
Pfairness for late released tasks, with
onstrained deadlinesSadouanouan Malo*1;2, AnnieChoquet-Geniet1 and MoustaphaBikienga21University of Poitiers. Laboratory of Applied Computer S
ien
e1 Av. Cl�ement Ader BP 40109-86961 Futuros
ope Chasseneuil-Fran
e2Polyte
hni
 University of Bobo Dioulasso.Information Te
hnologyHigh S
hool.01 BP 1091 Bobo Dioulasso 01E-mail: sadouanouan.malo�ensma.fr, annie.geniet�univ-poitiers.fr,bmoustaph�yahoo.fr* Corresponding authorAbstra
t: Pfair s
heduling has usually been applied in the
ontextof syn
hronous periodi
 task systems with impli
it deadlines. This pa-per addresses the problem of s
heduling asyn
hronous hard real-timetasks with
onstrained deadlines using a Pfair strategy on multipro
es-sor systems. First, we extend the notion of Pfairness to the
ontextof asyn
hronous tasks with
onstrained deadline. Then we investigatefeasibility
onditions, we propose a rather eÆ
ient one and we illustratethe relevan
e of our
riteria through some simulations.Keywords: S
heduling - Fairness - Pfair feasibility1 Introdu
tionMultipro
essor systems,
hara
terized by their performan
e and reliability, haveevolved to be powerful
omputing platforms widely used in many real-time appli-
ations. In this paper we
onsider global s
heduling of hard real-time tasks andwe assume that preemption and interpro
essor migration are permitted and paral-lelism forbidden (at any time, a task
an run on at most one pro
essor).In this
ontext, it has been shown that no on-line s
heduling algorithm
an beoptimal Mok and Dertouzos (1978); Dertouzos and Mok (1989). Baruah et al.(1995, 1996) proved that the problem of optimally s
heduling syn
hronous peri-odi
 tasks with impli
it deadlines on identi
al multipro
essor platforms
ould besolved at run-time in polynomial time using Pfair s
heduling algorithms. UnderPfair, ea
h periodi
 task is required to progress at steady rate. Ea
h task is as-signed a weight
orresponding to its utilisation fa
tor that represents the part ofthe a
tivity of pro
essors dedi
ated to this task. Be
ause of their eÆ
ien
y (PfairCopyright

 200x Inders
ien
e Enterprises Ltd.

2 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha Bikiengastrategies are optimal) and be
ause they are of interest for e.g. multimedia appli-
ations, Pfair s
heduling algorithms have been widely investigated last years An-derson et al. (2000, 2004); A.Srinivasan et al. (2003). In all these works, the notionof Pfairness is de�ned in the
ontext of syn
hronous tasks with impli
it deadlines.In Anderson et al. (2004); Devi and Anderson (2005), asyn
hronous systems are
onsidered, where asyn
hronism means that some of the �rst task slots do not takepla
e. But the �rst job of any task is still assumed to be released at time 0. InAnderson et al. (2000), sporadi
 tasks are
onsidered: periods
orrespond only tothe minimum elapsed time between two
onse
utive releases. They introdu
e theintra-sporadi
 model, where the release time of ea
h task slot
an be
hosen. We
onsider here a slightly di�erent notion of asyn
hronism: the �rst release times ofthe di�erent tasks, i.e. the release time of the �rst task slot, are no more assumed tobe equal. But all the task slots are assumed to o

ur, and their release times
annotbe
hosen arbitrarily . To shift a task may e.g. be useful in order to take somepre
eden
e relations into a

ount. Furthermore, requiring tasks to have periodsequal to deadlines restri
ts the appli
ation of Pfairness in pra
ti
e. The problemof s
heduling tasks with arbitrary deadlines in a Pfair way on multipro
essors hasbeen addressed in Ramamurthy (2002) and a stati
-priority s
heme to s
hedule aset of su
h tasks has been presented. In this paper we investigate extension ofPfairness in order to design Pfair s
heduling s
hemes for asyn
hronous tasks withdeadlines less than or equal to periods. As far as we know, others approa
hes don'tjointly
onsider asyn
hronous tasks and
onstrained deadlines. We �rst extend andadapt Pfairness de�nition to this new
ontext and then we propose a feasibility
ondition. Sin
e there exists no optimal strategy in this general
ase, we
annotpropose a ne
essary and suÆ
ient
ondition. We propose here only a suÆ
ient butrather e�e
tive
ondition and then we present some simulation results.The remainder of the paper is organized as follows. In se
tion 2 we formally de�nethe Pfair multipro
essor s
heduling problem. In se
tion 3 we prove that Pfair algo-rithm exists for any periodi
 task set and we give suÆ
ient feasibility
onditions.In se
tion 4 we present the simulations results. Con
lusions and perspe
tives aregiven se
tion 5.2 Pfair s
hedulingIn this se
tion we present Pfair s
heduling for syn
hronous tasks with impli
itdeadlines. We adopt the following notations: for any real number x, bx
 is theinteger immediately below or equal to x and dxe is the integer immediately aboveor equal to x.In the further, slot t denotes the time interval [t, t+1). We assume that pro
essorsare allo
ated for integral number of slots, thus a task
annot be preempted withina slot.2.1 Basi
 de�nitionsWe use the
lassi
al task model.De�nition 1. A task �i =< ri; Ci; Di; Ti > is
hara
terized by four parameters: its

Pfairness for late released tasks, with
onstrained deadlines 3�rst release time ri, its per period worst
ase exe
ution time Ci, its relative deadlineDi and its period Ti.The weight of task �i is Ui = CiTi and its density is CHi = CiDi .We have ri � 0 and we assume that Ci, Di and Ti are integral and verifyCi � Di � Ti. Thus we have 0 < Ui � 1. In this se
tion we
onsider a set � oftasks su
h that ri = 0 and Di = Ti.De�nition 2. A m-pro
essor s
hedule for a task set � is a fun
tion S : � � N !f0; 1g, su
h that 8t 2 N : P�i2�S(�i; t) � m with S(�i; t) = 1 if task �i is s
heduledin slot [t; t+ 1) and S(�i; t) = 0 else.For the remainder of the paper, we simply use s
hedule to denote an m-pro
essors
hedule of �. A fair s
hedule is approximately an ideal
uid s
hedule su
h that,at any time t, ea
h task has been pro
essed for !i(t) = Ui � t pro
essor timeunits. Now, sin
e pro
essor time is allo
ated in integral number of slots, the idealbehaviour is approximated by either the integer dire
tly above or dire
tly beyond.The deviation from this
uid s
hedule is formally
aptured by the
on
ept of lag.The lag of a task �i at time t in a s
hedule S is given by lag(S; �i; t) = !i(t) �j=t�1Pj=0 S(�i; t). A s
hedule S is said to be Pfair i�8�i; t : �i 2 �; t 2 N;�1 < lag(�i; t) < 1Informally, the allo
ation error asso
iated with ea
h task must always be less thanone slot. This
ondition
an be graphi
ally interpreted in the following way: fromideal CPU servi
e of the task de�ned by ideal(t) = Ui � t, we draw two limit linesde�ned byW+(t) = Ui�t+1 andW� = Ui�t�1. Then, the broken line representingthe a
tual CPU servi
e of the task must remain stri
tly between both limit lines(see �gure 1).

Figure 1 Pfair and non Pfair behaviours2.2 SubtasksFor implementation reasons, ea
h task �i is split into series of quantum-lengthsubtasks (i.e. with exe
ution time equal to one slot). The jth subtask (j � 0) of

4 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha Bikiengatask �i is denoted � ji . Ea
h subtask � ji has a pseudo-release time rji and a pseudo-deadline dji , dedu
ed from the lag inequations: rji = j jUi k and dji = l j+1Ui m. � jimust be s
heduled in the interval Iji = [rjl ; dji),
alled its feasibility window.Note that rj+1i is either dji � 1 or dji . Thus, two
onse
utive windows of the sametask either overlap by one slot or are disjoint . Consider as an example the task�i =< 0; 3; 5; 5 >. It is split ea
h period into 3 subtasks. For the �rst period,�0i must be s
heduled within the time interval [0; 2),�1i within [1; 4) and �2i within[3; 5). Feasibility windows of the six �rst subtasks (two �rst periods of the task)are depi
ted in �gure 2. We present a possible Pfair exe
ution. We noti
e that the
urve of the a
tual CPU servi
e of the task is e�e
tively lo
ated between the limitlines. In the �rst period of a
tivity, the task is s
heduled at times 0, 2 and 3.

Figure 2 A Pfair s
hedule for task < 0; 3; 5; 5 > - Feasibility windows2.3 Pfair strategyPfair algorithm has the following high-level stru
ture: at ea
h time t � 0,a dynami
 priority is assigned to ea
h task and the m highest-priority tasks ares
heduled in slot t. The priorities rely on fairness. With respe
t to a Pfair s
heduleS at time t, we say that task �i is ahead if the task has been pro
essed a little bitmore than in the ideal
ase (lag(S; �i; t) < 0), behind if it has been pro
essed alittle bit less than in the ideal
ase (lag(S; �i; t) > 0) and pun
tual if it has beenpro
essed exa
tly as in the ideal
ase (see �gure 1). At any time t, Pfair strategiessplit tasks into three
ategories:� A Urgent task is a task whi
h is behind and whi
h would be late if it werenot pro
essed at this time. Su
h a task must be pro
essed at time t, else thePfairness
ondition would be violated,� a Tnegru task is ahead and would be in advan
e if it were pro
essed at thistime. Su
h a task must not be pro
essed at time t, else the Pfairness
onditionwould be violated,

Pfairness for late released tasks, with
onstrained deadlines 5� a Contending task is neither Urgent, nor Tnegru. The Pfairness will neitherbe violated if it is pro
essed nor if it is not.Pfair algorithms
an be summarized as follows:1. All urgent tasks are s
heduled.2. Contending tasks are sorted.3. The remaining pro
essors are allo
ated to the highest-priority
ontendingtasks.Three Pfair s
heduling algorithms are known to be optimal on an arbitrary numberof pro
essors: PF, PD and PD2 Baruah et al. (1996, 1995); Anderson et al. (2000,2004). These algorithms di�er in the
hoi
e of tie-breaking rules. One tie-breakparameter that is
ommon to all three algorithms is the su

essor bit, whi
h isde�ned as follows: b(� ji) = bji = dji � rj+1i = l lUi m � j lUi k. The su

essor bit of asub-task is equal to 1 if it feasibility window overlaps the feasibility window of thenext sub-task, and is equal to 0 if both windows are disjoint.We present here the PF algorithm. Tasks are split into unitary subtasks whi
h areprioritized as follows: at time t, if subtasks �ui and �vj are both ready, then �ui hashigher priority than �vj , denoted �ui � �vj if one of the following
ondition holds:(i) dui < dvj .(ii) dui = dvj and bui > bvj .(iii) dui = dvj , bui = bvj = 1, and �u+1i � �v+1j .If neither subtask has priority over the other, then tie
an be broken arbitrarily.At the beginning of ea
h slot, the m highest priority subtasks are sele
ted to runin that slot. In the remainder of the paper, we will
onsider the algorithm PF toillustrate our results.2.4 FeasibilityAs mentioned, Pfair s
heduling is very eÆ
ient. Furthermore, there exists avery simple
hara
terization of feasible task sets. This is stated by the followingtheorem Baruah et al. (1996); Anderson et al. (2004).Theorem 1. The algorithms PF, PD and PD2 are optimal for systems of syn-
hronous independent tasks with impli
it deadlines. Moreover, a syn
hronous peri-odi
 task set with impli
it deadlines � has a Pfair s
hedule on m pro
essors if andonly if P�i2� CiTi � m.3 Extension of PfairnessOur aim is now to get rid of the restri
tive assumptions on task sets. In thispaper we want to prove that fairness
an be extended to all independent periodi
task sets. We have �rst
arried out some simulations. For that purpose we have�rst developed a Pfair s
heduling simulator
omposed of two parts: a real-timetask generator and a multipro
essor s
heduler. The number of pro
essors is not

6 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha Bikiengalimited and generated task sets are su
h that i=nPi=1 CiTi � m. The s
heduler implementsthe algorithm PF. Results of our simulations are summarized in se
tion 4. Thesesimulations lead to two establishments: �rstly, if deadlines less than or equal toperiods are
onsidered, if i=nPi=1 CiDi � m, the task set is feasible on m pro
essors andse
ondly if asyn
hronous tasks with impli
it deadlines are
onsidered, Baruah's
ondition still holds. This leads us to infer the following result:Theorem 2. Given a periodi
 task set �, if i=nPi=1 CiDi � m then � has a valid Pfairs
hedule on m pro
essors over any time interval [0; t).Before we prove the theorem, we �rst extend the notion of Pfairness. We
onsider periodi
 task sets su
h that, if � is a task set, then 8�i 2 �, �i =<ri; Ci; Di; Ti > with ri � 0 and Di � Ti. T denotes the hyperperiod of thetask set, de�ned as T = LCM(Ti)�i2�. Pfairness is extended in the following way:in an ideal s
hedule of a periodi
 task set, ea
h task �i must have re
eived at timet, !i(t) pro
essor time units (see �gure 3). !i(t) is su
h that:!i(t) = 8>>>>>>>><>>>>>>>>:
0 if t 2 [0; ri)k � Ci + CiDi � (t� k � Ti � ri) ift 2 [k � Ti + ri; k � Ti +Di + ri)(k + 1) � Ciif t 2 [k � Ti +Di + ri; (k + 1) � Ti + ri):where k = j tTi k represents the instan
e number of the pending instan
e of the task.A s
hedule S is then Pfair if and only if 8�i 2 �;8t 2 N : �1 < lag(S; �i; t) < 1where lag(S; �i; t) = !i(t)� j=t�1Pj=0 S(�i; j). We also rede�ne the feasibility windowsof a task. There is no window within idle periods, and we de�ne the jth window asIji = [rji ;ji) with rji = ri + k � Ti + j j�k:CiCHi k and dji = ri + k:Ti + l j+1�k:CiCHi mThe proof of the theorem we give is an adaptation of the proof presented inBaruah et al. (1996) to prove theorem 1 for PF. It is based on graph theory.We prove that a Pfair s
hedule exists on any time interval [0; L). In the further,CTR�i(t) denotes the
omplete pro
essor demand of all sub-tasks of task �i whosefeasibility intervals are in
luded in [0; t℄. Thus, CTR�i(t) is equal to j where j issu
h that dji � t < dj+1i . We �rst de�ne a weighted digraph G and prove thatif G has an integral
ow of size P�i2� CTR�i(L) then the task set � has a Pfairs
hedule.De�nition 3. The Pfair-graph is the weighted digraph G(L) is de�ned as G(L) =(V;E) with:V = V0 [V1 [V2 [V3 [V4 [V5 and E = E0 [E1 [E2 [E3 [E4V0 = f< sour
e >gV1 = f< 1; �i >; �i 2 �g

Pfairness for late released tasks, with
onstrained deadlines 7

Figure 3 Ideal progression of allo
ated CPU time for a late released task with
on-strained deadline - Idle periodsV2 = f< 2; �i0; 0 >; i = 1::n s.t. ri > 0g [f< 2; � ji >; (i; j) s.t. i = 1::n; j 2 [0; CTR�i(L))g [f< 2; �i0; j >; (i; j) s.t. i =1::n; j 2 [1; jL�riTi k℄gV3 = f< 3; �i0; t >; (i; t) s.t. i = 1::n; t 2 [0; ri)g [f< 3; �i; t >; (i; t) s.t. i = 1::n; t 2 [k:Ti+ri; k:Ti+ri+Di); with 1 � k � jL�riTi kg [f< 3; �i0; t >; (i; t) s.t. i = 1::n; t 2 [k:Ti +Di; (k + 1):Ti) with 1 � k � jL�riTi kgV4 = f< 4; t >; t 2 [0; L)gV5 = f< sink >g.Edges and
apa
ities are de�ned by:E0 = f(< sour
e >;< 1; �i >;CTR�i(L)); i = 1::ngE1 = f(< 1; �i >;< 2; �i0; 0 >; 0); i = 1::n s.t. ri > 0g [f(< 1; �i >;< 2; � ji >; 1); j 2 [0; CTR�i(L))g [f(< 1; �i >;< 2; �i0; j >; 0); (i; j) s.t. i = 1::n; j 2 h1; jL�riTi kigE2 = f(< 2; �i0; 0 >;< 3; �i0; t >; 0); (i; t) s.t. i = 1::n; t 2 [0; ri)g [f(< 2; � ji >;< 3; �i; t >; 1); (i; j; t) s.t. i = 1::nj 2 [0; CTR�i(L)); t 2 [rji ; dji)g [f(< 2; �i0; j >;< 3; �i; t >; 0)(i; j; t) s.t. i = 1::n; j 2 [1; hL�riTi i ; t 2 [k:Ti + ri +Di; (k + 1):Ti + ri) with 1 � k � jL�riTi k℄tgE3 = f(< 3; �i0; t >;< 4; t >; 0); t 2 [0; ri)g [f(< 3; �i; t >;< 4; t >; 1); t 2 [k:Ti + ri; k:Ti + ri + Di) with 1 � k � jL�riTi kg [f(< 3; �i0; t >;< 4; t >; 0); (i; t) s.t. i = 1::n; t 2 [k:Ti + ri + Di; (k + 1):Ti) with1 � k � jL�riTi kg.E4 = f(< 4; t >;< sink >;m); t 2 [0; L)g.As an example,
onsider the syn
hronous task set � with
onstrained deadlines
omposed of two tasks: � = f< 0; 3; 5; 8 >;< 0; 2; 3; 4 >g. We
hose a syn
hronoustask set in order to easily represent the Pfair-graph. Indeed, be
ause of the
y
li
ityproperty of syn
hronous task systems, we just have to study the time interval [0; 8℄.Figure 4 gives the resulting Pfair-graph. The intuition behind the stru
ture of thegraph G is the following.V1
ontains one node for ea
h task �i and the
apa
ity of the edge from the sour
e

8 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha Bikienga

Figure 4 Pfair-graph G(8) for the task system � = f< 0; 3; 5; 8 >;< 0; 2; 3; 4 >gto this node
orresponds to the global pro
essor demand of the task within theinterval [0; L).V2
ontains one node for ea
h sub-task, one node for ea
h before release period (forlate released tasks) , and one node for ea
h idle periods within [0; L℄. Ea
h of thesenodes is linked to the node of V1
orresponding to its parent task.V3
ontains one node for ea
h before release time unit, one node for ea
h task and forea
h time unit between release and deadline of ea
h instan
e, and one node for ea
htime unit of ea
h idle period. Then ea
h before release node of V2 is linked to ea
hbefore release node of V3, ea
h sub-task node is linked to the node
orrespondingto time units lo
ated within its feasibility window, and ea
h idle period node of V2is linked to ea
h idle period node of V3
orresponding to time units lo
ated in the
orresponding idle period.Finally, V4
ontains one node for ea
h time unit within the time interval [0; L),whi
h is linked to ea
h node of V3
orresponding to the same time unit.In order to prove the theorem, we �rst establish the following lemma.Lemma 1. If the Pfair-graph G(L) has an integral
ow of size P�i2�CTR�i(L),then � has a Pfair s
hedule on [0; L).Proof - Let us assume that su
h an integral
ow exists. We �rst de�ne as
hedule SG dedu
ed from the Pfair -graph as:De�nition 4. Let f be an integral
ow of size nPi=1CTR�i(L) of G, we de�ne SGas follows. For �i 2 �, t 2 N,SG(�i; t) = 8>><>>: 1 if t 2 [0; L) ^ (9j 2 [0; CTRi(L)) ::f((< 2; � ji >;< 3; �i; t >; 1)) = 10 otherwiseWe show that SG is Pfair over the time interval [0; L). The size of the
owis nPi=1CTR�i(L) thus ea
h node of V1 is �lled to
apa
ity, i.e. the
ow
arried byea
h link from sour
e to < 1; �i > is equal to CTR�i(L). Ea
h node in V1 hasexa
tly CTR�i(L) outgoing edges of
apa
ity 1, the other outgoing edges have a

Pfairness for late released tasks, with
onstrained deadlines 9null
apa
ity thus they re
eive a
ow equal to 0. Thus ea
h node < 2; � ji > of V2re
eives a
ow equal to 1. Then, ea
h node < 2; � ji > has one single outgoing edgewhi
h
arries a
ow equal to 1, the other outgoing edges
arry a
ow equal to 0.Now, ea
h node of V3 has exa
tly one outgoing edge. This edge
arries a
ow equalto the
ow
arried by its in
oming edge. In the same way, the nodes in V4 have onesingle outgoing edge, whi
h
arries the
umulated
ow
arried by their in
omingedges. Sin
e the
apa
ity of this outgoing edge is m, at most m in
oming edges
arry a
ow equal to 1. Thus at mostm sub-tasks are pro
essed. Now, the potentialexists for a task �i to get s
heduled twi
e at the same time (if rji = dj�1i � 1). Butsin
e the edge from < 3; �i; t > to < 4; t > has a
apa
ity equal to 1, this situation isavoided: if this edge
arries a
ow equal to 1, only one in
oming edge
arries a non-null
ow. Thus two di�erent pro
essed sub-tasks
annot belong to the same task.Thus at any time t in [0; L), there exists at most m tasks su
h that SG(�i; t) = 1.Furthermore, f((< 2; � ji >;< 3; �i; t >; 1)) = 1 implies that rji � t < dji thus,ea
h pro
essed sub-task is pro
essed in its feasibility window. Finally, ea
h sub-task is e�e
tively pro
essed. Indeed, there exists nPi=1CTR�i(L) sub-tasks in [0; L).Following the de�nition of SG, the number of pro
essed sub-tasks is equal to theglobal in
oming
ow of verti
es of V3. And the global input
ow of V3 is
onstant,equal to nPi=1CTR�i(L) by de�nition of the
ow. Thus ea
h sub-task is pro
essed.The s
hedule SG is thus Pfair on [0; L). �We now prove the existen
e of an integer
ow of size nPi=1CTR�i(L). We use thefollowing
ow assignments:De�nition 5. Let f be the
ow de�ned as:� f((< sour
e >;< 1; �i >;CTR�i(L))) = CTR�i(L)� B f((< 1; �i >;< 2; �i0; 0 >; 0)) = 0B f((< 1; �i >;< 2; � ji >; 1)) = 1B f((< 1; �i >;< 2; �i0; j >; 0)) = 0� B f((< 2; �i0; 0 >;< 3; �i0; t >; 0)) = 0Bf((< 2; �i0; j >;< 3; �i0; t >; 0)) = 0B? f((< 2; � ji >;< 3; �i; rji >; 1)) =CHi � (j � rji :CHi)? f((< 2; � ji >;< 3; �i; dji � 1 >; 1)) =(J + 1)� rj+1i :CHi if dji � 1 = rj+1i? Otherwise f((< 2; � ji >;< 3; �i; t >; 1)) = CHi� B f((< 3; �i0; t >;< 4; t >; 0)) = 0Bf((< 3; �i; t >;< 4; t >; 1)) = CHi� f((< 4; t >;< sink >;m)) = P�i 2 �s.t.ri + k:Pi � t < ri + k:Pi +Di CHiLemma 2. f is a
ow of size P�i2� CTR�i(L) of G(L)

10 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha BikiengaWe �rst prove that the
apa
ity
onstraints are met. Edges in E0, E1 are �lled to
apa
ity, and edges in E3
arry
ows either equal to 0 or to the density CHi whi
h isless than or equal to 1, thus
apa
ity
onstraints are met. If an edge in E4 is
onsid-ered, it
arries a
ow P�i 2 �s.t.ri + k:Pi � t < ri + k:Pi +Di CHi �P�i2� CHi, now byassumption we haveP�i2� CHi � m, so the
apa
ity
onstraint is met. Finally, foredges in E2, we must prove that CHi�(j�rji :CHi) � 1 and (j+1)�rj+1i :CHi � 1if dji � 1 = rj+1i . We have rji = b jCHi
 thus jCHi � 1 < rji � jCHi thu s�CHi <rji :CHi � j � 0 thus 0 < CHi � (j � rji :CHi) � CHi � 1. We prove that(j + 1) � rj+1i :CHi � 1 using similar arguments. Thus
apa
ity
onstraints areall met. We must then show that the
ow is preserved at every inner vertex. Fornull
apa
ity nodes, the
ow is
learly preserved. For any node < 1; �i > of V1,the in
oming
ow is CTR�i(L), and the outgoing
ow is equal to the number ofsub-tasks sin
e edges are �lled to
apa
ity, thus the outgoing
ow is CTR�i(L)too. Ea
h vertex < 2; � ji > has an in
oming
ow of 1. Ea
h vertex < 2; � ji >has dji � rji outgoing edges. Then the
ow out of < 2; �ij > is, if dji � 1 = rj+1i ,CHi�(j�rji :CHi)+CHi:(dji�rji�2)+(j+1)�rj+1i :CHi whi
h simpli�es to 1. Oth-erwise, we have dji�1 6= rj+1i thus d J+1CHi e�1 6= b j+1CHi
 whi
h means that j+1CHi is inte-gral thus dji = j+1CHi . Now, the
ow out is CHi�(j�rji :CHi)+CHi:(dji�rji�1) whi
hthen simpli�es to 1. There is only one outgoing edge leaving any vertex < 3; �i; t >of V3, whi
h
arries a
ow equal to CHi. If dji �1 = rj+1i , then there are two in
om-ing edges whi
h
arry a
ow of size (j+1)�rj+1i :CHi+CHi�((j+1)�rj+1i :CHi) =CHi. Otherwise there is only one in
oming edge whi
h
arries a
ow equal to CHi.We
onsider �nally a vertex < 4; t > of V4. Its in
oming edges with non zero
a-pa
ity are edges (< 3; �i; t >;< 4; t >; 1) with ri + k:Pi � t < ri + k:Pi +Di. Thusthe in
oming
ow is P�i 2 �s.t.ri + k:Pi � t < ri + k:Pi +Di CHi, whi
h is thus equal byde�nition to the
ow of the unique outgoing edge. Thus, we proved that the
owis preserved at any inner node. Thus f is a
ow of size P�i2� CTR�i(L). �We
an now
omplete the proof of theorem 2. Lemma 2 implies the existen
eof a fra
tional
ow of size P�i2� CTR�i(L) for the Pfair-graph G(L) = (V;E).Sin
e
apa
ities are integral, this implies the existen
e of an integral
ow of sizeP�i2� CTR�i(L) in G(L) Jr and Fulkerson (1962). Then Lemma 1 proves that aPfair s
hedule
an be
onstru
ted. This proves theorem 2. �
Then we extend the algorithm PF to periodi
 task sets (ri � 0; Di � Ti). Here,a task
an be Urgent, Tnegru or Contending if t 2 [k:Ti+ri; k:Ti+ri+Di) and isIdle if t < ri or t 2 [k:Ti+ri+Di; (k+1):Ti). The extension is then straightforward:at ea
h time t, Urgent tasks are s
heduled, Contending tasks are sorted and the�rst of them are allo
ated to the remaining pro
essors.

Pfairness for late released tasks, with
onstrained deadlines 11Number ofpro
essors 2 3 4 5 6 %Number ofsystems 1000 1000 1000 1000 10000 � t0 �max(ri) 0 0 0 0 0 0t0 = max(ri) 852 741 721 689 705 74.16max(ri) <t0 �max(ri) + P 148 259 279 311 295 25.84t0 >max(ri) + P 0 0 0 0 0 0Table 1 Simulation results about
y
li
ity - t0 is the date of the beginning of the steadystate.4 Simulation resultsFor periodi
 task sets, we have proposed a suÆ
ient feasibility
ondition: thereexists a valid Pfair s
hedule on m pro
essors for every task set su
h that CH =i=nPi=1 CiDi � m. The next point of interest is to determine whether this
ondition iseÆ
ient. We thus investigate the soundness of our bound. For that purpose, wehave
arried out some simulations. We have �rst implemented a task set simulatorand a s
heduler based on our extension of PF. We have then generated task setswith di�erent values of either U = i=nPi=1 CiTi or CH = i=nPi=1 CiDi . And we estimatethe ratio of feasible sets among them. We present hereafter the di�erent steps ofsimulations.4.1 The task set generatorWe must experiment PF on a signi�
ant number of task sets. Thus, we needto generate di�erent samples of task sets. The generator generates randomly taskparameters. In order to limit the s
heduling step, we generate periods a

ording toGoossens methodology Ma
q and Goossens (2001), whi
h permits to get a boundfor the hyperperiod (the LCM of the task periods). For our simulations the upperbound of hyperperiods is set to 210. O�sets,
onstrained deadlines and WCETare
hosen uniformly within respe
tively the intervals [0; Ti℄, [1; Ti℄ and [1; Di � 1℄.4.2 The s
hedulerThe s
heduler produ
es the PF s
hedule a

ording to our adapted PF poli
y,over a given time interval. An important point was to determine the time intervalthat must be used. For syn
hronous task sets, the length of the s
hedule generatedis one hyperperiod. For asyn
hronous task sets, we don't have enough resultson the
y
li
ity in this
ontext. For unipro
essor systems, it has been shown in

12 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha BikiengaTasks set Model U � m CH � m CH > mri = 0 Di = Ti N =100%ri = 0 Di � Ti 0 < N <100% N =100% 0 < N <100%ri � 0 Di = Ti N =100%ri � 0 Di � Ti 0 < N <100% N =100% 0 < N <100%Table 2 Global results of simulations - N is the ratio of Pfair-feasible task sets withinthe
onsidered sampleChoquet-Geniet and Grolleau (2004) that the steady state starts no later thanmax frigi=1::n + T . For multipro
essor systems and for any preemptive and �xedpriorities s
heduling, in Cu
u and Goossens (2007), the authors show that thesteady state begins before at Sn where T denotes the hyperperiod and Si is de�nedindu
tively by:� S1 = r1� Si = maxnri; ri + lSi�1�riTi m :Tio 8i 2 f2; 3; :::ng.In Choquet-Geniet and Malo (2009), an algorithmi

hara
terization of the be-ginning of the steady state is investigated for work-
onserving strategies. At ourknowledge, there is no result on the date of beginning of the steady state for Pfairs
heduling strategies. We thus have
arried out simulations until dete
tion of thesteady state. In our
ontext, for all simulations, the steady state has started beforemax frigi=1:::n+T . Thus, all simulations have been
arried out over a time intervalin
luded in [0;max frigi=1:::n + 2 � T). Table 1 summarizes our simulation resultson
y
li
ity for a Pfair s
heduling strategy.4.3 SimulationsWe have
onsidered 8
ases. The results we got are summarized in table 2,missing values
orrespond to not investigated
ases. Task sets
an be syn
hronousor asyn
hronous, with impli
it or
onstrained deadlines. They are
hara
terized byeither U � m or CH � m or CH > m. For ea
h
ase, we have generated a sampleof 5000 tasks sets for simulations. As expe
ted, we �nd a Pfair feasibility rate of100% for systems with impli
it deadlines: for syn
hronous systems, it
orrespondsto Baruahs theorem (theorem 1), and for asyn
hronous systems, it
omes from ourresult (theorem 2). For the other
ases, we
on
lude that:1. For
onstrained task sets, U � m is no more a suÆ
ient
ondition, sin
e thereexists Pfair unfeasible task sets with a utilization fa
tor less than m.2. For
onstrained task sets, CH � m is not a ne
essary
ondition sin
e thereexist Pfair feasible task sets with CH > m.

Pfairness for late released tasks, with
onstrained deadlines 13
Figure 5 Pfair feasibility rate a

ording to CH for 2,3,4 pro
essorsThen we re�ned our simulations in order to determine the in
iden
e of U or CHon Pfair feasibility. On �gure 5 , we have
onsidered systems of 2,3 or 4 pro
essors.For ea
h
ase, we generate samples for di�erent values of CH between m and m+1,namely CH = m+ k10 (0 � k � 10). For ea
h value of CH , we again determine theratio of Pfair feasible task sets. We
an see that this rate de
reases rather qui
klywhen CH in
reases. If CH remains
lose to m, the rate of valid system remainshigh, but the slope of the
urve is high and
onsequently the rate be
omes verysmall if CH approa
hes m+1. We
an
on
lude from these results that our boundis rather good in the sense that only few systems reje
ted by our test are in fa
tPfair feasible.We also investigate the
orrelation between U and the Pfair feasibility (see �gure 6and 7). We
onsider systems with 3 or 4 pro
essors, and syn
hronous task systemswith
onstraint deadlines. We see that if U is
lose to m, then quite no systemsare Pfair feasible. But if U is less then m2 , we have 100% of Pfair feasible systems.Further investigations must be done here.

0

20

40

60

80

100

120

3 2,7 2,4 2,1 1,8 1,5 1,2 0,9 0,6 0,3

rate (%) of
feasible tasks

sets

Evolution of U

feasibility for m=3 processors

Figure 6 Pfair feasibility a

ording to U for 3 pro
essors for syn
hronous task systemswith
onstraint deadlines5 Con
lusionsWe have extended Pfairness to any set of periodi
 independent task set. Wehave
onsidered as well late released tasks as
onstraint deadlines. We have pro-posed a suÆ
ient
ondition and given an adapted version of PF. We proved the

14 Sadouanouan Malo, Annie Choquet-Geniet, Moustapha Bikienga
0

20

40

60

80

100

120

4 3,6 3,2 2,8 2,4 2 1,6 1,2 0,8 0,4

rate (%) of
feasible tasks

sets

Evolution of U

feasibility for m=4 processors

Figure 7 Pfair feasibility a

ording to U for 4 pro
essorsexisten
e of a Pfair s
hedule if CH = i=nPi=1 CiDi � m. Then we have presented sim-ulation results, whi
h illustrate the soundness of our suÆ
ient
onditions. Thesesimulations show that if CH in
reases from m, the rate of Pfair feasible systemsde
reases qui
kly. We also present some results about the in
iden
e of the utilisa-tion fa
tor U = i=nPi=1 CiTi . We spe
ulate about the existen
e of a lower bound for U ,whi
h
an be used for any periodi
 task set.Future investigations will
on
entrate on the one hand on re�nements of our suf-�
ient
ondition and of the bound for either CH or U , and on the other hand onthe
y
li
ity properties of Pfair s
hedules for systems with late released tasks, andon the date of the beginning of the steady state.Referen
esAnderson, J., Blo
k, A., and Srinivasan, A. (2000). Pfair s
heduling : Beyondperiodi
 task sytems. In Pro
eedings of the 12th Euromi
ro Conferen
e on Real-Time Systems, pages 35{43. Chapman and Hall.Anderson, J., Holman, P., and Srinivasan, A. (2004). Fair s
heduling of real timetasks on multipro
essors. Handbook of s
heduling : Algorithms, Models and Per-forman
e analysis, pages 31.1{31.21.A.Srinivasan, Holman, P., Anderson, J., and Baruah, S. (2003). The
ase forfair multipro
essor s
heduling. Parallel and Distributed Pro
essing Symposium,International, 0.Baruah, S., Cohen, N., Plaxton, C., and Varvel, D. (1996). Proportionate progress: a notion of fairness in resour
e allo
ation. Algorithmi
a, 15:600{625.Baruah, S., Gehrke, J., and Plaxton, C. (1995). Fast s
heduling of periodi
 taskson multiple resour
es. In Pro
eedings of the 9th International Parallel Pro
essingSymposium, pages 280{288.

Pfairness for late released tasks, with
onstrained deadlines 15Choquet-Geniet, A. and Grolleau, E. (2004). Minimal s
hedulability interval forreal time systems of periodi
 tasks with o�sets. Theoreti
al of Computer S
ien
e,pages 117{134.Choquet-Geniet, A. and Malo, S. (2009). Finding
y
li
ity behavior in multipro-
essor s
heduling. Te
hni
al report, LISI - ENSMA and University of Poitiers.Cu
u, L. and Goossens, J. (2007). Feasibility intervals for multipro
essor �xed-priority s
heduling of arbitrary deadline periodi
 systems. In Design, Automationand Test in Europe, pages 1635{1640. IEEE Computer So
iety.Dertouzos, M. and Mok, A. (1989). Multipro
essor s
heduling in hard real-timeenvironment. IEEE transa
tions on sofware Engineering, 15(12):1497{1506.Devi, U. and Anderson, J. (2005). Desyn
hronized pfair s
heduling on multipro-
essors. Parallel and Distributed Pro
essing Symposium, International, 1.Jr, L. F. and Fulkerson, D. (1962). Flows in networks. Prin
eton University Press.Ma
q, C. and Goossens, J. (2001). Limitation of the hyper-period in real-timeperiodi
 task set generation. In Teknea, editor, Pro
eedings of the 9th inter-national
onferen
e on real-time systems, pages 133{148, Paris Fran
e. ISBN2-87717-078-0.Mok, A. and Dertouzos, M. (1978). Multi pro
essor s
heduling in a hard real-timeenvironment. In Pro
. of 7th Texas Conferen
e on Computer Systems.Ramamurthy, S. (2002). S
heduling periodi
 hard real-time tasks with arbitrarydeadlines on multipro
essors. In IEEE Real-Time Systems Symposium.

