosen parallel machine, (v) the
query processing and (vi) the deployment of solutions of the previous phases. All
these steps got a lot of attention of data warehouse research community, since
most of them are inherited from traditional parallel database design, except the
last one.

(i) There are three widely used architectures for parallelizing work: (a) shared
memory (b) shared disk and (c) shared nothing. In a shared-memory approach,
all of the CPUs share a single memory and a single collection of disks. This
approach is relatively easy to implement, since the lock manager and buffer pool
are both stored in the memory system where they can be easily accessed by all
the processors. Unfortunately, it has fundamental scalability limitations, as all
I/O and memory requests have to be transferred over the same bus that all of the
processors share, causing the bandwidth of this bus to rapidly become a bottle-
neck [8,12]. In shared-disk platform, there are a number of independent processor
nodes, each with its own memory. These nodes all access a single collection of
disks. This architecture has been used to design parallel data warehouse by [24].
It has a number of drawbacks that severely limit scalability. First, the intercon-
nection network that connects each of the CPUs to the shared-disk subsystem
can become an I/O bottleneck. Second, since there is no pool of memory that is
shared by all the processors, there is no obvious place for the lock table or buffer
pool to reside. In a shared-nothing approach, each processor has its own set
of disks. This architecture is used by Teradata. Data is horizontally partitioned
across nodes, such that each node has a subset of the rows from each table in the
database. Each node is then responsible for processing only the rows on its own
disks. Such architectures are especially well suited to the star queries running on
data warehouses modelled using a star schema, as only a very limited amount
of communication bandwidth is required to join one or more (typically small)
dimension tables with the (typically much larger) fact table [8].

(ii) Once the architecture is chosen, data warehouse designer partitions its
schema. Fragmentation® is a pre condition of parallel data warehouse design. It
may be horizontal, where table instances are decomposed into disjoint partitions
or vertical, where tables are split in disjoint sets of attributes. The horizontal
partitioning is mainly used for designing parallel data warehouses [24, 25,10, 13,
2]. Two main types of horizontal partitioning exist [5]: mono table partitioning
and table-dependent partitioning. In the mono table partitioning, a table is par-
titioned using its own attributes. It is quite similar to the primary horizontal

5 In this paper, we use fragmentation and partitioning interchangeably.



partitioning proposed in traditional databases [17]. Several modes exist to sup-
port mono table partitioning: Range, List, Hash, Round Robin (supported by
Sybase), Composite (Range-Range, Range-List, List-List), etc.), Virtual Column
partitioning recently proposed by Oraclel1G. In table-dependent partitioning, a
table inherits the partitioning characteristics from other table. For instance a
fact table may be partition based on the fragmentation schemes of dimension
tables. This partitioning is feasible if a parent-child relationship among these
tables exists [6,9]. Two main implementations of this partitioning are possible:
native referential partitioning and simulated referential partitioning. The native
referential partitioning is recently supported by Oraclel1G to equi-partition ta-
bles connected by a parent child referential constraint. A native DDL is given to
perform this partitioning [9] (Create Table ... Partition by Reference ...). This
diversity of existing modes poses problem of deploying existing research studies
on parallel data warehouse design, since a direct deployment is hard to perform.
To summarize, we can notice that fragmentation schemes obtained by some par-
titioning algorithms can be directly implemented in a priori known DBMS (this
situation is called a turnkey solutions). Others need to be adapted according
the target DBMS (non turnkey solutions). [2] is an example of turnkey solu-
tions, where algorithms were proposed to referential partition a data warehouse.
This partitioning was initially supported by Oracle [9]. [10] is an example of non
turnkey solutions, where referential partitioning is implemented manually in the
context of parallel database machine as follows: (i) a dimension table is first
horizontally partitioned using its primary key, then the fact table is decomposed
based on its foreign key referencing that dimension table.

(iii) The data allocation is the process that places generated fragments over
nodes of parallel machine. This allocation may be either redundant (with repli-
cation) or non redundant (without replication). (iv) Once fragments are placed,
global queries are then rewritten over fragments and executed on the parallel
machine. During their execution phase, (v) the load balancing should be ver-
ified. Load balancing refers to workload allocation over nodes [19]. (vi) The
deployment is usually done in simulated environments or using mathematical
cost models quantifying the quality of parallel design.

In [2], we propose a parallel data warehouse design approach, where frag-
mentation and allocation are done in joint way in order to capture the interde-
pendency between these two steps. The decision of allocation fragments in done
during the fragmentation process. The quality of this method is measured by the
means of a cost model estimating the query processing cost in terms of inputs
outputs required for executing a set of queries. The main objective of this paper
is to verify our results on a real life parallel DBMS. Based on our collaboration
with the Teradata labs, we managed to run our results on a Teradata appli-
ance running TD 13.0. Teradata is a known MPP DBMS and have been in the
Gartner’s "Data Warehouse DBMS Magic Quadrant” for many years.

The paper is organized as follows. Section 2 summarizes existing approaches
for designing parallel data warehouses. In Section 3, we give background related
to the joint design methodology for parallel data warehouse. Section 4 describes



the validation of our joint approach on Teradata machine using star schema
benchmark data set [16]. Finally, Section 5 concludes the paper summarizing
the main findings of our research, and proposing directions for future work.

2 Related Work

This section reviews the most important studies on parallel data warehouse
design from academic [2,4,10,13,21,22] and industrial perspective [20].

Academic studies were essentially focused on proposing solutions for design-
ing data warehouses for a given parallel machine architecture. Furtado [10] dis-
cusses partitioning strategies for node-partitioned data warehouses. The main
suggestion coming from [10] can be synthesized in a “best-practice” recommen-
dation stating to partition the fact table on the basis of the larger dimension
tables (given a ranking threshold). In more detail, each larger dimension table
is first partitioned by means of the Hash mode approach via its primary key.
Then, the fact table is again partitioned by means of the Hash mode approach
via foreign keys referencing the larger dimension tables. Finally, the so-generated
fragments are allocated according to two alternative strategies, namely round
robin and random. Smaller dimension tables are instead fully-replicated across
the nodes of the target data warehouse. In [13], Lima et al. focus the attention
on data allocation issues for database clusters. Authors recognize that how to
place data/fragments on the different PC of a database cluster in the depen-
dence of a given criterion/goal (e.g., query performance) plays a critical role,
hence the following two straightforward approaches can be advocated: (7) full
replication of the target database on all the PC, or (i7) meaningful partition of
data/fragments across the PC. Starting from this main intuition, authors propose
an approach that combines partition and replication for OLAP-style workloads
against database clusters. In more detail, the fact table is partitioned and repli-
cated across nodes using the so-called chained de-clustering, while dimension
tables are fully-replicated across nodes. This comprehensive approach enables
the middleware layer to perform load balancing tasks among replicas, with the
goal of improving query response time. Furthermore, the usage of chained de-
clustering for replicating fact table partitions across nodes allows the designer
not to detail the way of selecting the number of replicas to be used during the
replication phase. In [21], the allocation of relational data warehouses based on
a star schema and utilizing bitmap index structures in a shared disk architecture
is proposed. The fragments are generated by the means of multi-dimensional
hierarchical data fragmentation of the fact table. The proposal is validated by
a simulation model [22]. In these studies, fragmentation and allocation are done
in sequential way. In [2,4], another trend of parallel data warehouse design was
proposed in which partitioning and allocation processes are done simultaneously.
These works were done in a shared nothing architecture [2] and heterogeneous
database cluster [4].

To summarize, we figure out that the academic studies are validated either
by the means of simple cost models estimating the number of inputs outputs



required for executing a set of queries or by simulators. None deployment in a
real machine is given.

From industrial perspective, DB2 DBMS [20] proposed a solution for data
partitioning in shared nothing architecture. Based on this work, data partition-
ing advisor is developed to recommend user the number of partitions of each
fragments. As academic studies, this work considers fragmentation and alloca-
tion are done sequentially.

3 Background

In this section, we review the joint methodology for designing parallel data ware-
houses, where fragmentation and allocation are done simultaneously. To facilitate
the understanding of our methodology, we give a formalization of the parallel
data warehouse design problem [2]:

— adata warehouse schema composed by d dimension tables D = {Dy, ..., Dg_1}
and one fact table F — as in [10, 13];

— a shared nothing architecture with M nodes N = {Ny, N1,..., Nyr—1};

— a set of star queries Q = {Q1,Q2,...,Qr_1} to be executed over the ware-
house schema, being each query @, with 0 <[ < L —1;

— a maintenance constraint W : W > M representing the number of fragments
W that the designer considers relevant for his/her target allocation process,
called fragmentation threshold;

The problem of designing a parallel data warehouse consists in fragmenting the
fact table F into Ng fragments and allocating them over different nodes such that
the total cost of executing all the queries in Q can be minimized while processing
constraints are satisfied across nodes, under the maintenance constraint V.

Based on the formal statement above, it follows that our investigated prob-
lem is composed by two sub-problems, namely data partitioning and fragment
allocation. Each one of these problems is known to be NP-complete [3,23,11]. In
order to deal with the parallel design problem, two main classes of methodolo-
gies are possible: sequential design and joint design. Sequential design method-
ology has been proposed in the context of traditional distributed and parallel
database design research. The basic idea underlying this methodology consists
in first fragmenting the data warehouse using any partitioning algorithm, and
then allocating the so-generated fragments by means of any allocation algo-
rithm. In the most general case, each partitioning and allocation algorithm has
its own cost model. The main advantage coming from these traditional method-
ologies is represented by the fact that they are straightforwardly applicable to a
large number of even-heterogeneous parallel and distributed environments. Con-
trary to this, their main limitation is represented by the fact that they neglect
the inter-dependency between the data partitioning and the fragment alloca-
tion phase, respectively. Another limitation of this approach is the fact that it
uses two different cost models: one for fragmentation process and another for
allocation process.



To take into account de inter-dependency between and partitioning and
fragments allocation, the joint approach is proposed. During the fragmentation
phase, each potential solution is tested for allocation process. At the end, the
solution with minimum cost is chosen. Only one integrated cost model is used
for both processes: fragmentation and allocation. Figure 1 summarizes the steps
of joint design methodology [2].
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Fig. 1: Joint Design Methodology

4 Validation on Teradata

Empirical results in previous work [2] were based on custom simulation for a
distributed system using a single CPU machine. These simulations lacked the
real life aspect to demonstrate the efficacy of the new results. In collaboration
with Teradata Labs, we verified our results on a Teradata system running TD
13.10 software.

In this section we provide a high level description of the Teradata DBMS
and the SSB benchmark and how customized it. Finally, we present the results
of the SSB benchmark on both the joint and sequential methods.

4.1 Teradata Description

Teradata is a massively parallel processing system running shared nothing archi-
tecture. The Teradata DBMS is linearly and predictably scalable in all dimen-
sions of a database system workload (data volume, breadth, number of users,
complexity of queries). The basic unit of parallelism in Teradata is a virtual
processor (called Access Module Processor or AMP) which is assigned a data
portion. Each AMP executes DBMS functions on its own data. This allows locks
and buffers do not have to be shared which ensures scalability. Figure 2 illus-
trates the Teradata architecture by a two node system. A node is a multi-core



system with disks and memory. It provides a pool of resources (disk, memory,
etc) for the AMPS in that node. BYNET is the network used to link different
AMPs within a node and across different nodes as well.

Data entering a Teradata Database are processed through a sophisticated
hashing algorithm and automatically distributed across all AMPs in the system.
In addition to being a distribution technique, this hash approach serves as an
indexing strategy. This significantly reduces the amount of DBA work normally
required to set up direct access. To define a Teradata Database, the DBA simply
chooses a column or set of columns as the primary index for each table. The
value contained in these indexed columns is used to determine the AMP, which
owns the data, as well as a logical storage location within the AMP’s associated
disk space, all without performing a separate CREATE INDEX operation. To
retrieve a row, the primary index value is again passed to the hash algorithm,
which generates the two hash values, AMP and Hash-ID. These values are used
to immediately determine which AMP owns the row and where the data are
stored.

Fig. 2: Teradata Internal Architecture (MPP)

4.2 Experiments

The experiments were designed around the SSB benchmark [16]. This benchmark
is based on a star schema derived from the TPC-H schema [18]. Like TPC-H the
SSB benchmark comes with a data generation utility (dbgen) which is scalable.
For our experiments we used 10 scale factor (10GB). The SSB benchmark is
built around a fact table called lineorder and 4 dimension tables: part, supplier,
customer and date. All tables are derived from the TPC-H database except the



date dimension which is new. The main table is the fact table lineorder with the
following DDL:

CREATE TABLE dbo10_sq.LINEORDER(
LO_ORDERKEY int NOT NULL,
LO_LINENUMBER int NOT NULL,
LO_CUSTKEY int NOT NULL, -> FK to CUSTOMER
LO_PARTKEY int NOT NULL, -> FK to PART
LO_SUPPKEY int NOT NULL, -> FK to SUPPLIER
LO_ORDERDATE int NOT NULL,
LO_ORDERPRIORITY char(15) NOT NULL,
LO_SHIPPRIORITY char(1) NOT NULL,
LO_QUANTITY int NOT NULL,
LO_EXTENDEDPRICE int NOT NULL,
LO_ORDTOTALPRICE int NOT NULL,
LO_DISCOUNT int NOT NULL,
LO_REVENUE int NOT NULL,
LO_SUPPLYCOST int NOT NULL,
LO_TAX int NOT NULL,
LO_COMMITDATE int NOT NULL,
LO_SHIPMODE char(10) NOT NULL);

At scale factor 10 the row counts are given in Table 1. More details on the SSB

Table 1: Scale Factor

lineorder 59986052
part 800000
customer 300000
supplier 20000
ddate 2556

benchmark can be found at [16].

4.3 Implementation and Testing Joint and Sequential Approaches

To implement the Joint and Sequential fragmentation/allocation schemes and
assess their respective effects in Teradata we proceeded as follows:

1. The joint and sequential algorithms is applied to the SSB workload (query
descriptions shown later). We used a cost model that is focused on the I/0
factor. For more details on these algorithms refer to [2]. Sequential approach
starts by partitioning the SSB benchmark schema using a genetic algorithm
[2]. The obtained fragmentation schema is then allocated over various nodes.

2. The obtained theoretical results from our algorithms are implemented to
Teradata as follows:



Table 2: Results (Time in Seconds)

Queries  Joint Sequential

QO1.1  0.12 0.59
Q0l.2  0.11 0.11
Q01.3  0.12 0.11
Q04.1  0.60 0.58
Q042  0.54 0.53
Q04.3  1.08 1.13
Q05.0  0.36 0.15
Q06.0  0.53 0.13
Q07.0  0.46 0.58
Q08.0  0.14 2.15
Q09.0  0.08 0.14
Q10.0  0.07 0.16
Q11.0  0.32 0.62
Q12.0  0.34 0.72
Q13.0  0.18 0.63
Q14.0  0.18 0.24
Q15.0  0.18 0.57
Q16.0  0.18 0.51
Q17.0  0.19 0.24
QI8.0  0.29 0.64
Q19.0  0.56 0.66
Q20.0  0.49 0.33
total time 7.12 11.52

— The dimension tables are hash distributed using their primary key field.

— The fact table is partitioned using the results of each of the sequential
and joint algorithms. Each fragment is represented as a separate table.
These fragments were then allocated to particular AMPs based on the
hash function that reflect the allocation scheme.

— Finally, the fact table lineorder is defined as a view with UNION of these
fragments

For experiments in this section, we have considered a query workload of 22
queries. They are based on the original 13 queries (except Q1.2, Q1.3) but with
varied predicates. We have used 50 selection predicates defined on 11 differ-
ent attributes: (d.d_year, p.p_category, d.d_yearmonth, s.s_region, p.p_brand ,
c.c_region, c.c_nation, s.s_nation, c.c_city, s.s_city, p.p-mfgr). The domains of
these attributes are split into: 7, 2, 2, 7, 3, 5, 2, 6, 3, 3 and 3 sub domains, re-
spectively to perform the genetic algorithms for joint and sequential approaches
[2]. Note that each selection predicate has a selectivity factor computed using
SQL queries executed on the data set of SSB benchmark (see Appendix A).
This technique was applied for both Joint and Sequential approaches. Table 2
below shows the run time (in seconds) of the queries for both joint and sequential
methods. Each method performed better in certain queries. However, the joint



method performed 38% better for the overall workload which validates the results
since the workload performance is the objective of both algorithms.

5 Conclusion

This work is the fruit of collaboration between academician and industrial repre-
senting by Teradata Labs established during DAWAK’10 in Bilbao Spain, where
we presented our paper on joint parallel data warehouse design. In our previous
studies, the verification of the joint method is based on a single CPU system
simulating parallel and distributed systems. In this paper, we verified the supe-
riority of our joint method over sequential method using the Teradata DBMS
running the SSB benchmark. Overall, the joint method performed 38% better
than the sequential method.

Future extensions include incorporating the Teradata cost model in the joint
solution. This will insure that the actual cost of CPU, I/O and network cost are
reflected. Also, other models beyond star schema like the TPC-H model can be
benchmarked.
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Appendix

Query

Description

QO1.1

select sum(lo_extendedprice*lo_discount) as revenue from lineorder 1, DATE d
where l.lo_orderdate=d.d-datekey and d.d-year='1993"
and l.lo_discount in (1,2,3) and l.lo_quantity=25;

QoL.2

select sum(lo_extendedprice*lo_discount) as revenue from lineorder 1, DATE d
where l.lo_orderdate=d.d_datekey and d.d_year='1994’
and l.lo_discount in (1,2,3) and l.lo_quantity=25;

seloct sum (lo_extendedprice*lo_discount) as revenue from lincorder 1, DATE d
where llo_orderdate=d.d_datckey and d.d_year='1995
and llo_discount in (1,2,3) and llo_quantity=25;

select sum (lo-revenue), d-year, p_brand from lincorder 1, DATE d, part p, supplier s

where l.lo_orderdate=d.d-datekey and l.lo_partkey=p.p-partkey and l.lo_suppkey=s.s_suppkey
and p.p-category="MFGR#12’and s.s_region="AMERICA’

group by d.d_year, p.p_brand order by d.d_year, p.p_brand;

select sum(lo_revenue), d_year, p_brand from lineorder 1, DATE d, part p, supplier s

where l.]lo_orderdate=d.d_datekey and l.lo_partkey=p.p-partkey and l.lo_suppkey=s.s_suppkey
and p.p-category="MFGR#12’ and s.s_region="AFRICA’

group by d.d_year, p.p-brand order by d.d_year, p.p-brand;

select sum(lo_revenue), d_year, p_brand from lineorder I, DATE d, part p, supplier s

where l.lo_orderdate=d.d_datekey and l.lo_partkey=p.p-partkey and l.lo_suppkey=s.s_suppkey
and p.p-category="MFGR#12’

and (s.s_region="ASIA’ or s.s_region="MIDDLE EAST’ or s.s_region="EUROPE’)

group by d.d_year, p.p_-brand order by d.d_year, p.p_brand;

select sum (lo_revenue), d_year, p_brand from lineorder I, .DATE d, part p, supplier s

where l.lo_orderdate=d.d_datekey and l.lo_partkey=p.p_partkey and l.lo_suppkey=s.s_suppkey
and p.p-brand in (MFGR#2221°,"MFGR#2222’, '"MFGR#2223’,"MFGR#2224’"MFGR#2225",
'MFGR#2226°, " MFGR#2227’," MFGR#2228")

and s.s_region="ASIA’

group by d.d_year, p.p-brand order by d.d_year, p.p-brand;

select sum(lo_revenue), d-year, p-brandc from lineorder 1, DATE d, part p, supplier s

where l.lo_orderdate=d.d_datekey and l.lo_partkey= p.p_partkey and l.lo_suppkey= s.s_suppkey
and p.p-brand="MFGR#2239’ and s.s_region='"EUROPE’

group by d.d_year, p.p-brand order by d.d_year, p.p-brand;

select c_nation, s_nation, d_year, sum(lo_revenue) as revenue from customer c, lineorder 1, supplier s, DATE d
where l.lo_custkey=c.c_custkey and l.lo_suppkey=s.s_suppkey and l.lo_orderdate=d.d_datekey

and c.c_region="ASIA’ and s.s_region="ASIA’and d.d_year in(1992,1993,1994,1995,1996,1997)

group by c.c-nation, s.s_nation, d.d-year order by d.d-year asc, revenue desc;

select c_city, s_city, d_year, sum(lo_revenue) as revenue from customer c, lineorder 1, supplier s, DATE d

where l.lo_custkey=c.c_custkey and l.lo_suppkey= suppkey and l.lo_orderdate= d.d_datekey

and c.c.nation="UNITED STATES’ and s.s_nation="UNITED STATES’and d.d_year in(1992,1993,1994,1995,1996,1997)
group by c.c_city, s.s_city, d.d_year order by d.d_year asc, revenue desc;

select c-city, s_city, d-year, sum(lo_revenue) as revenue from customer c, lineorder 1, supplier s, DATE d

where llo_custkey=c.c_custkey and l.lo_suppkey=s.s_suppkey and l.lo_orderdate=d.d-datekey

and (c.c_city="UNITED KI1’ or c.c_city="UNITED KI5’) and (s.s_city="UNITED KI1’ or s.s_city="UNITED KI5")

and d.d_year in(1992,1993,1994,1995,1996,1997) group by c.c_city, s.s_city, d.d_year order by d.d_year asc, revenue desc;

select ccity, s-city, d_year, sum(lo-revenue) as revenue from customer c, lineorder 1, supplier s, DATE d

where 1.lo_custkey=c.c-custkey and l.lo_suppkey=s.s_suppkey and l.lo_orderdate= d.d-datekey

and (c.c_city="UNITED KI1’ or c.c_city="UNITED KI5’) and (s.s_city="UNITED KI1’ or s.s_city="UNITED KI5’)
and d.d_yearmonth = 'Dec1997’group by c.c_city, s.s_city, d.d_year order by d.d_year asc, revenue desc;

select d_year, s_nation, sum(lo_revenue - lo_supplycost) as profit from DATE d, customer c, supplier s, part p, lineorder 1
where l.lo_custkey=c.c_custkey and l.lo_suppkey=s.s_suppkey and l.lo_partkey=p.p_partkey and l.lo_orderdate=d.d_datekey
and c.c_region="AMERICA’ and s.s_region="AMERICA’ and (p.p-mfgr="MFGR#1’ or p.p-mfgr="MFGR#2")

group by d.d_year, c.c_nation order by d.d.year, c.c_nation;

select d_year, s_nation, p_category, sum(lo_revenue - lo_supplycost) as profit from DATE d, customer ¢, supplier s, part p, lineorder 1
where l.lo_custkey=c.c_custkey and l.lo_suppkey=s.s_suppkey and l.lo_partkey=p.p_partkey

and l.lo_orderdate=d.d_datekey and c.c_region="AMERICA’ and s.s_region="AMERICA’

and (d.d_year=1997 or d.d_year=1998)and(p.p-mfgr="MFGR#1’ or p.p-mfgr= "MFGR#2’)

group by d.d_year,s.s_nation,p.p_category order by d.d_year,s.s_nation, p.p_category;

select d_year, s_city, p_brand, sum(lo_revenue - lo_supplycost) as profit

from DATE d, customer c, supplier s, part p, lineorder 1

where l.lo_custkey=c.c_custkey and l.lo_suppkey=s.s_suppkey and l.lo_partkey=p.p_partkey
and l.lo_orderdate=d.d_datekey and s.s_nation="UNITED STATES’

and (d.d_year=1997 or d.d_year=1998) and p.p-_category="MFGR#14’

group by d.d_year, s.s_city, p.p-brand order by d.d_year, s.s_city, p.p-brand;

select d-year, s_city, p-brandl, sum(lo-revenue - lo_supplycost) as profit

from DATE d, customer c, supplier s, part p, lineorder 1

where llo_custkey=c.c_custkey and l.lo_suppkey=s.s_suppkey and l.lo_partkey=p.p_partkey

d.d-datekey and s.s_nation="EGYPT’ and (d.d_year=1997 or d.d_year=1998) and p.p-category="MFGR#14’
group by d.d_year, s.s_city, p.p-brand order by d.d_year, s.s_city, p.p-brand;

and l.lo_orderdate

select d_year, s_city, p-brand, sum(lo_revenue - lo_supplycost) as profit

from DATE d, customer c, supplier s, part p, lineorder 1

where l.lo_custkey=c.c_custkey and l.lo_suppkey=s.s_suppkey

and l.lo_partkey=p.p-partkey and l.lo_orderdate=d.d-datekey and s.s_-nation="ALGERIA’
and (d.d_year=1997 or d.d_year=1998) and p.p_category="MFGR#14’

group by d.d_year, s.s_city, p.p-brand order by d.d_year, s.s_city, p.p-brand;

select d_year, s_city, p-brand, sum(lo_revenue - lo_supplycost) as profit

from DATE d, customer ¢, supplier s, part p, lineorder 1

where l.lo_custkey=c.c_custkey and l.lo_-suppkey=s.s_suppkey and l.lo_partkey=p.p-partkey

and l.lo-orderdate=d.d-datekey and s.s-nation="ALGERIA’ and (d.d-year=1996 or d.d-year=1997) and p.p-category="MFGR#14’
group by d.d_year, s.s_city, p.p-brand order by d.d_year, s.s_city, p.p_brand;

select d_year, s_city, p-brand, sum(lo_revenue - lo_supplycost) as profit

from DATE d, customer ¢, supplier s, part p, lineorder 1

where l.lo_custkey=c.c_custkey and l.lo_suppkey=s.s_suppkey and l.lo_partkey=p.p_partkey

and l.lo_orderdate=d.d_datekey and s.s.nation="CANADA’ and (d.d_year=1997 or d.d_year=1998) and p.p-category="MFGR#14’
group by d.d_year, s.s_city, p.p-brand order by d.d_year, s.s_city, p.p-brand;

select c.nation, s_nation, d_year, sum(lo_revenue) as revenue from customer c, lineorder 1, supplier s, DATE d
where l.lo_custke c_custkey and l.lo_suppke; s.s_suppkey

and l.lo_orderdate=d.d_datekey and c.c_region="AMERICA’ and s.s_region="AMERICA’

and d.d.year in(1992,1993,1994,1995,1996,1997)

group by c.c_nation, s.s_nation, d_year order by d.d_year asc, revenue;

select c_nation, s_nation, d_year, sum(lo_revenue) as revenue

from customer c, lineorder 1, supplier s, DATE d

where l.lo_custkey=c.c_custkey and l.lo_suppkey=s.s_suppkey and l.lo_orderdate=d.d_datckey

and c.c_region="MIDDLE EAST’and s.s_region="MIDDLE EAST’ and d.d_year in(1992,1993,1994,1995,1996,1997)
group by c.c_nation, s.s_nation, d_year order by d.d_year asc, revenue desc;

select c-nation, s_nation, d_year, sum(lo_revenue) as revenue

from customer c, lineorder 1, supplier s, DATE d

where 1.lo_custkey=c.c_custkey and l.lo_suppke; s_suppkey

and l.lo_orderdate=d.d-datekey and c.c_region='EUROPE’ and s.s_region="EUROPE’
and d.d_year in(1992,1993,1994,1995,1996,1997)

group by c.c_nation, s.s_nation, d_year order by d.d_year asc, revenue desc;
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