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In this paper, we focus on the use of discrete geometry for the sake of real-time modeling and analysis. We
consider multiprocessor context and task sets with offsets, constrained deadlines and critical resources.
We want to take regularity criteria into account during the scheduling process. We thus determine the
geometrical characterisation of PFair schedules and present the construction steps of a geometric Pfair
model. Several uses of this model are then presented: we can select (partially) PFair schedules. We have
also defined a PFairness comparison criterion and we use it to choose among a set of feasible schedules the

most PFair ones.
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1. INTRODUCTION

A real-time application must satisfy the time
constraints coming from the criticity of certain actions
that allow them to interact with the environment of the
monitored process. Additional qualitative contraints
which insure a good quality of service can also
be considered. If the strict time constraints are not
satisfied, dysfunctions may occur, which can have
unacceptable consequences (e.g. loss of human
lives). If the qualitative constraints are not satisfied,
the behaviour of the controlled process will have a
lower quality.

We are here interested in real-time applications
dedicated to the control of processes, with strict
time constraints, and regularity requirements in the
execution. These requirements are captured by the
PFairness property. A real-time application must thus
be functionally as well as temporally validated. We
focus here on the temporal validation, which relies
on an appropriate scheduling policy, that can then
be proved to respect all temporal constraints. Two
approaches can be considered: the on-line method
where a scheduling policy is implemented within
the scheduler and the off-line method where a
previously computed schedule is stored in a table
and then used by a dispatcher. Classically, real-
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Figure 1: Global scheduling

time applications dedicated to process control are
modeled as a set of periodic tasks e.g. temperature
acquisition in a nuclear station, robot’s trajectory
computation, processing of information provided
by a synchronous link.... Tasks are preemptive,
and can share critical resources. We assume that
the application runs on a multiprocessor platform
composed of m identical processors. We consider
only global scheduling (figure 1): tasks can run
at any time on any processor, they are never
definitively assigned to a given processor. They may
start on one processor and resume on another.
We also assume that parallelism is forbidden: at
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any time, a task runs on at most one processor.
In such a context, it has been proven that there
exists no optimal on-line strategy (12; 14) where
a scheduling algorithm (or strategy) is said to
be optimal if either it produces a feasible (or
valid) schedule, i.e. a schedule such that all
deadlines are met, or there exists no feasible
schedule. Furthermore, since critical resources are
used, the scheduling problem is NP-hard (1; 17).
This motivates the choice of the off-line method.
Most off-line strategies relies on branch-and-bound
enumeration techniques. These approaches are
generally model-driven. The task system is first
modeled, then the schedulability analysis relies on
exhaustive enumeration techniques. Following, if
a valid schedule exists, it will be found. These
approaches are thus more powerful than on-line
strategies. This can be explained by the fact
that scheduling decisions are made according to
the instantaneous state of the application for on-
line strategies meanwhile they are based on a
global knowledge of the application for off-line
scheduling. Another benefit of off-line methods is
that additional qualitative criteria can be considered.
For example, we can find a valid schedule with
minimal response times for some tasks, or a valid
schedule where some tasks are regularly (or PFairly)
processed. Approaches based on finite automata
and on Petri nets can be found in the litterature
(13; 16). We consider here an approach based on
discrete geometry. Such an approach has a lower
complexity than the former approaches, as well for
the model generation as for the model analysis. In
(15), we have defined a discrete geometrical model
equivalent to the automata based model presented
n (11). In this model, each task is associated with
a 2D-discrete object that collects all the valid states
of the task, i.e. all the states (cumulated processed
execution time of the task, time) belonging to a
valid schedule. The shape of this 2D-discrete object
depends only on the time characteristics of the task.
The execution of the task set is then modeled by a
n+1-discrete object (where n is the number of tasks).
This model is called Concurrency Model and is built
using extrusion and intersection of the single task
models. Ressource sharing is modeled using a nD-
discrete space, extruded following the time direction
and then cut out from the concurrency model (see
figure 5). We have proved in (15) that there exists
a feasible schedule on a m-processor architecture if
and only if there exists a m-connected path in the
(n + 1)D-discrete model of the application.

Our aim is to use this model in order to include
PFairness properties in the schedule selection step.
For independent task systems, PFair strategies have
been proposed. Moreover, if tasks are synchronous
(they all are first released at the same time) with
implicit deadline (deadlines are equal to periods),

the algorithms PF, PD and PD? (4; 5; 2; 3) are
optimal. But in our context, there exists no on-line
PFair optimal strategies. We thus want to determine
among the valid schedules produced by our off-line
methodology which ones are PFair. For that aim,
we first present a geometric characterisation of the
PFairness, which is used to propose a method for
the extraction of (partially) PFair schedules. Then,
we propose a method in order to extract as PFair as
possible schedules, when no PFair schedule exists.
This method relies on PFairness measures.

To our knowledge, there exists not other work on
off-line scheduling including PFairness properties. In
the litterature, PFair algorithms are meant as on-line
strategies. The originlaity of our approach is that we
combine fairness and a pre-runtime model based
approach, and we can restrict fairness requirements
to only some tasks. A parallel study is led, which
uses a Petri-net based approach (18).

The paper is organized as follows: in section 2, we
introduce basic notions and notations for the real-
time scheduling and the discrete modeling of real-
time applications. In section 3, we present PFair
scheduling and its geometrical modeling. And in
section 4, we show how of our model can be used
for a qualitative temporal analysis of a real-time
application.

2. FUNDAMENTAL DEFINITIONS AND
NOTATIONS

2.1. Basic notions of real-time scheduling

We consider multiprocessor systems composed of m
identical processors. For any real z, | x| denotes the
greatest integer less than or equal to = and [z] the
smallest integer greater than or equal to z.

2.1.1. The task model

A real-time application consists of a set of n
independent periodic tasks I' = {71, 72, ..., Th}.
Each task is submitted to hard temporal constraints.
We adopt the classical modeling of tasks. Each
periodic task 7 is characterized by four temporal
parameters as described in figure 2: r is the first
release date or offset; C the worst-case execution
time; D the relative deadline, which corresponds
to the maximal delay allowed between the release
and the completion of any instance of the task;
and P the period. In the sequel, we denote a task
T by < r,C,D,P >. Each task 7 consists of an
infinite set of instances (or jobs) 74, released at
times r + (k — 1) x P, with k € N*. We assume that
temporal parameters are known and determinist. We
denote H the hyperperiod of the system defined as
Hzlcm(Pl,Pg, an)

The processor’s utilisation factor characterises
the processor workload due to the application. It
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Figure 2: Temporal modeling of a real time periodic task

is defined by U = Z S If U > m (m being the

number of processors) the system is over-loaded
and temporal faults cannot be avoided (6). In the
sequel, we suppose that the utilisation factor is lower
than m.

In the further, slot ¢ (¢ € N) denotes the time interval
[t,t 4+ 1). A task is said to be scheduled at time ¢
when one processor processes it during slot ¢.

A schedule is defined by S : N x I" — {0,1} such

that i S(t,7) < m, Vi € N. We have S(t,7) = 1

< 7 is scheduled at time ¢ and if Z S(t,m)=k<m

then (m — k) processor idle tlme unlts occur at time
t, i.e. (m — k) processors remain idle during slot ¢.
The function S, describes the behaviour of a task
and is defined by

1if S(t, 7) = 1
Sr(t) = {O else

For any times ¢ and ¢/, and for any task =, we define
W.(t,t') as the processed execution time for task
7 between time ¢ and t|me t’

We have thus W..(¢,t') = Z Sr(u).

2.2. Geometric model for real-time system
behaviours

Processed
execution time

0= [ [

Time

| | | bo6 P=9

15’t instance

Figure 3: Geometric model Q(t) of the task v =<
3,3,6,9 >

A task 7 is modeled by an object Q(r) of a 2D
space: the (processed execution time, time) space.
The shape of this 2D-discrete object depends on
the temporal parameters of the task (see figure 3).

4
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Figure 4: Geometric model for two tasks

The model for a task 7 =< r,C, D, P > is formally
defined as :

Q7)) ={(z,t) e N’s.t. Vt €N

o 0<t<r=ua=0;
er+(k—1)P<t<r+(k-1)P+D=
z € [(k—1)C,kC] and

(x+1,t+1) €
andt <r+ (k

Q1) if @ < kC
~1)P+D

(x,t+1)eQr)if
kKC—xz<r+(k-1)P+D—t
the remaining time until the
next deadline is greater than or
equal to the remaining
processing time of the pending
instance

(z,t) € Q1) =

or+(k—1)P+D<t<r+kP=2x=kC}

Then to model the complete application I' =
(Ti)ie[1,n)> We introduce the set

Q) = {(21, ..., t) € N"TL Vi € [1,n], (zi,t) € Q) }

For termination reason, we only consider the model
over a finite time interval. If tasks are synchronous,
cyclicity results (9) show that the construction can
be restricted to the time interval [0, H], where H
is the hyperperiod. If asynchronous systems are
considered, we will restrict ourselves to the time
interval [0, max([r;]; 1..n) + 2 = H]. Figure 4 presents
the model obtained for an application composed of
two tasks.

Finaly, concurrency is considered. The final model is
deduced from the previous one using extrusion and
intersection operations (see figure 5).

Resource sharing between tasks 7, and 7; is
modeled by a surface in the (z;,z;) plan which is
then extruded following time direction. The result is
finaly cut out from Q(T') to obtain Q(T', R).

We can then deduce the feasibility of the application
for a given architecture. If we consider a platform of
m identical processors, the existence of a feasible
schedule relies on the connectivity properties of
the model Q(T', R). Two points (z1,...,z,,t) and
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Figure 5: Integration of the concurrency

(),...,x,,t + 1) are said m-neighbours if Vi €

P

l...n | a;—2; |<land > |z —2i| < m (see
i=1

figure 6).

A m-connected path of length T is a set of T" m-

neighbour points. We finaly have the following result:

Proposition 1 There exists a feasible schedule of
size T for a platform of m identical processors iff
there exists a m-connected path (of length T) in the
model Q(T', R).

Forbidden states
1-neighbours

Time

0-neighbour

N
/ 2-neighbours
2

Figure 6: Neighborhood of the point P

A complete definition of the geometric model can be
found in (15).

3. DISCRETE MODELING OF PFAIRNESS

We want to take a further quality criterion into
account: the regularity of execution for (some of) the
tasks of the system. This can be useful for some
kind of applications, e.g. multimedia applications,

to insure a process’ behaviour of good quality.
This can also be helpful for an efficient aperiodic
task management. We first introduce the notion of
PFairness. Then, we present the way PFairness is
taken into account in our model. In a first time, we
consider synchronous tasks with implicit deadlines
(v, r =0and D = P). Then we relax the constraint
r = 0 and model asynchronous tasks. Next we
consider systems with constrained deadlines (D <
P) and finally we take concurrency and critical
resource sharing into account.

3.1. PFair scheduling algorithm

PFair scheduling strategies have been proposed in
the general multiprocessor context, for which they
are very efficient. The basic idea is that each task is
processed at “regular rate”. This means that at each
time ¢ (¢t € N), the processed execution time W.(0, ¢)
is proportional to ¢, with a proportionality coefficient
equal to u = %. But, since the processed execution
time at time ¢ must be integer, u x t is approximated
by either |u x t] or [u x ¢].
This is formally expressed by the following definition:
A schedule is PFair for a task 7 iff we have:

t—1

VteN,~1<uxt—Y S:.(j)<1
3=0

A schedule is PFair if it is PFair for each task 7 of
T'. Figure 7 illustrates PFairness. For any task 7, the
broken line W;,,, must remain strictly between both
limit lines Ideal™ = uxt—1and Ideal™ = u x t+ 1.

Processed
execution time

Ideal*(t)y
--“1deal(t) = ut

2C

C 1 Ideal™(t)

Time
T

P 2P

Figure 7: PFair execution of a task: the execution curve
must be located between both dotted lines

At any time ¢, atask 7 = < r,C, D, P > is said to be:

e ahead if W.(0,t) is above the ideal line
Ideal(t) = w x t. It has been processed a
little bit more than in the ideal case. We have:

t—1
uxt—>3Y S:;(j)<0.
3=0

e punctual if it has been processed for exactly
t—1
u x t slots. We have: u x t — > S;(j) = 0.
j=0
e behind if W.(0,¢) is under the ideal line
Ideal(t) = u x t. It has been processed a
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little bit less than in the ideal case. We have:

t—1
uxt— S S;(j) > 0.
=0

PFair strategies (they are PFair for each task) follow
the global frame described below.

1. The task set is partitioned into three sets.

e the Urgent set collects all the behind
tasks which would be too late (under the
lower bound) if they were not processed at
time t. These tasks must be processed at
time t, else the PFairness condition would
be violated.

e the Tnegru set collects the ahead tasks
which would be too in advance (over the
upper bound) if they were processed at
time t. These tasks must not be processed
at time t, else the PFairness condition
would be violated.

e the Contending set collects the other
tasks: the PFairness is violated neither if
they are processed nor if they are not.

2. Urgent tasks are processed.

3. Contending tasks are sorted.
The m - |Urgent(t)| first contending tasks are
processed’.

Figure 8 shows examples of PFair and non PFair
behaviours, and illustrates the different status of a
task.

Processed
execution time

Ideal*(t)

N --Tdeal(t) = u.t
2C The task
isahead ) .-~

The task
is behind

P 2P

(a) A P-fair execution

Processed
execution time
Ideal*(t)
The task is },x‘rdeal(t) =utt
2C in advance
,,—’i” -
- |deal(t)
€1 P -
1y /—""'/ The task
islate ) qime
! T
P 2P

(b) A non P-fair execution

Figure 8: (a) a PFair execution and (b) a non PFair
execution - Different status of the task

"|A| denotes the cardinality of set A.

Several PFair algorithms have been proposed in the
litterature (PF, PD and PD? (4; 5; 2; 3)). These
algorihms differ in the way they select the tasks
to process among the contending tasks. These
scheduling strategies are very efficient, as stated in
theorem 2.

Theorem 2 (4) The scheduling algorithms PF, PD
and PD?* are optimal for systems of periodic syn-
chronous independent tasks with implicit deadlines
(deadlines are equal to periods) in multiprocessor
context. Moreover, the system is feasible if and only
if U < m where m is the number of processors.

3.2. Extensions of the PFairness

The notion of Pfairness is defined in the context
of synchronous tasks with implicit deadlines. In (3;
10), asynchronous systems are considered, where
asynchronism means that some of the first task slots
do not take place. But the first instance of any task is
still assumed to be released at time 0. In (2), sporadic
tasks are considered: periods correspond only to
the minimum elapsed time between two consecutive
releases. We consider here a different notion of
asynchronism: the first release times of the different
tasks, i.e. the release time of the first task slot, are
no more assumed to be equal. But all the task slots
are assumed to occur, and their release times cannot
be chosen arbitrarily. To shift a task may be useful
e.g. in order to take some precedence relations
into account. Furthermore, requiring tasks to have
periods equal to deadlines restricts the application
of PFairness in practice. We thus consider task
systems where tasks may have non zero first release
times, and may have constrained deadines (D < P).
To define PFairness in this enlarged context, we first
consider the ideal case: in an ideal fair schedule, a
task = must have received at time ¢, w, (t) processor
time units (see figure 9) where w. () is defined by:

0iftel0,r) (1)
kxC+Sx(t—kxP—r)if

wr(t)=< tekxP+rk«xP+D+r) (2)
(k+1)*Cif

telk«xP+D+r(k+1)«P+r) (3)

where k = | %] represents the number of already
completed instances of the task.

The condition (1) corresponds to the idleness of
the task before its first release, the condition (2)
corresponds to the classical PFairness notion, and
the part (3) expresses the idleness between each
deadline, and the next release. A schedule S is then
PFair for a task  iff

t—1

VteEN: —1<w(t) =Y S-(j) <1
=0
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A schedule is PFair if it is PFair for each task 7 € T.
We can notice that during the idle periods, the task

Second
Processed _.idle period__ (1) + 1

6 execution time Pfair execution -~ w(t)

First idle
period -~

LT o(t) -1

Before //’ e e
release .-~ -

T Time
A S N I I Y N I I
0 2 4 6 8 10 12 14 16 18

A Pfair schedule ‘ D ‘ L l Ly
0 2 4 6 8 10 12 14 16 18

Figure 9: Ideal progression and a PFair schedule for the
task < 2,3,5,8 >

must be punctual, because the only integer points
between both limit lines are those located on the
ideal line.

3.3. PFair geometric modeling

Qur aim is to include PFairness properties in the
geometric model. The final goal is to determine the
set of the PFair schedules for a given application
which cannot be PFairly scheduled by the classical
strategies, i.e. when critical resources are used and
tasks may have offsets and constrained deadlines. In
such context, the PFair algorithms are not optimal.
We define the PFair geometric model for a task =
=< r,C,D,P > as the set of states belonging to a
PFair schedule. We call these states the PFair states.

Definition 3 The PFair geometric model of a task T
is the set:

V(1) = {(z,t) € N? such that 3 a PFair schedule S.,
t—1
= S:(k)}
k=0

Figure 10 presents the PFair schedule (_ - _p _ _ _
pp_____ ) for the task 7 = < 3,3,7,11 > where p
stands for "the task is processed” and _ for "the task
remains idle”. In the following, we define this set in a
more geometrical way.

3.3.1. Synchronous tasks with implicit deadlines.

We assume that the first release time of a task 7 is
equal to 0, and that its relative deadline is equal to its
period.The discrete model of the PFair behaviours of
the task 7 is composed of all the states that the task
can reach if it is PFairly processed. This set consists
of all the discrete points that are close enough (at
a distance lower than 1) to the line z = (C/P)t.
Figure 11 presents the geometrical model Q(r) of
the task 7 = < 0,3,6,6 > and the subset V(1)
of Q(r) composed of the PFair states. Let us state

Processed
A execution time
P
/’ ++
Lo»
-1 L™ )
Ting.
o \

Figure 10: A PFair schedule of the task T =
<3,3,7,11 >
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\

- P 2P Time
48t
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Figure 11: (a) Geometrical model Q(t) and (b) PFair set
V() for the task < 0,3,6,6 >

t—1
x = Y, S:(j). From PFairness definition, we have
j=0

VteN, -1 <& xt—z<1,s0weget:
VteN,—P < Cxt—xx P < P.We therefore define
the set V() geometricaly as:

Definition 4 The set of discrete PFair states for a
task T =< 0,C,D = P,P > is the discrete line of
width 2 defined by:

V(r)={(z,t) e N}, =P < Ct — Pz < P}
Since PFair states belong to feasible schedules (4),
we also have the following property:

Vi) C Q(r)
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3.3.2. Asynchronous tasks with implicit deadlines.
We assume that » > 0 and D = P. In this context,
a task cannot be processed before its first release.
Therefore, the only states available before this time
are those with x = 0. After release, the execution
curve must remain close to the line z = % X t+ 7.
Thus we generalise the previous definition:

Definition 5 The set of discrete PFair states for a
taskt =<r#0,C,D=P,P > is:

V(r) = {(2,t) € N?s.t.

Vi <r,z=0,
Vi>r,Cxr—P<Ct—Pr<(Cxr+P
Processed Processed
A execution time A execution time
o
/ > A L]
/ / T
/ / Time 1 1 Time
4 -
-

Figure 12: Geometric model and PFair-state set V () for
task < 3,3,7,7 >

The figure 12 presents the geometric PFair model of
the task < 3,3,7,7 >.

3.3.3. Asynchronous tasks with constrained
deadlines.

A b

ATAYAY
YA
v

Figure 13: Geometric model and PFair-state set V (r) for
the task < 3,3,7,11 >

We relax our last constraint and consider a task with
a constrained deadline, i.e. such that D < P. We
must model the PFairness condition given in section
3.2. Each instance 7, of the task must complete its
execution before its deadline d, =r + (k —1)P + D
and must be idle between d;, and the release time
rr+1 = r+ kP of the next instance. The task must be
processed during C slots between r, = r + (k—1)P
and dj. So the execution rate is here equal to CH =
£ and the task is idle before r and between d;. and
rp+1 for each k£ > 1. We thus have:

Definition 6 The set of discrete PFair states for a
faskT=<r+#0,C,D < P,P > is defined by:

Vy = {(x,t) e N? s.t.Vk > 1

vVt <r,x=0,

vVt € [Tk,dk[,

Cr,—D—-(k-=1)CD < Ct—Dx
<Cry+D—-(k—1)CD,

Vit € [dk;rk+1[7 = kC

Figure 13 illustrates the construction for the task
T=<3,3,7,11 >.

3.3.4. Asynchronous task systems with constrained
deadlines.

We consider now the complete task set I' = {r,
T2, ..., Tn}. The PFair geometric model of the
application is defined by:

Definition 7 The set of discrete PFair states for the
applicationT" is

V() = {(21, .0, ) € N*HL,
Vi € [1,n], (z;,t) € V(1;)}

3.3.5. Resource sharing.

We consider a task set " = {71, 72, , 7,}. Let R be
a critical resource, and Zr be such that 7; uses R
iff i € Zr. We must eliminate from the model all the
invalide states. These states correspond to:

1. The joint use by two tasks of a critical resource.

2. Isolated states, which have no predecessor.
They thus don’t belong to a PFair schedule.

3. Dumb states, which have no successor in
the model. They neither belong to a PFair
schedule.

We first consider point 1. We remove all the points
corresponding to a violation of the mutual exclusion
rules. For a given resource R, these R-invalide
points are collected in a set (R). Then, we remove
iteratively isolated and dumb points, until a fixed
point is reached. For simplicity reasons, we assume
that each task using a resource R contains only
one critical section for R. The definitions can then
be easily extended to several critical sections. If a
task 7 uses a resource R, we denote pre.(R) (resp.
post.(R)) the processing time until the begining
(resp. the end) of the critical section. The critical
section lasts thus post., (R)—pre,(R). We define then
the set of the R-invalide points by:

Definition 8 The set of the R-invalide states is
defined as:

QR) = {(z1,...,2n,t) € UT) s.t.
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3j1,J2 € IR,
;].1 J'Rfl + préer;, (R) <xj
h |5).P (R)
< |$*+]-Pj, + posts,
J1 J1

and
X -
7o) Py +pres, (R) <,
< L%j -Pj, + post,, (R)

The set of the discrete resource-valid points is the
set:
Q(F, Res) = Q(F) \ URERESQ(R)

And the set of the discrete PFair resource-valid
points is the set:

Val(T) = V(T) \ UreresQUR)

where Res is the set of all the critical resources used
by the application.

The inequalities express the fact that both pending

instances of the tasks 7;, and 7;, are in their

critical section. | Z-] (resp. | ]) is the number
J1 J1

of already completed instances of 7;, (resp. 7j,).

We then remove isolated and dumb points: a

point (z1,...,x,,t) is isolated if there in no point
(zh,...,2,,t — 1) with =} = x; or zj; = z; — 1 and
a point (z1,...,2,,t) is dumb if there is no point

(z},..., 2, t+ 1) with z} = x; or 2}, = z; + 1. We can
note that an isolated point is the n-neighbour of no
point, and a dumb point has no n-neighbour.

If we restrict ourselves to the time interval
[0, maz([ri]i 1..n) + 2 * H], the number of points is
finite, thus, we are insured to get a fixed-point when
we iterate the removing process. We thus finaly get
a model denoted by M (T, T) if we consider the time
interval [0, 7.

3.3.6. Elements of complexity

The number of states is in the worst case equal to
nb; = r+(Ci.Di+P,—D;) x 15 for one task, and for
the complete model, it is at most equal to []}_, nb;.
Then each further construction step (construction of
Q(R) and of Val(I")) is linear in the number of states.
And finally, since, once the model constructed, each
analysis step is linear in T..

4. SYSTEM ANALYSIS USING THE GEOMETRIC
MODEL

In the previous section, we have proposed a model
M(T,T) which can take temporal validity, mutual
exclusion properties and PFairness into account. We
present now some examples of the use of the model
for the sake of temporal and qualitative analysis
of a real-time application. The general frame of
our analysis consists in the use of the model to
compute the set of feasible schedules with additional
PFairness properties.

4.1. Global PFairness

Firstly, we can use the model in order to generate all
the PFair behaviours. We recall that in our context:
asynchronous systems with constrained deadlines
and critical resources, there exists no on-line optimal
strategy. We use the geometric model to determine
whether there exists some PFair schedules for the
application, for a given architecture. We finally have
the following result:

Proposition 9 There exists a PFair schedule for
a platform of m identical processors on the time
interval |0, T iff there exists a m-connected path (of
lengthT') in the model M (T, T).

4.2. Partial Pfairness

Considering global PFairness may be too restricting.
First, it can be useful to insure processing regularity
for some tasks, but not for all. And requiring
PFairness for all the tasks may lead to unfeasibility,
due e.g. to the constaints induced by the resource
management. When PFair strategies (PF, PD or
PD?) are considered, PFairness requirements are
globally applied. Our methode enables us to
refine the analysis, and to restrict the PFairness
requirements to a subset of tasks. This leads to
more flexible scheduling. A direct application is
the possibility to combine an off-line method to
schedule the periodic tasks with an efficient on-line
algorithm for the integration of aperiodic tasks with
strict deadlines. We have proposed in (7) an on-
line acceptation algorithm which relies on a PFair
distribution of processor idle times. The presented
methodology uses a PFair scheduling algorithm
to schedule the periodic application. We make
the assumption that the tasks are synchronous,
independent, with implicit deadlines, and that m —
1 < U < m. In such a case, the processors
remain idle for H(m — U) processor time units. A
further task, the idle task is added to the system.
It is defined by 0 =< 0,H(m — U),H,H >. The
extended application is then globally scheduled by
means of a PFair strategy. It follows that a PFair
distribution of the processor idle times is guarantied.
Here, we can enlarged the acceptation routine to
applications composed of non independent periodic
tasks which may be asynchronous and have
constrained deadlines. We then add the idle task to
the system, and we require the idle task, and only
it, to be PFairly processed. The acceptation routine
for aperiodic trafic can then be used even if the other
periodic tasks are not PFairly scheduled.

4.3. Non PFairly feasible systems

For some applications, because of the use of critical
resources, it is definitively not possible to find PFair
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schedules. This means that M (T", T') contains no m-
connected paths. In this case, it can nevertheless be
interesting, for quality reasons, to find a schedule
which is as fair as possible, provided Q(I',Res)
contains m-connected paths. Here again, this
requirement can be reduced to a subset of tasks. For
that purpose, we use a PFairness benchmark. In (8),
we have proposed several PFairness measures for
synchronous task systems, with implicit deadlines.
We enlarge the most promising one to our context.
For synchronous tasks with implicit deadlines, the
on-line PFair strategies (PF, PD and PD?) rely on
the decomposition of the execution of each task
T =< r,C,D,P > into the execution of unitary
subtasks 77 (j > 0). Each subtasks 77/ has a
pseudo-release time and a pseudo-deadline defined
by: v = [i5] et @ = [;{5]. The time interval
[r7,d’) is the feasability window of the substask.
The task 7 is PFairly processed iff each of its
subtask is scheduled within its feasability window.
The PFairness measure that we propose depends
on the distance of the execution time of the subtasks
to their feasability windows. This distance is equal
to 0 if the execution is PFair. We must enlarge the
definition of the measure to asynchronous task sets
with constrained deadlines. We first adapt the notion
of feasability window. In our context, the feasability
window of the subtask 77 is defined by: [/, d’) with

ri =k Pt | IEC | and & = r+ k. P+ [ES]

where CH(7) = £ is the density of the tasks? and
k=14 L%J is the instance number of the task
7. We define then for a schedule S the distance
between a subtask and its feasibility window by:
dist(19,S8) = Max{0,r7 — b/, el — d’} where b is
the begining date of the subtask 77 in the schedule
S and €7 is its terminaison date (e/ = ¥ + 1). We
can see in figure 14 an execution of the two first
instances of a task 7 =< 2,3,5,8 >, thus the 6"
first subtasks. We can see within each subtask its
distance to its feasability window, which is equal to
0 for the subtasks 7!, 72, * and 7%, and equal to
1 for the subtasks 72 (it is processed one time unit
too early) and 75 (it is processed one time unit too
late). The PFairness measure for a given schedule,
a given task and a time interval [0, T is the quotient
of the cumulated distances of each subtask whose
feasability interval in included within [0,7), and of
the worst possible value. The worst value is obtained
when each instance 7 is processed either at the
beginning or at the end of its execution window

2|f the task has an implicit deadline, its density equals its utilisation
factor
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Figure 14: Distance beetwen a subtask and its feasability
window

[r+ (k—1)P,r+ (k—1)P + D]. Formally, we have:

C . ]
nbr(7,T) x ; (f#@ﬂ —(1—1))
dmaz = n(‘r,T)modé_

+ X Ueaml-(G@-1)

and

n(r,T) )
> dist(77,S)
Measure(S,r,T) = =1

dmax

where

e n(7,T) is the number of subtasks whose
feasability windows are in [0, 7]

e nbr(r,T) is the number of complete periods
within [0, 7). We have nbr(7,T) = | 15~ |

5. CONCLUSION

PFair scheduling is a very powerful strategy for
real-time scheduling in multiprocessor context. It
has been proved to be optimal for synchronous,
independent task systems, with implicit deadlines.
It could thus be of interest to use it for larger
context. Furthermore, it can be interesting to enforce
PFair behaviours for some kind of applications.
PFair constraints can also be restricted to a
subset of tasks. Besides, the discrete geometrical
approach is really effective to decide feasability and
finding feasible schedules. We have here coupled
both notions. We have presented the geometrical
characterisation of PFair behaviours of a real-
time application. We have then explained how to
take resource management constraints into account
in our model. Finally, we have presented three
applications of our modeling methodology for the
analysis of a real-time application with PFairness
requirements.
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