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Abstract: Pfair scheduling has usually been applied in the context
of synchronous periodic task systems with implicit deadlines. This pa-
per addresses the problem of scheduling asynchronous hard real-time
tasks with constrained deadlines using a Pfair strategy on multiproces-
sor systems. First, we extend the notion of Pfairness to the context
of asynchronous tasks with constrained deadline. Then we investigate
feasibility conditions, we propose a rather efficient one and we illustrate
the relevance of our criteria through some simulations.
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1 Introduction

Multiprocessor systems, characterized by their performance and reliability, have
evolved to be powerful computing platforms widely used in many real-time appli-
cations. In this paper we consider global scheduling of hard real-time tasks and
we assume that preemption and interprocessor migration are permitted and paral-
lelism forbidden (at any time, a task can run on at most one processor).

In this context, it has been shown that no on-line scheduling algorithm can be
optimal Mok and Dertouzos (1978); Dertouzos and Mok (1989). Baruah et al.
(1995, 1996) proved that the problem of optimally scheduling synchronous peri-
odic tasks with implicit deadlines on identical multiprocessor platforms could be
solved at run-time in polynomial time using Pfair scheduling algorithms. Under
Pfair, each periodic task is required to progress at steady rate. Each task is as-
signed a weight corresponding to its utilisation factor that represents the part of
the activity of processors dedicated to this task. Because of their efficiency (Pfair
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strategies are optimal) and because they are of interest for e.g. multimedia appli-
cations, Pfair scheduling algorithms have been widely investigated last years An-
derson et al. (2000, 2004); A.Srinivasan et al. (2003). In all these works, the notion
of Pfairness is defined in the context of synchronous tasks with implicit deadlines.
In Anderson et al. (2004); Devi and Anderson (2005), asynchronous systems are
considered, where asynchronism means that some of the first task slots do not take
place. But the first job of any task is still assumed to be released at time 0. In
Anderson et al. (2000), sporadic tasks are considered: periods correspond only to
the minimum elapsed time between two consecutive releases. They introduce the
intra-sporadic model, where the release time of each task slot can be chosen. We
consider here a slightly different notion of asynchronism: the first release times of
the different tasks, i.e. the release time of the first task slot, are no more assumed to
be equal. But all the task slots are assumed to occur, and their release times cannot
be chosen arbitrarily . To shift a task may e.g. be useful in order to take some
precedence relations into account. Furthermore, requiring tasks to have periods
equal to deadlines restricts the application of Pfairness in practice. The problem
of scheduling tasks with arbitrary deadlines in a Pfair way on multiprocessors has
been addressed in Ramamurthy (2002) and a static-priority scheme to schedule a
set of such tasks has been presented. In this paper we investigate extension of
Pfairness in order to design Pfair scheduling schemes for asynchronous tasks with
deadlines less than or equal to periods. As far as we know, others approaches don’t
jointly consider asynchronous tasks and constrained deadlines. We first extend and
adapt Pfairness definition to this new context and then we propose a feasibility
condition. Since there exists no optimal strategy in this general case, we cannot
propose a necessary and sufficient condition. We propose here only a sufficient but
rather effective condition and then we present some simulation results.

The remainder of the paper is organized as follows. In section 2 we formally define
the Pfair multiprocessor scheduling problem. In section 3 we prove that Pfair algo-
rithm exists for any periodic task set and we give sufficient feasibility conditions.
In section 4 we present the simulations results. Conclusions and perspectives are
given section 5.

2 Pfair scheduling

In this section we present Pfair scheduling for synchronous tasks with implicit
deadlines. We adopt the following notations: for any real number x, |z] is the
integer immediately below or equal to x and [z] is the integer immediately above
or equal to x.

In the further, slot t denotes the time interval [t, t+1). We assume that processors
are allocated for integral number of slots, thus a task cannot be preempted within
a slot.

2.1 Basic definitions
We use the classical task model.

Definition 1. A task 7; =< r;,C;, D;, T; > is characterized by four parameters: its
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first release time r;, its per period worst case execution time C;, its relative deadline
D; and its period Tj;.

The weight of task ; is U; = % and its density is CH; = [C;‘, .

We have r; > 0 and we assume that C;, D; and T; are integral and verify
C; < D; < T;. Thus we have 0 < U; < 1. In this section we consider a set I' of
tasks such that r; =0 and D; = Tj.

Definition 2. A m-processor schedule for a task set T is a function S : T x N —

{0,1}, such that ¥t € N : Y S(7,t) < m with S(r;,t) = 1 if task 7 is scheduled
€l
in slot [t,t + 1) and S(1;,t) =0 else.

For the remainder of the paper, we simply use schedule to denote an m-processor
schedule of T'. A fair schedule is approximately an ideal fluid schedule such that,
at any time ¢, each task has been processed for w;(t) = U; X t processor time
units. Now, since processor time is allocated in integral number of slots, the ideal
behaviour is approximated by either the integer directly above or directly beyond.
The deviation from this fluid schedule is formally captured by the concept of lag.

The lag of a task 7; at time ¢ in a schedule S is given by lag(S,7;,t) = wi(t) —
j=t—1

> S(7,t). A schedule S is said to be Pfair iff
j=0

Vri,t:m €Tt e N, -1 <lag(mi,t) <1

Informally, the allocation error associated with each task must always be less than
one slot. This condition can be graphically interpreted in the following way: from
ideal CPU service of the task defined by ideal(t) = U; * ¢, we draw two limit lines
defined by W (t) = U;xt+1 and W_ = U;xt—1. Then, the broken line representing
the actual CPU service of the task must remain strictly between both limit lines

(see figure 1).

Processed
execution time
(CPU Service)

non PFair execution

2C

C 7 P
s

The task
is ahead

Figure 1 Pfair and non Pfair behaviours

2.2  Subtasks

For implementation reasons, each task 7; is split into series of quantum-length
subtasks (i.e. with execution time equal to one slot). The j** subtask (j > 0) of
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task 7; is denoted TZJ Each subtask Tij has a pseudo-release time r{ and a pseudo-

deadline @/, deduced from the lag inequations: 1} = {%J and d] = []Ui-l 7

must be scheduled in the interval Iij = [rlj,dZ), called its feasibility window.
Note that r{“ is either df —1or df Thus, two consecutive windows of the same
task either overlap by one slot or are disjoint . Consider as an example the task
7 =< 0,3,5,5 >. It is split each period into 3 subtasks. For the first period,
79 must be scheduled within the time interval [0,2),7}within [1,4) and 77 within
[3,5). Feasibility windows of the six first subtasks (two first periods of the task)
are depicted in figure 2. We present a possible Pfair execution. We notice that the
curve of the actual CPU service of the task is effectively located between the limit
lines. In the first period of activity, the task is scheduled at times 0, 2 and 3.

A CPU service

Feasibility windows
>
>
—>

>
0o 1 2 3 4 5 6 7 8 9 10

Figure 2 A Pfair schedule for task < 0,3,5,5 > - Feasibility windows

2.3 Pfair strategy

Pfair algorithm has the following high-level structure: at each time ¢ > 0,
a dynamic priority is assigned to each task and the m highest-priority tasks are
scheduled in slot ¢. The priorities rely on fairness. With respect to a Pfair schedule
S at time ¢, we say that task 7; is ahead if the task has been processed a little bit
more than in the ideal case (lag(S,7;,t) < 0), behind if it has been processed a
little bit less than in the ideal case (lag(S,7;,t) > 0) and punctual if it has been
processed exactly as in the ideal case (see figure 1). At any time t, Pfair strategies

split tasks into three categories:

e A Urgent task is a task which is behind and which would be late if it were
not processed at this time. Such a task must be processed at time t, else the
Pfairness condition would be violated,

e a Tnegru task is ahead and would be in advance if it were processed at this
time. Such a task must not be processed at time ¢, else the Pfairness condition
would be violated,
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¢ a Contending task is neither Urgent, nor Tnegru. The Pfairness will neither
be violated if it is processed nor if it is not.

Pfair algorithms can be summarized as follows:
1. All urgent tasks are scheduled.
2. Contending tasks are sorted.

3. The remaining processors are allocated to the highest-priority contending
tasks.

Three Pfair scheduling algorithms are known to be optimal on an arbitrary number
of processors: PF, PD and PD? Baruah et al. (1996, 1995); Anderson et al. (2000,
2004). These algorithms differ in the choice of tie-breaking rules. One tie-break
parameter that is common to all three algorithms is the successor bit, which is

defined as follows: b(Tij) = bz = df - r{“ = [UL-I - {ULJ The successor bit of a
sub-task is equal to 1 if it feasibility window overlaps the feasibility window of the
next sub-task, and is equal to 0 if both windows are disjoint.
We present here the PF algorithm. Tasks are split into unitary subtasks which are
prioritized as follows: at time ¢, if subtasks 7;* and 7} are both ready, then 7;* has
higher priority than 7} , denoted 7;* - 7/ if one of the following condition holds:

(i) di < dj.

(ii) d} = dj and b} > b}.

(iii) ¥ = dY, by = bY = 1, and 7}+" = 7V
If neither subtask has priority over the other, then tie can be broken arbitrarily.
At the beginning of each slot, the m highest priority subtasks are selected to run
in that slot. In the remainder of the paper, we will consider the algorithm PF to
illustrate our results.

2.4 Feasibility

As mentioned, Pfair scheduling is very efficient. Furthermore, there exists a
very simple characterization of feasible task sets. This is stated by the following
theorem Baruah et al. (1996); Anderson et al. (2004).

Theorem 1. The algorithms PF, PD and PD? are optimal for systems of syn-
chronous independent tasks with implicit deadlines. Moreover, a synchronous peri-
odic task set with implicit deadlines T has a Pfair schedule on m processors if and

. ;
only if 3 . cp 7+ <m.

3 Extension of Pfairness

Our aim is now to get rid of the restrictive assumptions on task sets. In this
paper we want to prove that fairness can be extended to all independent periodic
task sets. We have first carried out some simulations. For that purpose we have
first developed a Pfair scheduling simulator composed of two parts: a real-time
task generator and a multiprocessor scheduler. The number of processors is not
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=N

limited and generated task sets are such that Z 7 < m. The scheduler implements
i=1

the algorithm PF. Results of our simulations are summarlzed in section 4. These

simulations lead to two establishments: firstly, if deadlines less than or equal to

=n
periods are considered, if ) g", < m, the task set is feasible on m processors and
i=1
secondly if asynchronous tasks with implicit deadlines are considered, Baruah’s
condition still holds. This leads us to infer the following result:

Theorem 2. Given a periodic task set T, if Z L < m then I' has a valid Pfair

schedule on m processors over any time mterval [0, t)

Before we prove the theorem, we first extend the notion of Pfairness. We
consider periodic task sets such that, if T is a task set, then Vr; € T, 7, =<
ri,Ci, D;, T; > with 7; > 0 and D; < T;. T denotes the hyperperiod of the
task set, defined as T'= LCM (T;)r,er. Pfairness is extended in the following way:
in an ideal schedule of a periodic task set, each task 7; must have received at time
t, w;(t) processor time units (see figure 3). w;(t) is such that:

( OiftE[O,T‘i)
k*C’i+Oi x(t—k+xT;—r;)if
wi(t):< tE[k*Ti+’I“i,k*Ti+Di+T‘i)
(k+1)xC;

\

where k = [TLJ represents the instance number of the pending instance of the task.
A schedule S is then Pfair if and only if Vr; € TVt € N: —1 < lag(S,7;,t) < 1

j=t—1
where lag(S, 1;,t) = w;(t) — Z S(1,j). We also redefine the feasibility windows

of a task There is no w1ndow w1th1n idle periods, and we define the j** window as
I] =[r! )w1thr =r;+kxT+ [] kCJ and dJ =r;, +kT; + [77"'1 kc-‘

L

The proof of the theorem we give is an adaptation of the proof presented in
Baruah et al. (1996) to prove theorem 1 for PF. It is based on graph theory.
We prove that a Pfair schedule exists on any time interval [0, L). In the further,
CTR;,(t) denotes the complete processor demand of all sub-tasks of task 7; whose
feasibility intervals are included in [0,¢]. Thus, CTR,,(t) is equal to j where j is
such that d < t < d™". We first define a weighted digraph G and prove that
if G has an integral flow of size ) CTR,,(L) then the task set T has a Pfair
schedule.

T, €l

Definition 3. The Pfair-graph is the weighted digraph G(L) is defined as G(L) =
(V,E) with:

V=1uWVuWhulVauVyuVsand E=FEyUFE; UFEy,UE3UE,

Vo = {< source >}

Vi = {< 1,7, >,1 € F}
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Second
_idle period_ _ wi(t) +1
CPU Service L
Pfair execution =~

________ Time
L | I N | Il
0 2 4 6 8 10 12 14 16 18
Feasibility -—> -—
windows -— -—
— —
A Pfair schedule | J | ) L ) ) L
0 2 4 6 8 10 12 14 16 18
Figure 3 Ideal progression of allocated CPU time for a late released task with con-

strained deadline - Idle periods

Vo = {< 2,Ti0,0 >, =1..n s.t. r; > 0} U

{< 2,7 >,(i,§) st. i =1.m,j € [0,CTR,, (L))} U {< 2,750,5 >, (i,§) s.t. i =
Lnj et | Lz}

Vs = {< 3, 7o, t >, (i, ) s.t. i =1.m,t € [0,75)} U

(<37t >, (i,t) s.t. i =1, t € [k.Ti+ri, kTi+ri+D;), with1 < k < {L;“J} U

(< 3,7mi0,t >, (i,t) s.t. i = L.n,t € [&.Ts + Dy, (k + 1).T) with 1 < k < {L;TfJ}
Vi={<4,t>,tel0,L)}

Vs = {< sink >}.

Edges and capacities are defined by:

Ey = {(< source >, < 1,7, >,CTR;,(L)),i =1..n}

E, ={(<1,7>,<2,7,0>,0),i=1.n s.t. 7, >0} U

{(<1,7:>,<2,7/ >1),j€[0,CTR,, (L))} U

{(< 17Ti >, < 2:Ti0:j >:0)7(i7j) st 1= ].TL“] € [1, \‘L%lr,J]}

EQZ{(< 2, Ti0,0 >,<3,Ti0,t>,0),(i,t) st.i=1.n,te [O,TZ)} U o
{(<2,7] >, <3,7,t>,1),(i,5,t) s.t. i =1.nj € [0,CTR.,(L)),t € [r],d})} U

i
(< 2,70,§ >, < 3.7, >,0)(i,j,8) s.t. i = 1.n,j € [1, [L;ji} e [T+ +

Dy, (k+1).T; + ;) with 1 <k < [L%fj]t}

FE3 = {(< 3, Tio, t >, < 4,1 >,0),t € [07“1)} U

(< 3,75t >, < 4t >,1),t € [kT; +ri,k.Ti + 7 + D;) with 1 < k < {L%J} U
{(< 3, T, t >, < 4,1 >,0),(i,t> s.t. i =1.n,t¢€ [le +7r; + D;, (k + ].)Tl) with
1<k< V;”J}.

i

Ey={(<4,t>,< sink >,m),t € [0,L)}.

As an example, consider the synchronous task set I' with constrained deadlines
composed of two tasks: T'= {< 0,3,5,8 >,<0,2,3,4 >}. We chose a synchronous
task set in order to easily represent the Pfair-graph. Indeed, because of the cyclicity
property of synchronous task systems, we just have to study the time interval [0, 8].
Figure 4 gives the resulting Pfair-graph. The intuition behind the structure of the
graph G is the following.

Vi contains one node for each task 7; and the capacity of the edge from the source
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Figure 4 Pfair-graph G(8) for the task system I' = {< 0,3,5,8 >,< 0,2,3,4 >}

{source (sink)

to this node corresponds to the global processor demand of the task within the
interval [0, L).

V5 contains one node for each sub-task, one node for each before release period (for
late released tasks) , and one node for each idle periods within [0, L]. Each of these
nodes is linked to the node of V; corresponding to its parent task.

V3 contains one node for each before release time unit, one node for each task and for
each time unit between release and deadline of each instance, and one node for each
time unit of each idle period. Then each before release node of V5 is linked to each
before release node of V3, each sub-task node is linked to the node corresponding
to time units located within its feasibility window, and each idle period node of V5
is linked to each idle period node of V3 corresponding to time units located in the
corresponding idle period.

Finally, V4 contains one node for each time unit within the time interval [0, L),
which is linked to each node of V3 corresponding to the same time unit.

In order to prove the theorem, we first establish the following lemma.

Lemma 1. If the Pfair-graph G(L) has an integral flow of size
then T has a Pfair schedule on [0, L).

ver CTR, (L),

Proof - Let us assume that such an integral flow exists. We first define a
schedule SG deduced from the Pfair -graph as:

n
Definition 4. Let f be an integral flow of size Y, CTR,,(L) of G, we define SG
i=1

as follows. For 1; € T, t € N,

lifte [OL) A (37 €10,CTR;(L)) ::
SG(TZ,t)Z f((< 2=Tij >a<3aTi7t>=1))=1
0 otherwise

We show that SG is Pfair over the time interval [0, L). The size of the flow
is Y CTR,,(L) thus each node of V; is filled to capacity, i.e. the flow carried by
i=1
each link from source to < 1,7; > is equal to CTR,,(L). Each node in V; has
exactly CTR,,(L) outgoing edges of capacity 1, the other outgoing edges have a
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null capacity thus they receive a flow equal to 0. Thus each node < 2,Tij > of Vs,
receives a flow equal to 1. Then, each node < 2, Tij > has one single outgoing edge
which carries a flow equal to 1, the other outgoing edges carry a flow equal to 0.
Now, each node of V3 has exactly one outgoing edge. This edge carries a flow equal
to the flow carried by its incoming edge. In the same way, the nodes in V; have one
single outgoing edge, which carries the cumulated flow carried by their incoming
edges. Since the capacity of this outgoing edge is m, at most m incoming edges
carry a flow equal to 1. Thus at most m sub-tasks are processed. Now, the potential
exists for a task 7; to get scheduled twice at the same time (if 7/ = dfl —1). But
since the edge from < 3, 7;,t > to < 4,t > has a capacity equal to 1, this situation is
avoided: if this edge carries a flow equal to 1, only one incoming edge carries a non-
null flow. Thus two different processed sub-tasks cannot belong to the same task.
Thus at any time ¢ in [0, L), there exists at most m tasks such that SG(7;, 1) = 1.
Furthermore, f((< 2,7/ >, < 3,7;,t >,1)) = 1 implies that / < t < d’ thus,
each processed sub- task is processed in its feaslblhty window. Flnally7 each sub—

task is effectively processed. Indeed, there exists Z CTR;,(L) sub-tasks in [0, L).

Following the definition of SG, the number of processed sub-tasks is equal to the
global incoming flow of vertices of V3. And the global input flow of V3 is constant,

n

equal to Y CTR,,(L) by definition of the flow. Thus each sub-task is processed.
i=1

The schedule SG is thus Pfair on [0,L). O

We now prove the existence of an integer flow of size >, CTR,,(L). We use the

i=1
following flow assignments:

Definition 5. Let f be the flow defined as:
e f((< source >,< 1,7, >,CTR,,(L))) = CTR.,(L)

o > f((< 1 , T >7<23T10:0>’0))=0
(<1rl> <27 > 1) =1
(<1,1>,<2,70,j >,0))
(

0

I
I
(<27'z0;0> < 3, Tig,t >, 0)) 0
(( 2,Ti0, J >:<3:7'20at>70)) 0
>
* f(< 2,7/ >, < 3, n,r >, 1)) =
CH; — (5 —'rf.CH) '
* f((<2,1 >, <3,7,d] —1>,1)) =
(J+1) -t .CH; if d —1=r"
x Otherwise f((< 2,7} >,<3,7,t >,1)) = CH;

° D> f((< 3:Ti0:t>7<47t>70)) =0
>f((<3,7,t><4,t>,1))=CH;

e f((<4,t> < sink>m)) = > CH;
T; € I's.t.
ri+ kP <t<r;+ kP + D;

Lemma 2. f is a flow of size ) _ . CTR,, (L) of G(L)
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We first prove that the capacity constraints are met. Edgesin Ey, E; are filled to
capacity, and edges in E3 carry flows either equal to 0 or to the density C'H; which is
less than or equal to 1, thus capacity constraints are met. If an edge in Ej is consid-
ered, it carries a flow > CH; < r CH;, now by

7; € I's.t.
ri+ kP <t<r;,+ kP +D;
assumption we have ZT er CH; < m, so the capacity constraint is met. Finally, for
edges in Es, we must prove that CH; — (j—r! .CH;) < 1and (j+1)—r/T".CH; <1

if df — l—r’“.Wehaveri:L Jthus#—1<r]§ﬁthus CH; <

r{.C’Hi —j < 0 thus 0 < CH; — (] — rf.CHZ) < CH; < 1. We prove that
G+1) - rf“.CHi < 1 using similar arguments. Thus capacity constraints are
all met. We must then show that the flow is preserved at every inner vertex. For
null capacity nodes, the flow is clearly preserved. For any node < 1,7; > of 17,
the incoming flow is CTR,,(L), and the outgoing flow is equal to the number of
sub-tasks since edges are filled to capacity, thus the outgoing flow is CT R, (L)
too. Each vertex < 2, T] > has an incoming flow of 1. Each vertex < 2, 7'] >
has d? — ! outgoing edges. Then the flow out of < 2,75 > is, if d -1 = ]H,
CH;—(j— r] CH;)+CH;.(d —r] —=2)+(j+1)—r! "' .C H; which simplifies tol Oth-
erwise, we have d{ —-1# r{“ thus [ﬁ] —-1# Lﬂj which means that ZtL H is inte-

gral thus d? = é}l Now, the flow out is CH; — (j —r7.C H;)+CH;.(d) —r] —1) which
then s1mp11ﬁes to 1. There is only one outgoing edge leavmg any vertex < 3,7;,t >
of V3, which carries a flow equal to CH;. If d’ 1= r , then there are two incom-
ing edges which carry a flow of size (j+1) —rf"'l.C’HZ-I-C’HZ ((G+1)—riT'.CH;) =
CH;. Otherwise there is only one incoming edge which carries a flow equal to C H;.
We consider finally a vertex < 4,¢ > of V4. Its incoming edges with non zero ca-
pacity are edges (< 3,7;,t >, < 4,t >,1) with r; + k.P; <t <r; + k.P; + D;. Thus
the incoming flow is > CH;, which is thus equal by
T; € I's.t.
ri+ kP <t<r;+kP;+ D;

definition to the flow of the unique outgoing edge. Thus, we proved that the flow
is preserved at any inner node. Thus f is a flow of size }_ . CT R, (L). O

We can now complete the proof of theorem 2. Lemma 2 implies the existence
of a fractional flow of size ) . CTR,, (L) for the Pfair-graph G(L) = (V, E).
Since capacities are integral, this implies the existence of an integral flow of size
>rier CTR (L) in G(L) Jr and Fulkerson (1962). Then Lemma 1 proves that a
Pfair schedule can be constructed. This proves theorem 2. O

Then we extend the algorithm PF to periodic task sets (r; > 0, D; <T;). Here,
a task can be Urgent, Tnegru or Contending if t € [k.T; +r;, k.T; 4+ r; + D;) and is
Idleift < r;ort € [k.T;+r;+D;, (k+1).T;). The extension is then straightforward:
at each time ¢, Urgent tasks are scheduled, Contending tasks are sorted and the
first of them are allocated to the remaining processors.
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Number of | 2 3 4 5 6 %

processors
Number of | 1000, 1000, 1000 1000] 1000
systems

0 <ty <10 0 0 0 0 0
maz(r;)

to = maz(r;) | 852 | 741 | 721 | 689 | 705 | 74.16

maz(r;) < | 148 | 259 | 279 | 311 | 295 | 25.84
to <

mazx(r;) + P

to > |0 0 0 0 0 0
max(r;) + P

Table 1 Simulation results about cyclicity - to is the date of the beginning of the steady
state.

4 Simulation results

For periodic task sets, we have proposed a sufficient feasibility condition: there

exists a valid Pfair schedule on m processors for every task set such that CH =
i=n

> g’i < m. The next point of interest is to determine whether this condition is
i=1

efficient. We thus investigate the soundness of our bound. For that purpose, we
have carried out some simulations. We have first implemented a task set simulator

and a scheduler based on our extension of PF. We have then generated task sets
i=n i=n

with different values of either U = 21 % or CH = 21 g And we estimate
= 1=

the ratio of feasible sets among them. We present hereafter the different steps of

simulations.

4.1 The task set generator

We must experiment PF on a significant number of task sets. Thus, we need
to generate different samples of task sets. The generator generates randomly task
parameters. In order to limit the scheduling step, we generate periods according to
Goossens methodology Macq and Goossens (2001), which permits to get a bound
for the hyperperiod (the LCM of the task periods). For our simulations the upper
bound of hyperperiods is set to 210. Offsets, constrained deadlines and WCETare
chosen uniformly within respectively the intervals [0, T3], [1,T;] and [1, D; — 1].

4.2 The scheduler

The scheduler produces the PF schedule according to our adapted PF policy,
over a given time interval. An important point was to determine the time interval
that must be used. For synchronous task sets, the length of the schedule generated
is one hyperperiod. For asynchronous task sets, we don’t have enough results
on the cyclicity in this context. For uniprocessor systems, it has been shown in
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Tasks set Model | U <m CH<m | CH>m
r; = 0 Dl = Tz N =
100%
TZ'ZO DZSTZ 0 < N K< N = 0 < N <
100% 100% 100%
T 2 0 Dl = Tz N =
100%
ri>0| D;<T; | 0<N< | N =|0<NK
100% 100% 100%

Table 2 Global results of simulations - N is the ratio of Pfair-feasible task sets within
the considered sample

Choquet-Geniet and Grolleau (2004) that the steady state starts no later than
maz {r;},_, , +T. For multiprocessor systems and for any preemptive and fixed
priorities scheduling, in Cucu and Goossens (2007), the authors show that the
steady state begins before at S,, where T' denotes the hyperperiod and S; is defined
inductively by:

e Si=r
o S; = max {ri,ri + [S_%-‘ .Ti} Vi e {2,3,..n}.

In Choquet-Geniet and Malo (2009), an algorithmic characterization of the be-
ginning of the steady state is investigated for work-conserving strategies. At our
knowledge, there is no result on the date of beginning of the steady state for Pfair
scheduling strategies. We thus have carried out simulations until detection of the
steady state. In our context, for all simulations, the steady state has started before
maz {r;},_, , +7T. Thus, all simulations have been carried out over a time interval
included in [0, maz {r;},_, , + 2 T). Table 1 summarizes our simulation results

on cyclicity for a Pfair scheduling strategy.

4.8  Simulations

We have considered 8 cases. The results we got are summarized in table 2,
missing values correspond to not investigated cases. Task sets can be synchronous
or asynchronous, with implicit or constrained deadlines. They are characterized by
either U < m or CH < m or CH > m. For each case, we have generated a sample
of 5000 tasks sets for simulations. As expected, we find a Pfair feasibility rate of
100% for systems with implicit deadlines: for synchronous systems, it corresponds
to Baruahs theorem (theorem 1), and for asynchronous systems, it comes from our
result (theorem 2). For the other cases, we conclude that:

1. For constrained task sets, U < m is no more a sufficient, condition, since there
exists Pfair unfeasible task sets with a utilization factor less than m.

2. For constrained task sets, CH < m is not a necessary condition since there
exist Pfair feasible task sets with CH > m.
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feasibility for m=2,3,4 processor:
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Figure 5 Pfair feasibility rate according to CH for 2,3,4 processors

Then we refined our simulations in order to determine the incidence of U or CH

on Pfair feasibility. On figure 5 , we have considered systems of 2,3 or 4 processors.
For each case, we generate samples for different values of CH between m and m+1,
namely CH = m+ % (0 <k <10). For each value of CH, we again determine the
ratio of Pfair feasible task sets. We can see that this rate decreases rather quickly
when CH increases. If CH remains close to m, the rate of valid system remains
high, but the slope of the curve is high and consequently the rate becomes very
small if CH approaches m + 1. We can conclude from these results that our bound
is rather good in the sense that only few systems rejected by our test are in fact
Pfair feasible.
We also investigate the correlation between U and the Pfair feasibility (see figure 6
and 7). We consider systems with 3 or 4 processors, and synchronous task systems
with constraint deadlines. We see that if U is close to m, then quite no systems
are Pfair feasible. But if U is less then %, we have 100% of Pfair feasible systems.
Further investigations must be done here.

feasibility for m=3 processors
120

- S
/’

rate (%) of

feasible tasks 60
sets 40

20 /
4

3 27 24 21 18 1,5 12 09 06 03

0

Evolution of U

Figure 6 Pfair feasibility according to U for 3 processors for synchronous task systems
with constraint deadlines

5 Conclusions

We have extended Pfairness to any set of periodic independent task set. We
have considered as well late released tasks as constraint deadlines. We have pro-
posed a sufficient condition and given an adapted version of PF. We proved the
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feasibility for m=4 processors
120

100
80 /’"
rate (%) of /
feasible tasks 60 /
sets 2 /
20 /
0

4 36 32 28 24 2 16 12 08 04

Evolution of U

Figure 7 Pfair feasibility according to U for 4 processors

i=n
existence of a Pfair schedule if CH = g? < m. Then we have presented sim-
=1
ulation results, which illustrate the soundness of our sufficient conditions. These
simulations show that if C' H increases from m, the rate of Pfair feasible systems

decreases quickly. We also present some results about the incidence of the utilisa-

=n
tion factor U = % We speculate about the existence of a lower bound for U,
i=1 '
which can be used for any periodic task set.

Future investigations will concentrate on the one hand on refinements of our suf-
ficient condition and of the bound for either CH or U, and on the other hand on
the cyclicity properties of Pfair schedules for systems with late released tasks, and
on the date of the beginning of the steady state.
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