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2 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha Bikiengastrategies are optimal) and beause they are of interest for e.g. multimedia appli-ations, Pfair sheduling algorithms have been widely investigated last years An-derson et al. (2000, 2004); A.Srinivasan et al. (2003). In all these works, the notionof Pfairness is de�ned in the ontext of synhronous tasks with impliit deadlines.In Anderson et al. (2004); Devi and Anderson (2005), asynhronous systems areonsidered, where asynhronism means that some of the �rst task slots do not takeplae. But the �rst job of any task is still assumed to be released at time 0. InAnderson et al. (2000), sporadi tasks are onsidered: periods orrespond only tothe minimum elapsed time between two onseutive releases. They introdue theintra-sporadi model, where the release time of eah task slot an be hosen. Weonsider here a slightly di�erent notion of asynhronism: the �rst release times ofthe di�erent tasks, i.e. the release time of the �rst task slot, are no more assumed tobe equal. But all the task slots are assumed to our, and their release times annotbe hosen arbitrarily . To shift a task may e.g. be useful in order to take somepreedene relations into aount. Furthermore, requiring tasks to have periodsequal to deadlines restrits the appliation of Pfairness in pratie. The problemof sheduling tasks with arbitrary deadlines in a Pfair way on multiproessors hasbeen addressed in Ramamurthy (2002) and a stati-priority sheme to shedule aset of suh tasks has been presented. In this paper we investigate extension ofPfairness in order to design Pfair sheduling shemes for asynhronous tasks withdeadlines less than or equal to periods. As far as we know, others approahes don'tjointly onsider asynhronous tasks and onstrained deadlines. We �rst extend andadapt Pfairness de�nition to this new ontext and then we propose a feasibilityondition. Sine there exists no optimal strategy in this general ase, we annotpropose a neessary and suÆient ondition. We propose here only a suÆient butrather e�etive ondition and then we present some simulation results.The remainder of the paper is organized as follows. In setion 2 we formally de�nethe Pfair multiproessor sheduling problem. In setion 3 we prove that Pfair algo-rithm exists for any periodi task set and we give suÆient feasibility onditions.In setion 4 we present the simulations results. Conlusions and perspetives aregiven setion 5.2 Pfair shedulingIn this setion we present Pfair sheduling for synhronous tasks with impliitdeadlines. We adopt the following notations: for any real number x, bx is theinteger immediately below or equal to x and dxe is the integer immediately aboveor equal to x.In the further, slot t denotes the time interval [t, t+1). We assume that proessorsare alloated for integral number of slots, thus a task annot be preempted withina slot.2.1 Basi de�nitionsWe use the lassial task model.De�nition 1. A task �i =< ri; Ci; Di; Ti > is haraterized by four parameters: its



Pfairness for late released tasks, with onstrained deadlines 3�rst release time ri, its per period worst ase exeution time Ci, its relative deadlineDi and its period Ti.The weight of task �i is Ui = CiTi and its density is CHi = CiDi .We have ri � 0 and we assume that Ci, Di and Ti are integral and verifyCi � Di � Ti. Thus we have 0 < Ui � 1. In this setion we onsider a set � oftasks suh that ri = 0 and Di = Ti.De�nition 2. A m-proessor shedule for a task set � is a funtion S : � � N !f0; 1g, suh that 8t 2 N : P�i2�S(�i; t) � m with S(�i; t) = 1 if task �i is sheduledin slot [t; t+ 1) and S(�i; t) = 0 else.For the remainder of the paper, we simply use shedule to denote an m-proessorshedule of �. A fair shedule is approximately an ideal uid shedule suh that,at any time t, eah task has been proessed for !i(t) = Ui � t proessor timeunits. Now, sine proessor time is alloated in integral number of slots, the idealbehaviour is approximated by either the integer diretly above or diretly beyond.The deviation from this uid shedule is formally aptured by the onept of lag.The lag of a task �i at time t in a shedule S is given by lag(S; �i; t) = !i(t) �j=t�1Pj=0 S(�i; t). A shedule S is said to be Pfair i�8�i; t : �i 2 �; t 2 N;�1 < lag(�i; t) < 1Informally, the alloation error assoiated with eah task must always be less thanone slot. This ondition an be graphially interpreted in the following way: fromideal CPU servie of the task de�ned by ideal(t) = Ui � t, we draw two limit linesde�ned byW+(t) = Ui�t+1 andW� = Ui�t�1. Then, the broken line representingthe atual CPU servie of the task must remain stritly between both limit lines(see �gure 1).

Figure 1 Pfair and non Pfair behaviours2.2 SubtasksFor implementation reasons, eah task �i is split into series of quantum-lengthsubtasks (i.e. with exeution time equal to one slot). The jth subtask (j � 0) of



4 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha Bikiengatask �i is denoted � ji . Eah subtask � ji has a pseudo-release time rji and a pseudo-deadline dji , dedued from the lag inequations: rji = j jUi k and dji = l j+1Ui m. � jimust be sheduled in the interval Iji = [rjl ; dji ), alled its feasibility window.Note that rj+1i is either dji � 1 or dji . Thus, two onseutive windows of the sametask either overlap by one slot or are disjoint . Consider as an example the task�i =< 0; 3; 5; 5 >. It is split eah period into 3 subtasks. For the �rst period,�0i must be sheduled within the time interval [0; 2),�1i within [1; 4) and �2i within[3; 5). Feasibility windows of the six �rst subtasks (two �rst periods of the task)are depited in �gure 2. We present a possible Pfair exeution. We notie that theurve of the atual CPU servie of the task is e�etively loated between the limitlines. In the �rst period of ativity, the task is sheduled at times 0, 2 and 3.

Figure 2 A Pfair shedule for task < 0; 3; 5; 5 > - Feasibility windows2.3 Pfair strategyPfair algorithm has the following high-level struture: at eah time t � 0,a dynami priority is assigned to eah task and the m highest-priority tasks aresheduled in slot t. The priorities rely on fairness. With respet to a Pfair sheduleS at time t, we say that task �i is ahead if the task has been proessed a little bitmore than in the ideal ase (lag(S; �i; t) < 0), behind if it has been proessed alittle bit less than in the ideal ase (lag(S; �i; t) > 0) and puntual if it has beenproessed exatly as in the ideal ase (see �gure 1). At any time t, Pfair strategiessplit tasks into three ategories:� A Urgent task is a task whih is behind and whih would be late if it werenot proessed at this time. Suh a task must be proessed at time t, else thePfairness ondition would be violated,� a Tnegru task is ahead and would be in advane if it were proessed at thistime. Suh a task must not be proessed at time t, else the Pfairness onditionwould be violated,



Pfairness for late released tasks, with onstrained deadlines 5� a Contending task is neither Urgent, nor Tnegru. The Pfairness will neitherbe violated if it is proessed nor if it is not.Pfair algorithms an be summarized as follows:1. All urgent tasks are sheduled.2. Contending tasks are sorted.3. The remaining proessors are alloated to the highest-priority ontendingtasks.Three Pfair sheduling algorithms are known to be optimal on an arbitrary numberof proessors: PF, PD and PD2 Baruah et al. (1996, 1995); Anderson et al. (2000,2004). These algorithms di�er in the hoie of tie-breaking rules. One tie-breakparameter that is ommon to all three algorithms is the suessor bit, whih isde�ned as follows: b(� ji ) = bji = dji � rj+1i = l lUi m � j lUi k. The suessor bit of asub-task is equal to 1 if it feasibility window overlaps the feasibility window of thenext sub-task, and is equal to 0 if both windows are disjoint.We present here the PF algorithm. Tasks are split into unitary subtasks whih areprioritized as follows: at time t, if subtasks �ui and �vj are both ready, then �ui hashigher priority than �vj , denoted �ui � �vj if one of the following ondition holds:(i) dui < dvj .(ii) dui = dvj and bui > bvj .(iii) dui = dvj , bui = bvj = 1, and �u+1i � �v+1j .If neither subtask has priority over the other, then tie an be broken arbitrarily.At the beginning of eah slot, the m highest priority subtasks are seleted to runin that slot. In the remainder of the paper, we will onsider the algorithm PF toillustrate our results.2.4 FeasibilityAs mentioned, Pfair sheduling is very eÆient. Furthermore, there exists avery simple haraterization of feasible task sets. This is stated by the followingtheorem Baruah et al. (1996); Anderson et al. (2004).Theorem 1. The algorithms PF, PD and PD2 are optimal for systems of syn-hronous independent tasks with impliit deadlines. Moreover, a synhronous peri-odi task set with impliit deadlines � has a Pfair shedule on m proessors if andonly if P�i2� CiTi � m.3 Extension of PfairnessOur aim is now to get rid of the restritive assumptions on task sets. In thispaper we want to prove that fairness an be extended to all independent perioditask sets. We have �rst arried out some simulations. For that purpose we have�rst developed a Pfair sheduling simulator omposed of two parts: a real-timetask generator and a multiproessor sheduler. The number of proessors is not



6 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha Bikiengalimited and generated task sets are suh that i=nPi=1 CiTi � m. The sheduler implementsthe algorithm PF. Results of our simulations are summarized in setion 4. Thesesimulations lead to two establishments: �rstly, if deadlines less than or equal toperiods are onsidered, if i=nPi=1 CiDi � m, the task set is feasible on m proessors andseondly if asynhronous tasks with impliit deadlines are onsidered, Baruah'sondition still holds. This leads us to infer the following result:Theorem 2. Given a periodi task set �, if i=nPi=1 CiDi � m then � has a valid Pfairshedule on m proessors over any time interval [0; t).Before we prove the theorem, we �rst extend the notion of Pfairness. Weonsider periodi task sets suh that, if � is a task set, then 8�i 2 �, �i =<ri; Ci; Di; Ti > with ri � 0 and Di � Ti. T denotes the hyperperiod of thetask set, de�ned as T = LCM(Ti)�i2�. Pfairness is extended in the following way:in an ideal shedule of a periodi task set, eah task �i must have reeived at timet, !i(t) proessor time units (see �gure 3). !i(t) is suh that:!i(t) = 8>>>>>>>><>>>>>>>>:
0 if t 2 [0; ri)k � Ci + CiDi � (t� k � Ti � ri) ift 2 [k � Ti + ri; k � Ti +Di + ri)(k + 1) � Ciif t 2 [k � Ti +Di + ri; (k + 1) � Ti + ri):where k = j tTi k represents the instane number of the pending instane of the task.A shedule S is then Pfair if and only if 8�i 2 �;8t 2 N : �1 < lag(S; �i; t) < 1where lag(S; �i; t) = !i(t)� j=t�1Pj=0 S(�i; j). We also rede�ne the feasibility windowsof a task. There is no window within idle periods, and we de�ne the jth window asIji = [rji ;ji ) with rji = ri + k � Ti + j j�k:CiCHi k and dji = ri + k:Ti + l j+1�k:CiCHi mThe proof of the theorem we give is an adaptation of the proof presented inBaruah et al. (1996) to prove theorem 1 for PF. It is based on graph theory.We prove that a Pfair shedule exists on any time interval [0; L). In the further,CTR�i(t) denotes the omplete proessor demand of all sub-tasks of task �i whosefeasibility intervals are inluded in [0; t℄. Thus, CTR�i(t) is equal to j where j issuh that dji � t < dj+1i . We �rst de�ne a weighted digraph G and prove thatif G has an integral ow of size P�i2� CTR�i(L) then the task set � has a Pfairshedule.De�nition 3. The Pfair-graph is the weighted digraph G(L) is de�ned as G(L) =(V;E) with:V = V0 [ V1 [ V2 [ V3 [ V4 [ V5 and E = E0 [ E1 [ E2 [E3 [ E4V0 = f< soure >gV1 = f< 1; �i >; �i 2 �g
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Figure 3 Ideal progression of alloated CPU time for a late released task with on-strained deadline - Idle periodsV2 = f< 2; �i0; 0 >; i = 1::n s.t. ri > 0g [f< 2; � ji >; (i; j) s.t. i = 1::n; j 2 [0; CTR�i(L))g [ f< 2; �i0; j >; (i; j) s.t. i =1::n; j 2 [1; jL�riTi k℄gV3 = f< 3; �i0; t >; (i; t) s.t. i = 1::n; t 2 [0; ri)g [f< 3; �i; t >; (i; t) s.t. i = 1::n; t 2 [k:Ti+ri; k:Ti+ri+Di); with 1 � k � jL�riTi kg [f< 3; �i0; t >; (i; t) s.t. i = 1::n; t 2 [k:Ti +Di; (k + 1):Ti) with 1 � k � jL�riTi kgV4 = f< 4; t >; t 2 [0; L)gV5 = f< sink >g.Edges and apaities are de�ned by:E0 = f(< soure >;< 1; �i >;CTR�i(L)); i = 1::ngE1 = f(< 1; �i >;< 2; �i0; 0 >; 0); i = 1::n s.t. ri > 0g [f(< 1; �i >;< 2; � ji >; 1); j 2 [0; CTR�i(L))g [f(< 1; �i >;< 2; �i0; j >; 0); (i; j) s.t. i = 1::n; j 2 h1; jL�riTi kigE2 = f(< 2; �i0; 0 >;< 3; �i0; t >; 0); (i; t) s.t. i = 1::n; t 2 [0; ri)g [f(< 2; � ji >;< 3; �i; t >; 1); (i; j; t) s.t. i = 1::nj 2 [0; CTR�i(L)); t 2 [rji ; dji )g [f(< 2; �i0; j >;< 3; �i; t >; 0)(i; j; t) s.t. i = 1::n; j 2 [1; hL�riTi i ; t 2 [k:Ti + ri +Di; (k + 1):Ti + ri) with 1 � k � jL�riTi k℄tgE3 = f(< 3; �i0; t >;< 4; t >; 0); t 2 [0; ri)g [f(< 3; �i; t >;< 4; t >; 1); t 2 [k:Ti + ri; k:Ti + ri + Di) with 1 � k � jL�riTi kg [f(< 3; �i0; t >;< 4; t >; 0); (i; t) s.t. i = 1::n; t 2 [k:Ti + ri + Di; (k + 1):Ti) with1 � k � jL�riTi kg.E4 = f(< 4; t >;< sink >;m); t 2 [0; L)g.As an example, onsider the synhronous task set � with onstrained deadlinesomposed of two tasks: � = f< 0; 3; 5; 8 >;< 0; 2; 3; 4 >g. We hose a synhronoustask set in order to easily represent the Pfair-graph. Indeed, beause of the yliityproperty of synhronous task systems, we just have to study the time interval [0; 8℄.Figure 4 gives the resulting Pfair-graph. The intuition behind the struture of thegraph G is the following.V1 ontains one node for eah task �i and the apaity of the edge from the soure
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Figure 4 Pfair-graph G(8) for the task system � = f< 0; 3; 5; 8 >;< 0; 2; 3; 4 >gto this node orresponds to the global proessor demand of the task within theinterval [0; L).V2 ontains one node for eah sub-task, one node for eah before release period (forlate released tasks) , and one node for eah idle periods within [0; L℄. Eah of thesenodes is linked to the node of V1 orresponding to its parent task.V3 ontains one node for eah before release time unit, one node for eah task and foreah time unit between release and deadline of eah instane, and one node for eahtime unit of eah idle period. Then eah before release node of V2 is linked to eahbefore release node of V3, eah sub-task node is linked to the node orrespondingto time units loated within its feasibility window, and eah idle period node of V2is linked to eah idle period node of V3 orresponding to time units loated in theorresponding idle period.Finally, V4 ontains one node for eah time unit within the time interval [0; L),whih is linked to eah node of V3 orresponding to the same time unit.In order to prove the theorem, we �rst establish the following lemma.Lemma 1. If the Pfair-graph G(L) has an integral ow of size P�i2�CTR�i(L),then � has a Pfair shedule on [0; L).Proof - Let us assume that suh an integral ow exists. We �rst de�ne ashedule SG dedued from the Pfair -graph as:De�nition 4. Let f be an integral ow of size nPi=1CTR�i(L) of G, we de�ne SGas follows. For �i 2 �, t 2 N,SG(�i; t) = 8>><>>: 1 if t 2 [0; L) ^ (9j 2 [0; CTRi(L)) ::f((< 2; � ji >;< 3; �i; t >; 1)) = 10 otherwiseWe show that SG is Pfair over the time interval [0; L). The size of the owis nPi=1CTR�i(L) thus eah node of V1 is �lled to apaity, i.e. the ow arried byeah link from soure to < 1; �i > is equal to CTR�i(L). Eah node in V1 hasexatly CTR�i(L) outgoing edges of apaity 1, the other outgoing edges have a



Pfairness for late released tasks, with onstrained deadlines 9null apaity thus they reeive a ow equal to 0. Thus eah node < 2; � ji > of V2reeives a ow equal to 1. Then, eah node < 2; � ji > has one single outgoing edgewhih arries a ow equal to 1, the other outgoing edges arry a ow equal to 0.Now, eah node of V3 has exatly one outgoing edge. This edge arries a ow equalto the ow arried by its inoming edge. In the same way, the nodes in V4 have onesingle outgoing edge, whih arries the umulated ow arried by their inomingedges. Sine the apaity of this outgoing edge is m, at most m inoming edgesarry a ow equal to 1. Thus at mostm sub-tasks are proessed. Now, the potentialexists for a task �i to get sheduled twie at the same time (if rji = dj�1i � 1). Butsine the edge from < 3; �i; t > to < 4; t > has a apaity equal to 1, this situation isavoided: if this edge arries a ow equal to 1, only one inoming edge arries a non-null ow. Thus two di�erent proessed sub-tasks annot belong to the same task.Thus at any time t in [0; L), there exists at most m tasks suh that SG(�i; t) = 1.Furthermore, f((< 2; � ji >;< 3; �i; t >; 1)) = 1 implies that rji � t < dji thus,eah proessed sub-task is proessed in its feasibility window. Finally, eah sub-task is e�etively proessed. Indeed, there exists nPi=1CTR�i(L) sub-tasks in [0; L).Following the de�nition of SG, the number of proessed sub-tasks is equal to theglobal inoming ow of verties of V3. And the global input ow of V3 is onstant,equal to nPi=1CTR�i(L) by de�nition of the ow. Thus eah sub-task is proessed.The shedule SG is thus Pfair on [0; L). �We now prove the existene of an integer ow of size nPi=1CTR�i(L). We use thefollowing ow assignments:De�nition 5. Let f be the ow de�ned as:� f((< soure >;< 1; �i >;CTR�i(L))) = CTR�i(L)� B f((< 1; �i >;< 2; �i0; 0 >; 0)) = 0B f((< 1; �i >;< 2; � ji >; 1)) = 1B f((< 1; �i >;< 2; �i0; j >; 0)) = 0� B f((< 2; �i0; 0 >;< 3; �i0; t >; 0)) = 0Bf((< 2; �i0; j >;< 3; �i0; t >; 0)) = 0B? f((< 2; � ji >;< 3; �i; rji >; 1)) =CHi � (j � rji :CHi)? f((< 2; � ji >;< 3; �i; dji � 1 >; 1)) =(J + 1)� rj+1i :CHi if dji � 1 = rj+1i? Otherwise f((< 2; � ji >;< 3; �i; t >; 1)) = CHi� B f((< 3; �i0; t >;< 4; t >; 0)) = 0Bf((< 3; �i; t >;< 4; t >; 1)) = CHi� f((< 4; t >;< sink >;m)) = P�i 2 �s.t.ri + k:Pi � t < ri + k:Pi +Di CHiLemma 2. f is a ow of size P�i2� CTR�i(L) of G(L)



10 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha BikiengaWe �rst prove that the apaity onstraints are met. Edges in E0, E1 are �lled toapaity, and edges in E3 arry ows either equal to 0 or to the density CHi whih isless than or equal to 1, thus apaity onstraints are met. If an edge in E4 is onsid-ered, it arries a ow P�i 2 �s.t.ri + k:Pi � t < ri + k:Pi +Di CHi �P�i2� CHi, now byassumption we haveP�i2� CHi � m, so the apaity onstraint is met. Finally, foredges in E2, we must prove that CHi�(j�rji :CHi) � 1 and (j+1)�rj+1i :CHi � 1if dji � 1 = rj+1i . We have rji = b jCHi  thus jCHi � 1 < rji � jCHi thu s�CHi <rji :CHi � j � 0 thus 0 < CHi � (j � rji :CHi) � CHi � 1. We prove that(j + 1) � rj+1i :CHi � 1 using similar arguments. Thus apaity onstraints areall met. We must then show that the ow is preserved at every inner vertex. Fornull apaity nodes, the ow is learly preserved. For any node < 1; �i > of V1,the inoming ow is CTR�i(L), and the outgoing ow is equal to the number ofsub-tasks sine edges are �lled to apaity, thus the outgoing ow is CTR�i(L)too. Eah vertex < 2; � ji > has an inoming ow of 1. Eah vertex < 2; � ji >has dji � rji outgoing edges. Then the ow out of < 2; �ij > is, if dji � 1 = rj+1i ,CHi�(j�rji :CHi)+CHi:(dji�rji�2)+(j+1)�rj+1i :CHi whih simpli�es to 1. Oth-erwise, we have dji�1 6= rj+1i thus d J+1CHi e�1 6= b j+1CHi  whih means that j+1CHi is inte-gral thus dji = j+1CHi . Now, the ow out is CHi�(j�rji :CHi)+CHi:(dji�rji�1) whihthen simpli�es to 1. There is only one outgoing edge leaving any vertex < 3; �i; t >of V3, whih arries a ow equal to CHi. If dji �1 = rj+1i , then there are two inom-ing edges whih arry a ow of size (j+1)�rj+1i :CHi+CHi�((j+1)�rj+1i :CHi) =CHi. Otherwise there is only one inoming edge whih arries a ow equal to CHi.We onsider �nally a vertex < 4; t > of V4. Its inoming edges with non zero a-paity are edges (< 3; �i; t >;< 4; t >; 1) with ri + k:Pi � t < ri + k:Pi +Di. Thusthe inoming ow is P�i 2 �s.t.ri + k:Pi � t < ri + k:Pi +Di CHi, whih is thus equal byde�nition to the ow of the unique outgoing edge. Thus, we proved that the owis preserved at any inner node. Thus f is a ow of size P�i2� CTR�i(L). �We an now omplete the proof of theorem 2. Lemma 2 implies the existeneof a frational ow of size P�i2� CTR�i(L) for the Pfair-graph G(L) = (V;E).Sine apaities are integral, this implies the existene of an integral ow of sizeP�i2� CTR�i(L) in G(L) Jr and Fulkerson (1962). Then Lemma 1 proves that aPfair shedule an be onstruted. This proves theorem 2. �
Then we extend the algorithm PF to periodi task sets (ri � 0; Di � Ti). Here,a task an be Urgent, Tnegru or Contending if t 2 [k:Ti+ri; k:Ti+ri+Di) and isIdle if t < ri or t 2 [k:Ti+ri+Di; (k+1):Ti). The extension is then straightforward:at eah time t, Urgent tasks are sheduled, Contending tasks are sorted and the�rst of them are alloated to the remaining proessors.



Pfairness for late released tasks, with onstrained deadlines 11Number ofproessors 2 3 4 5 6 %Number ofsystems 1000 1000 1000 1000 10000 � t0 �max(ri) 0 0 0 0 0 0t0 = max(ri) 852 741 721 689 705 74.16max(ri) <t0 �max(ri) + P 148 259 279 311 295 25.84t0 >max(ri) + P 0 0 0 0 0 0Table 1 Simulation results about yliity - t0 is the date of the beginning of the steadystate.4 Simulation resultsFor periodi task sets, we have proposed a suÆient feasibility ondition: thereexists a valid Pfair shedule on m proessors for every task set suh that CH =i=nPi=1 CiDi � m. The next point of interest is to determine whether this ondition iseÆient. We thus investigate the soundness of our bound. For that purpose, wehave arried out some simulations. We have �rst implemented a task set simulatorand a sheduler based on our extension of PF. We have then generated task setswith di�erent values of either U = i=nPi=1 CiTi or CH = i=nPi=1 CiDi . And we estimatethe ratio of feasible sets among them. We present hereafter the di�erent steps ofsimulations.4.1 The task set generatorWe must experiment PF on a signi�ant number of task sets. Thus, we needto generate di�erent samples of task sets. The generator generates randomly taskparameters. In order to limit the sheduling step, we generate periods aording toGoossens methodology Maq and Goossens (2001), whih permits to get a boundfor the hyperperiod (the LCM of the task periods). For our simulations the upperbound of hyperperiods is set to 210. O�sets, onstrained deadlines and WCETarehosen uniformly within respetively the intervals [0; Ti℄, [1; Ti℄ and [1; Di � 1℄.4.2 The shedulerThe sheduler produes the PF shedule aording to our adapted PF poliy,over a given time interval. An important point was to determine the time intervalthat must be used. For synhronous task sets, the length of the shedule generatedis one hyperperiod. For asynhronous task sets, we don't have enough resultson the yliity in this ontext. For uniproessor systems, it has been shown in



12 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha BikiengaTasks set Model U � m CH � m CH > mri = 0 Di = Ti N =100%ri = 0 Di � Ti 0 < N <100% N =100% 0 < N <100%ri � 0 Di = Ti N =100%ri � 0 Di � Ti 0 < N <100% N =100% 0 < N <100%Table 2 Global results of simulations - N is the ratio of Pfair-feasible task sets withinthe onsidered sampleChoquet-Geniet and Grolleau (2004) that the steady state starts no later thanmax frigi=1::n + T . For multiproessor systems and for any preemptive and �xedpriorities sheduling, in Cuu and Goossens (2007), the authors show that thesteady state begins before at Sn where T denotes the hyperperiod and Si is de�nedindutively by:� S1 = r1� Si = maxnri; ri + lSi�1�riTi m :Tio 8i 2 f2; 3; :::ng.In Choquet-Geniet and Malo (2009), an algorithmi haraterization of the be-ginning of the steady state is investigated for work-onserving strategies. At ourknowledge, there is no result on the date of beginning of the steady state for Pfairsheduling strategies. We thus have arried out simulations until detetion of thesteady state. In our ontext, for all simulations, the steady state has started beforemax frigi=1:::n+T . Thus, all simulations have been arried out over a time intervalinluded in [0;max frigi=1:::n + 2 � T ). Table 1 summarizes our simulation resultson yliity for a Pfair sheduling strategy.4.3 SimulationsWe have onsidered 8 ases. The results we got are summarized in table 2,missing values orrespond to not investigated ases. Task sets an be synhronousor asynhronous, with impliit or onstrained deadlines. They are haraterized byeither U � m or CH � m or CH > m. For eah ase, we have generated a sampleof 5000 tasks sets for simulations. As expeted, we �nd a Pfair feasibility rate of100% for systems with impliit deadlines: for synhronous systems, it orrespondsto Baruahs theorem (theorem 1), and for asynhronous systems, it omes from ourresult (theorem 2). For the other ases, we onlude that:1. For onstrained task sets, U � m is no more a suÆient ondition, sine thereexists Pfair unfeasible task sets with a utilization fator less than m.2. For onstrained task sets, CH � m is not a neessary ondition sine thereexist Pfair feasible task sets with CH > m.
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Figure 5 Pfair feasibility rate aording to CH for 2,3,4 proessorsThen we re�ned our simulations in order to determine the inidene of U or CHon Pfair feasibility. On �gure 5 , we have onsidered systems of 2,3 or 4 proessors.For eah ase, we generate samples for di�erent values of CH between m and m+1,namely CH = m+ k10 (0 � k � 10). For eah value of CH , we again determine theratio of Pfair feasible task sets. We an see that this rate dereases rather quiklywhen CH inreases. If CH remains lose to m, the rate of valid system remainshigh, but the slope of the urve is high and onsequently the rate beomes verysmall if CH approahes m+1. We an onlude from these results that our boundis rather good in the sense that only few systems rejeted by our test are in fatPfair feasible.We also investigate the orrelation between U and the Pfair feasibility (see �gure 6and 7). We onsider systems with 3 or 4 proessors, and synhronous task systemswith onstraint deadlines. We see that if U is lose to m, then quite no systemsare Pfair feasible. But if U is less then m2 , we have 100% of Pfair feasible systems.Further investigations must be done here.
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Figure 6 Pfair feasibility aording to U for 3 proessors for synhronous task systemswith onstraint deadlines5 ConlusionsWe have extended Pfairness to any set of periodi independent task set. Wehave onsidered as well late released tasks as onstraint deadlines. We have pro-posed a suÆient ondition and given an adapted version of PF. We proved the
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