
Uniprocessor Schedulability and Sensitivity Analysis of
Multiple Criticality Tasks with Fixed-Priorities

François DORIN, Pascal RICHARD, Michaël RICHARD
LISI

ENSMA - Université de Poitiers
1 rue Clément Ader, BP 40109,

86961 Chasseneuil du Poitou Cedex, France
{dorinfr, richardp, richardm}@ensma.fr

Joël GOOSSENS
Computer Science Department
Université Libre de Bruxelles

Boulevard du Triomphe - C.P. 212
1050 Bruxelles, Belgium
joel.goossens@ulb.ac.be

Abstract

Safety-critical real-time standards define several criti-
cality levels for the tasks (e.g., DO-178B - Software Con-
siderations in Airborne Systems and Equipment Certifi-
cation). Classical models do not take into account these
levels. Vestal introduced a new multiple criticality model,
to model more precisely existing real-time systems, and al-
gorithms to schedule such systems. Such task model repre-
sents a potentially very significant advance in the model-
ing of safety-critical real-time systems. Baruah and Vestal
continues this investigation, with a new algorithm under
fixed and dynamic priority policies.

In this paper, we provide some results about the op-
timality of Vestal’s algorithm and analyze an interesting
property of this algorithm. We also adapt sensitivity anal-
ysis developed by Bini et al. for multiple criticality sys-
tems.

1. Introduction

Execution times of a recurring task are different from
one execution to another. Schedulability analysis of real-
time systems is based on the worst-case execution time
(WCET). The execution time of a task never exceeds its
WCET otherwise it is impossible to guarantee the system
schedulability. Determining an exact WCET value for ev-
ery task occurrence is a very difficult problem. So in prac-
tice, the used WCET is an upper bound of execution re-
quirements.

Since computing WCET is a complex problem, two
different approaches can be considered:

• The first one is to allow some WCET exceedance (for
instance, due to a optimistic approximation of the
WCETs). Some models allow to take into account
this kind of problem. For example, Bougueroua, in
[7], introduced the notion of allowance to achieve
this aim.

• The second one is to consider several levels of confi-
dence for WCET. A high required confidence task
have to never miss a deadline whereas a low re-
quired confidence task can miss some deadline some-
times without great consequences on the safety of the
whole system. In such cases, the WCET of high re-
quired confidence tasks have to be evaluated with the
maximum possible precision because an underesti-
mated value can cause the task to miss a deadline,
which can be very critical for the system, and an
overestimated value can lead a feasibility test to con-
clude that a task is not feasible whereas no deadline
miss can occur at run-time. So, the idea is to per-
form tight evaluation of the WCET for tasks having
a high confidence level and to allow more approxi-
mate (i.e., average) evaluation for tasks with low con-
fidence levels.

Some software standards define several criticality lev-
els which define several levels of required confidence. For
example, the RTCA DO-178B software standard [3] de-
fines 5 levels of criticity, denoted from A to E. A failure
of a A-criticality task can have catastrophic results (i.e.,
crash of an airplane) whereas a failure of a E-criticality
task has no effect on the safety of the airplane. The failure
conditions, reported in Table 1, are categorized by their
effects on the aircraft, crew, and passengers.

A way to take into account these different levels of
confidence is to perform a time partitioning between the
different software applications which allows to enforce
temporal isolation of tasks like described, for example,
in the ARINC 653 standard [1]. ARINC 653 is an Ap-
plication Programming Interface that provides time parti-
tioning among applications having different required De-
sign Assurance Levels. The timeline is defined as a set of
time partitions. Each partition has a fixed predetermined
amount of time. Each task (or a set of dependent tasks)
is attached to a partition and a classical scheduling algo-
rithm is executed on each partition. Since each partition
has a fixed predetermined amount of allocated time, a par-
tition cannot interfere with another one. In other words, a



Level Failure condition Description
A Catastrophic Failure may cause a crash.
B Hazardous Failure has a large negative impact on safety or performance,

or reduces the ability of the crew to operate the plane due to physical
distress or a higher workload, or causes serious or fatal injuries among the passengers.

C Major Failure is significant, but has a lesser impact than a Hazardous failure
(for example, leads to passenger discomfort rather than injuries).

D Minor Failure is noticeable, but has a lesser impact than a Major failure
(for example, causing passenger inconvenience or a routine flight plan change)

E No Effect Failure has no impact on safety, aircraft operation, or crew workload.
Table 1. The required Design Assurance Level in the DO-178B.

task, which belongs to a partition A, cannot interfere with
a task which belongs to a partition B. Moreover, by affect-
ing task with the same required level of confidence on the
same partition, it is possible to ensure temporal isolation
between tasks requiring different levels of confidence.

Another way to take into account different levels of
confidence was discussed by Vestal in a recent paper [13].
Vestal introduced a new formal model for representing
real-time task sets. This model, based on the considera-
tion of several WCETs instead of a single one, allows to
require more or less confidence depending on the critical-
ity of the tasks. Baruah and Vestal gave this definition in
[4]: ’the more confidence one needs in a task execution
time bound, the larger and more conservative that bound
tends to be in practice’.

In [13], Vestal provided two fixed priority algorithms
in order to schedule such systems: one based on period
transformation [12] and another based on the Audsley’s
algorithm [2]. In [4], these works were completed by
Vestal and Baruah. They established a link between classi-
cal sporadic task systems and multiple criticality task sys-
tems. The corresponding sporadic task system is defined
as the initial multiple criticality task set in which only
the WCET corresponding to its critical confidence level
is considered for every task. They proved an interesting
property for the feasibility analysis: a multiple criticality
sporadic task system is feasible if and only if the corre-
sponding traditional sporadic task system is feasible (i.e.,
schedulable when temporal isolation of task executions is
enforced by the operating system).

On-line scheduling algorithms can be classified into
three different categories: fixed-task-priority (FTP, all oc-
curences of a given task have the same priority as for
Rate Monotonic (RM) or Deadline Monotonic (DM) pri-
ority assignment policies); fixed-job-priority (FJP, every
job has a fixed priority, but subsequent jobs of a given
task can have different priorities - the Earliest Deadline
First (EDF) is such an algorithm); and lastly, Dynamic
Priority (DP, the most general class of scheduling algo-
rithms). For Liu and Layland’s task systems, a classical
result is that FTP scheduling algorithms are dominated by
EDF [11]. That is to say, if a task system is schedulable
by an FTP scheduling algorithm, then it is schedulable by
EDF. This result does not hold for multiple criticality task

system since Baruah and Vestal gave a counter-example
of a task system which can be scheduled by FTP algo-
rithm and cannot be scheduled by EDF. In other words,
FTP scheduling algorithms and EDF cannot be compared.

To overcome the fact that EDF and FTP algorithms are
not comparable, Vestal and Baruah proposed an hybrid-
priority scheduling algorithm able to schedule any task
system schedulable by Vestal’s algorithm and/or by EDF,
that is to say by any FTP algorithm or by EDF, since
Vestal’s algorithm is optimal for the FTP algorithm class.
This hybrid-priority scheduling belongs to the class of the
fixed job-priority (FJP) scheduling. A last result provided
in [4] is that this hybrid-priority scheduling is not optimal
in the FJP algorithm class.

This Research. In this paper, we give a modest step in
the study of multiple criticality task systems. Precisely,
we provide a complete proof that the original Audsley’s
algorithm already is optimal for this kind of problem. We
then analyse the sensitivity of system parameters from
processor speed and task execution requirements:

• What is the required processor speed so that a mul-
tiple criticality task set is schedulable under Vestal’s
algorithm. Precisely, we show that Vestal’s algorithm
can be easily adapted to compute such a processor
speed.

• What is the the allowed variations of WCETs of a
task so that it is still schedulable. For that pur-
pose, we adapt the sensitivity analysis introduced by
Bini in [6] for analyzing multi-criticality task sys-
tems scheduled under a FTP scheduling policy.

Organization. The paper is organized as follow: Sec-
tion 2 introduces the multiple criticality model as well as
some known results we will discuss later. We prove, in
Section 3, the optimality of the original Audsley’s algo-
rithm [2] for the kind of independent task systems with
constrained-deadlines under fixed priority policy. Sec-
tion 4 deals with Vestal’s algorithm, and the fact the
returned schedule has the highest critical scaling factor
among all the possible schedules. In Section 5, we per-
formed sensitivity analysis on multiple criticality based
systems followed by an example.

2



2. Task Model and known results

2.1. Task Model
The model developed by Vestal in [13] is based on the

classical Liu and Layland’s one [11]. Let τ denote a task
system composed of n tasks. Each task τi for i = 1, . . . , n
is composed of:

• a worst-case execution timeCi, which corresponds to
the required processor time per instance of the task,

• a period Ti, which is the minimum inter-arrival sepa-
ration time between two consecutive instances of the
task τi,

• a relative deadline Di, which corresponds to the
maximum autorized amount of time between the ac-
tivation and the end of an instance of the task τi.

For the multiple criticality model, Vestal introduced the
following parameters:

• A WCET function Ci : N+ → R+, which specifies
the WCET for different criticality levels. We can no-
tice that Ci is no more a constant for a given task but
a function. Thus, the WCET for the criticality level `
is denoted by Ci(`).

• A criticality level Li, Li ∈ N+, which specifies the
required confidence for the task τi. By convention, it
is assumed that the level 1 is the lowest critical level.

In addition to these parameters, we introduce the prior-
ity πi of a task τi, which allows to determine which task
have to be executed at a given time: the task with the high-
est priority is executed first. By convention, a high numer-
ical value for πi denotes a low priority task. Thus, the task
having a priority equal to 0 has the highest priority.

In this paper, we assume that tasks have constrained-
deadlines (i.e., Di ≤ Ti for each task). ui(`)

def= Ci(`)/Ti
denotes the processor utilization factor of task τi and the
system utilization factor is the sum of task utilization fac-
tors. Any task set having a utilization factor greater that
1 is said overloaded and it is well known that such sys-
tem cannot be scheduled by any DP scheduling algorithm.
Moreover, it is supposed that tightness of WCET increases
according to critical levels. Thus, for all task τi and for all
criticality level l, the following relation is verified [13]:

Ci(`) ≤ Ci(`+ 1) (1)

From a multi-criticality task τ set can be defined the
corresponding sporadic task system τ ′ as follows: to every
multi-critical task τi is defined a corresponding sporadic
task τ ′i(Ci(Li), Di, Ti). The key assumption to enforce
(i.e., Theorem 1 [4]) that a multiple criticality sporadic
task system is schedulable if and only if the correspond-
ing traditional sporadic task system is feasible, it must be
enforced that:

∀i ∈ [1, n] ,∀j ∈ [1, Li] , Ci(j) = Ci(Li) (2)

τi Ti Di Li Ci(1) Ci(2)
1 5 5 1 1 2
2 5 5 2 2 5
Table 2. Example of violation

Let us consider the task set presented in Table 2. The
classical schedulability analysis of the corresponding task
set concludes that it is unschedulable, since no DP algo-
rithm can schedule a task set having the utilization factor
is greater than 1:

C1(L1)
T1

+
C2(L2)
T2

= 1.2 > 1 (3)

However, from a multiple criticality schedulability
analysis, this task system is schedulable when assigning
the highest priority to the task τ2 and the lowest priority to
the task τ1. The corresponding worst-case response time
of τ1 and τ2 are:

Tr1 = C1(L1) = 5 ≤ D1 (4)
Tr2 = C1(L2) + C2(L2) = 3 ≤ D2 (5)

Thus, all deadlines seem to be met which is obviously im-
possible in any overloaded system. Remember that task
execution requirements must satisfy the Equation (2) for
every multiple criticality task.

2.2. Known results
Scheduling algorithm In [13], Vestal introduced a
modified version of the Audsley’s algorithm [2]. The
Vestal’s algorithm is optimal in the category of the fixed
priority algorithms for independent task systems with
constrained-deadlines [4].

The Audsley’s algorithm is based on the following ob-
servation: the response time of a task depends only of
the set of the higher priority tasks, and it is unnecessary
to know the exact priority assignment. So, the principle
of the Audsley’s algorithm is to enumerate each priority
level from the lowest to the highest. At each priority level
is assigned the first task which is schedulable at this prior-
ity level (ties are broken arbitrarily). If there is at least one
priority level with no task which can be assigned to it, then
the task system is unschedulable using a fixed-priority al-
gorithm.

Vestal modified this algorithm in the following way:
instead of taking the first task which can be scheduled at
a given priority level, Vestal’s algorithm assigns the task
with the highest critical scaling factor i.e., factor which
corresponds to the maximum factor by which we can mul-
tiply the WCET of the task without the task τi missed a
deadline [9]. We recall the previse definition of the crit-
ical scaling factor of a system because it will be reused
hereafter:

∆∗ def=

 max
1≤i≤n

min
t∈Si

i∑
j=1

Cj
t

⌈
t

Tj

⌉−1

(6)

3



where Si is the set of scheduling points as defined in [10]:

Si
def=
{
kTj |j = 1, . . . , i; k = 1, . . . ,

⌊
Di

Tj

⌋}
(7)

This critical scaling factor corresponds to the maxi-
mum factor by which we can multiply all Ci of the tasks
without a deadline failure. If we consider tasks separately,
the critical factor of a task can be defined as follows:

∆i
def=

min
t∈Si

i∑
j=1

Cj
t

⌈
t

Tj

⌉−1

(8)

In [4], Baruah and Vestal claimed that this algo-
rithm is optimal for scheduling independent task sets with
constrained-deadlines under a fixed priority policy with-
out providing a complete proof.

We show next that the original Audsley’s algorithm al-
ready is optimal for this kind of problem (i.e., without
considering the critical scaling factors as a tie braking
rule) and, as a consequence, that Vestal’s algorithm also
is optimal. We also show that Vestal’s algorithm returns
a schedule having the highest possible critical scaling fac-
tor.

We give an example of Vestal’s assignment algorithm
in Figure 1. The upper table summarizes the task charac-
teristics. The bottom table is a trace of Vestal’s algorithm.
For example, when we are looking for a task to assign at
the priority level 3, we compute the critical scaling factor
of each task, and we choose the one having the highest
critical scaling factor which is, in this case, τ3. So, we
continue this process at the priority level 2 without forget
to remove task τ3. The task with the highest critical scal-
ing factor at this level is τ0, so τ0 is assigned at the priority
level 2. And so on.

The critical scaling factor of the system is given by the
minimum of the critical scaling factor of each task when
all tasks are assigned of a priority. In this case, the critical
scaling factor of the system is determined by the critical
scaling factor of τ3.

Schedulability analysis. In [9], the critical scaling fac-
tor is a basic sensitivity analysis on independent task sys-
tems under fixed priority policy.

In [6], Bini et al. performed a sensitivity analysis
which extends the Lehoczky’s one. Two methods are de-
scribed: one to perform schedulability in the C-space (i.e.,
studying the modification of the execution time Ci of the
tasks), and an other in the f-space (i.e., studying the mod-
ification of the period Ti of the tasks).

This method allows to represent graphically these
spaces (i.e., Figure 2 for an example of a C-space graphi-
cally represented).

In the following, we focus on schedulability in C-space
since we are interested by the impact of using a model
with several WCETs per task instead a single one. So,
readers interested by schedulability in f-space can report
themself to the original paper from Bini et al. [6].

τi Ti Di Li Ci(1) Ci(2)
0 164 104 1 7 17
1 89 44 2 4 4
2 191 80 1 12 16
3 283 283 2 85 85

Priority Trace

3

∆τ0 = 0.928571
∆τ1 = 0.360656
∆τ2 = 0.740741
∆τ3 = 1.69461

⇒ π3 = 3

2
∆τ0 = 3.86957
∆τ1 = 1.18919
∆τ2 = 3.47826

⇒ π0 = 2

1
∆τ1 = 2.2
∆τ2 = 5

}
⇒ π2 = 1

0 ∆τ1 = 11
}
⇒ π1 = 0

∆ = min∆i = 1.69461
Figure 1. Vestal’s priority assignment trace

9.5

220 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

1

2

3

4

5

6

7

8

9

10

11C1

C2

Figure 2. Example of the representation of
the C-space of a system composed of 2
tasks, with T1 = D1 = 9.5 and T2 = D2 = 22

The method to perform sensitivity analysis on the C-
space allows to choose the direction in which we want to
perform the analysis, that is to say to choose which subset
of tasks we want to study, and the weighting for each task.

The starting point of the method is the fact that a task
system is schedulable if, and only if:

max
1≤i≤n

min
t∈Si

i∑
j=1

Cj

⌈
t

Tj

⌉
≤ t (9)

or, in a vectorial form:

max
1≤i≤n

min
t∈Si

Cini(t) ≤ t (10)

where Ci is a vector of the i highest prior-
ity task Ci = (C1, C2, . . . , Ci), and ni(t) =(⌈

t
T1

⌉
,
⌈
t
T2

⌉
, . . . ,

⌈
t

Ti−1

⌉
, 1
)

.

By replacing Ci by Ci + λdi in the Equation 10, we

4



obtain (the complete proof can be found in [6]):

λ = min
i=1,...,n

max
t∈sched(Pi)

t− ni(t)Ci
ni(t)di

(11)

where λ is a scaling factor and sched(Pi) is a subset of
Si.

The vector di correspond to the studied direction. If we
want to perform schedulability analysis on τk only, then di

is equal to ((0, . . . , 0,

kth element︷︸︸︷
1 , 0, . . . , 0︸ ︷︷ ︸

i elements

).

If we want to perform a sensitivity analysis on the
whole system, then di must be equal to Ci. The corre-
sponding analysis leads to define the critical scaling factor
of the system.

The schedulability in the C-space is a generalization of
the schedulability analysis introduced by Lehoczky in [9]
in the sense that the computation of a critical factor for
a single task or for the whole tasks system are particular
cases of the Bini’s method. Indeed, Bini’s method allows
to choose the direction on which the sensitivity analysis is
performed. Thus, it is possible to study only one task, the
whole task system or any subset of tasks of the system.

In this paper, one of our contributions is to adapt this al-
gorithm to multiple criticality task systems (see Section 5)
in the case of sensitivity analysis on the C-space.

3. Optimality of Audsley’s algorithm

Our first contribution corresponds to the following re-
sult:

Theorem 1. The Audsley’s algorithm is optimal for
scheduling multiple criticality independent task systems
with constrained-deadlines under a fixed-priority policy.

To prove this theorem, we will use the lemmas de-
scribed next:

Lemma 1. When studying a specific task τi, we can con-
sider corresponding task system instead of a multiple crit-
icality task system, with the WCETs corresponding to the
ones on critical level Li, the criticality level of the studied
task τi.

Proof. This lemma can be deduced from the definition of
a multiple criticality task system. When we compute the
worst-case response time (WCRT) of the task τi, we con-
sider only the WCET of the criticality level of τi as we can
see in the following equation, which is the modified ver-
sion of the Joseph and Pandya’s equation [8] introduced
by Vestal in [13] to compute the WCRT for multiple criti-
cality systems:

Tri =
i∑

j=1

⌈
Tri
Tj

⌉
Cj(Li) (12)

Thus, when we are studying the task τi, we can con-
sider only a classical task system with the WCETs corre-
sponding to the WCET of the criticality level of τi, that is
to say Li.

If we have a look to the task system given in Figure 1,
we can see that the critical scaling factor of task τ1 when
assigned at the priority 2 is greater than the critical scaling
factor of the task τ1 when assigned at the priority 3 (i.e., at
a lower priority level). This intuitive result is summarized
in the following lemma:

Lemma 2. Let τi to be a task which has a critical factor
of ∆i,j when assigned of the priority j. If τi is assigned
of the priority j − 1 then the critical factor of τi for this
priority verifies ∆i,j < ∆i,j−1

Proof. For the following proof, we will consider a task τi
which can be assigned at the level priority j or j − 1. It is
important to notice that the only difference between these
two assignments is that the set of higher priority tasks,
when τi is assigned at the priority level j contains one
additional task than the set of higher priority tasks when
τi is assigned at the priority level j − 1. By convenience,
we suppose the additional task to be τj , but since the task
set of higher priority tasks are not ordered, it can be any
higher priority task.

By definition, from [9]

∆i,j
def=

[
min
t∈Si,j

1
t

j∑
k=1

Ck(Li)
⌈
t

Tk

⌉]−1

(13)

∆i,j−1
def=

[
min

t∈Si,j−1

1
t

j−1∑
k=1

Ck(Li)
⌈
t

Tk

⌉]−1

(14)

These definitions were just adapted to multiple critical-
ity task systems, replacing classical WCET Ck by multi-
ple criticality task WCET at level Li which is equal to
Ck(Li).
Si,j denotes the set of scheduling points for the task τi

when assigned of the priority j. This set is defined by the
following equation:

Si,j
def=
{
kTm|m = 1, . . . , j; k = 1, . . . ,

⌊
Di

Tm

⌋}
∪{Di}

(15)
We were aware that Bini et al. introduced in [5] a suf-
ficient subset of scheduling points, but for our proof, we
need to consider the set of all scheduling points.

So, according to Equations 13 and 14, there exists tj
and tj−1 such as

∆i,j =

[
1
tj

j∑
k=1

Ck(Li)
⌈
tj
Tk

⌉]−1

(16)

∆i,j−1 =

[
1

tj−1

j−1∑
k=1

Ck(Li)
⌈
tj−1

Tk

⌉]−1

(17)

5



One can remark than Si,j−1 ⊂ Si,j . So, we have two
cases to take into account: tj ∈ Si,j−1 and tj /∈ Si,j−1:

• If tj ∈ Si,j−1. It is obvious that:

∀t, 1
t

j∑
k=1

Ck(Li)
⌈
t

Tk

⌉
>

1
t

j−1∑
k=1

Ck(Li)
⌈
t

Tk

⌉
(18)

So, if t = tj then:

1
tj

j∑
k=1

Ck(Li)
⌈
tj
Tk

⌉
>

1
tj

j−1∑
k=1

Ck(Li)
⌈
tj
Tk

⌉
(19)

Since tj ∈ Si,j−1 and tj−1 minimize
1
t

∑j−1
k=1 Ck(Li)

⌈
t
Tk

⌉
(see definition of tj−1,

Equation 17), we have:

1
tj−1

j−1∑
k=1

Ck(Li)
⌈
tj−1

Tk

⌉
≤ 1
tj

j−1∑
k=1

Ck(Li)
⌈
tj
Tk

⌉
(20)

Equations 19 and 20 give:

1
tj−1

j−1∑
k=1

Ck(Li)
⌈
tj−1

Tk

⌉
<

1
tj

j∑
k=1

Ck(Li)
⌈
tj
Tk

⌉
(21)

That is to say:

∆i,j−1 > ∆i,j (22)

• Now, we consider the case when tj /∈ Si,j−1.

By definition, we have to notice thatDi = max(Si,j)
and Di = max(Si,j−1). Since tj /∈ Si,j−1, we have
tj 6= Di. So,

∃tk ∈ Si,j−1, tj < tk (23)

We can notice than
∑j−1
k=1 Ck(Li)

⌈
t
Tk

⌉
is a piece-

wise function and tj is not a point of discontinuity
since tj /∈ Si,j−1, so:

∃tk ∈ Si,j−1,{
tk > tj∑j−1
k=1 Ck(Li)

⌈
tj
Tk

⌉
=
∑j−1
k=1 Ck(Li)

⌈
tk
Tk

⌉
(24)

Moreover,

j−1∑
k=1

Ck(Li)
⌈
tj
Tk

⌉
<

j∑
k=1

Ck(Li)
⌈
tj
Tk

⌉
(25)

So, Equations 24 and 25 lead to:

j−1∑
k=1

Ck(Li)
⌈
tk
Tk

⌉
<

j∑
k=1

Ck(Li)
⌈
tj
Tk

⌉
(26)

Since tk > tj , we have 1
tk

< 1
tj

. And, if we use
Equation 26, we have:

1
tk

j−1∑
k=1

Ck(Li)
⌈
tk
Tk

⌉
<

1
tj

j∑
k=1

Ck(Li)
⌈
tj
Tk

⌉
(27)

By definition of tj−1 (i.e., Equation 17), we have

1
tj−1

j−1∑
k=1

Ck(Li)
⌈
tj−1

Tk

⌉
= min
t∈Si,j−1

1
t

j−1∑
k=1

Ck(Li)
⌈
t

Tk

⌉
(28)

And then, since tk ∈ Si,j−1:

1
tj−1

j−1∑
k=1

Ck(Li)
⌈
tj−1

Tk

⌉
≤ 1
tk

j−1∑
k=1

Ck(Li)
⌈
tk
Tk

⌉
(29)

If we combine Equations 27 and 29, we obtain:

1
tj−1

j−1∑
k=1

Ck(Li)
⌈
tj−1

Tk

⌉
<

1
tj

j∑
k=1

Ck(Li)
⌈
tj
Tk

⌉
(30)

That is to say,
∆i,j−1 > ∆i,j (31)

We proved that in both cases (tj ∈ Si,j−1 and tj /∈
Si,j−1), ∆i,j−1 > ∆i,j . This prove the lemma.

Now, we have the material to prove Theorem 1.

Proof of Theorem 1. Using Lemma 1, studying the
schedulability of a multiple criticality task can be done
by studying the schedulability of the equivalent task sys-
tem on the criticality level of the studied task. And taking
into account Lemma 2, the critical scaling factor of a task
can only increase when we assign the task to a higher pri-
ority level. In other word, the interference due to higher
priority tasks can only decrease.

Thus, if a task is schedulable at a priority level j, then
it is schedulable when assigned of a higher priority. Since
the hypothesis of the classical task model are also re-
spected in the case of the multiple criticality task model,
we can deduce that the Audsley’s algorithm is also opti-
mal for multiple criticality task systems.

And having the previous theorem, we can easily state
the following theorem:

Theorem 2. The Vestal’s algorithm is optimal to sched-
ule a set of independent tasks with constrained-deadlines
under a fixed priority scheduling policy.

Proof. Since Vestal’s algorithm is a particular case of
Audsley’s algorithm (i.e., task critical scaling factors are
used for braking ties), and since Audsley’s algorithm is
optimal due to Theorem 1, we can conclude that Vestal’s
algorithm is also optimal to schedule independent task
systems with constrained-deadlines under fixed priority
policy.

6



4. Processor speed

For multiple criticality task systems, Audsley’s algo-
rithm is optimal. But, if the system is not schedulable,
then computing the minimum amount of supplementary
processor speed so that the system becomes schedulable
under a FP assignment is an important issue for system
designers.

Clearly, for sporadic tasks with constrained-deadlines,
priority assignment (i.e., DM) and speed up factor compu-
tation are independent problems. We prove next that such
a result is also valid for multiple criticality task system
and furthermore that both problem can be solved simul-
taneously (i.e., the speed up factor can be computed in a
greedy manner while performing the priority assignment).

Algorithm 1 Processor speed modulation and priority as-
signment
Require: τ∗ = set of tasks to schedule
Ensure: ∆∗ = maximum scaling factor
Ensure: τ̃ = scheduled task system
τ ⇐ τ∗

τ̃ ⇐ ∅
for j from n to 1 do
τVestal = ∅
for τA ∈ τ do

if τVestal = ∅ then
τVestal ⇐ τA
∆∗ = ∆(τA, τ)

else
if ∆(τVestal, τ) < ∆(τA, τ) then
τVestal ⇐ τA

end if
end if

end for
π(τVestal)⇐ j
τ ⇐ τ − {τVestal}
τ̃ ⇐ τ̃ ∪ {τVestal}
if ∆(τVestal, τ) < ∆∗ then

∆∗ = ∆(τVestal, τ)
end if

end for

The Algorithm 1 presents an implementation of our
algorithm in pseudo-code. It computes a priority as-
signment and a critical scaling factor ∆∗. The function
∆(τi, τ) computes the critical scaling factor of the task τi
when the higher or equal priority task set is equal to τ .

If the critical scaling factor ∆∗ is greater than 1, then it
corresponds to the maximum factor by which we can di-
vide the processor speed without having deadline failure.
If ∆∗ < 1, then the initial task set is not schedulable and
∆∗ corresponds to the minimum factor by which the pro-
cessor speed must be accelerated to lead to a schedulable
task system.

The main result (i.e., Theorem 3) will be based on the
following property:

Lemma 3. Let τ denote a task system and τi and τj be
two tasks with τi having a higher priority than τj . If the
critical scaling factor of the task τi at the priority level of
τj is greater than the critical factor of the task τj at the
same level, then inserting the task τi at the priority level
of the task τj can only increase the critical factor ∆ of the
task system.

τi

τj τi

τj

1

2

3

1

2

3

Figure 3. Scheme of the transformation

Proof. We shall use an interchange argument to prove the
result. The Figure 3 represents the basis of the transfor-
mation. Each zone corresponds to the following:

• Zone 1 is composed of tasks with higher priority than
task τi,

• Zone 2 is composed of tasks with intermediate prior-
ity, that is to say with lower priority than τi but higher
priority than τj ,

• Zone 3 is composed of tasks with lower priority than
the task τj .

If we study the evolution of the critical scaling factor
of each task when performing the transformation, we can
observe that:

• The critical factor of tasks in Zone 1 are not modi-
fied by the priority modifications of tasks with lower
priority,

• The critical factor of tasks in Zone 3 are not modified
by the modifications of the priority order of tasks of
higher priority,

• The critical factor of tasks in Zone 2 can only in-
crease due to Lemma 2.

And if we perform the transformation, it is, by hypoth-
esis because task τi has a higher critical scaling factor at
priority level of τj than τj .

7



In other words, in all the cases, the critical scaling fac-
tor of each task can be either unchanged or increased, ex-
cept for task τi. But by assumption the new critical scaling
factor of task τi is greater than the old critical scaling fac-
tor of task τj . The result follows.

Now, using this lemma, it is easy to prove the following
theorem.

Theorem 3. Vestal’s algorithm returns a priority assign-
ment with the greatest critical scaling factor of tasks (i.e.,
minimum speed up factor if the system is not schedulable
under a unit-speed processor).

Proof. Let τ denote the task system. This task system is
composed of n tasks, τ1, . . . , τn, and each task is assigned
to a priority. To prove the result, we build-up Vestal’s
schedule from τ using Lemma 3. The method is straight-
forward: we are looking for the task having the highest
critical scaling factor at the priority level n among the
tasks having a priority higher or equal to n. Then, we
insert this task to this level. Due to Theorem 2, the critical
scaling factor of the new task system τ ′ is greater or equal
to the critical scaling factor of ∆. We repeat this opera-
tion, replacing τ by τ ′ and looking for the task to insert at
the level priority n−1, and so on until the studied priority
task level is equal to 1.

By this way, we construct a new schedule from the
initial one, which is the same than this one produced by
Vestal’s algorithm because in both cases, the same task
selection is performed. Since the transformation used can
only increase the critical scaling factor of the initial task
set τ and since the initial task set τ can represent any task
set, we can conclude that the task set resulting of Vestal’s
algorithm has the highest possible critical scaling factor
for fixed priority policy. This proves the Theorem 3.

So, Vestal’s algorithm, by providing a schedule with
the highest possible critical scaling factor, has a great in-
terest since it offers a simple way to define the minimum
processor requirement so that a multiple criticality task set
is schedulable.

5. Sensitivity analysis on WCET

We next adapt the Bini et al. sensitivity analysis (i.e.,
initially developed for classical real-time task systems [6])
to multiple criticality task systems. We only focus to the
sensitivity analysis in the C-space, since the multiple crit-
icality task model distinguishes from classical sporadic
task systems by considering a set of WCETs for every
task).

5.1. Sensitivity analysis in the C-space
We extend the sensitivity analysis in the C-space by

analyzing tasks at the same critical level. Instead of hav-
ing one λ in the studied direction d, we define one λ` per
criticity level `.

τi Ti Di Li Ci(1) Ci(2)
τ1 137 65 1 9 29
τ2 286 139 2 86 86
τ3 248 168 1 32 160

Table 3. Example of a multiple criticality
tasks system

λ`
def= min

i = 1, . . . , n

Li = `

max
t∈sched(Pi)

t− ni(t)Ci(`)
ni(t)di

(32)

A particular attention must be focused on the modified
Ci. Indeed, the modifications can break a basic assump-
tion of multiple criticality system expressed by Equation
1 (a complete example is detailed in the next section). In
practice, such a problem can be easily solved by setting
Equation 2 as a constraint in Bini et al. sensitivity analy-
sis method. Precisely, it is necessary to normalize execu-
tion requirements of every task so that the assumption on
execution time stated in the task model is respected (i.e.,
Equation 1).

For that purpose every time that Equation 1 is not sat-
isfied:

∃`, Ci(`) > Ci(`+ 1) (33)

then, we assign the value of Ci at criticality level `+ 1 to
the Ci at criticality level `

Ci(`)← Ci(`+ 1) (34)

5.2. Example
After this simple normalization step, Bini et al. sen-

sitivity analysis can be easily performed. Let study the
example of multiple criticality task system where charac-
teristics are given Table 3.

And let focus on the task τ2 on which we will perform
the sensitivity analysis. Bini et al. showed in [6] that when
the schedulability analysis is performed only on a single
task, Equation 321 can be rewritten in:

δCmax
k = min

i=k,...,n
max

t∈sched(Pi)

t− ni(t)Ci⌈
t
Tk

⌉ (35)

To apply the sensitivity analysis, scheduling points
must be computed. In [5], Bini uses these recursive defi-
nition to find them:

sched(Pi)
def= Pi−1(Di)

P0(t) def= {t}
Pi(t)

def= Pi−1

(⌊
t
Ti

⌋
Ti

)⋃
Pi−1(t)

(36)

1We do not use the Bini’s notation ∆Cmax
k to avoid possible confu-

sion with the critical scaling factor ∆. We use δCmax
k instead.

8



τ2 τ3
t δC2

137 22
139 -5

t δC3

137 10
168 32

Table 4. Trace of the δCi

τi Ti Di Li Ci(1) Ci(2)
τ1 137 65 1 9 29
τ2 286 139 2 118 108
τ3 248 168 1 32 160

Table 5. Sensitivity analysis before normal-
ization step

Applying Equation 36 to τ2 and τ3 to have their
scheduling points give us the following sets:

sched(P2) = {T1, D2} (37)
sched(P3) = {T1, D3} (38)

So, we can now compute the critical scheduling fac-
tor for task τ2 and τ3 (a trace of the computations can be
found in Table 4):

δC2 = max(22,−5) = 22 (39)
δC3 = max(10, 32) = 32 (40)

Having these δCi, we can now compute the critical
scaling factor per criticity level:

δCmax
2 (1) = min

i=1,...,n∧Li=1
(δCi)

= min({δC3}) (41)
δCmax

2 (2) = min
i=1,...,n∧Li=2

(δCi)

= min({δC2}) (42)

If we apply the modification to the task system, we
obtain the system shows in Table 5. We can easily see
that the basic hypothesis of multiple criticality task sys-
tem (Equation 1) is not satisfied for task τ2 since C2(1) >
C2(2). So, we have to perform a normalization step, as
describe in the previous section.

After normalization, we obtain the task system de-
scribes in Table 6. Figure 4 shows the multiple criticality
C-space for the task τ2, that is to say the possible value
for C2(1) and C2(2) in order to satisfy Equation 2.

6. Conclusion and future work

In this article, we investigate the multiple criticality
task scheduling model introduced in [13] and [4]. Such
task model represents a potentially very significant ad-
vance in the modeling of safety-critical real-time systems.
We first formally proved the original Audsley’s algorithm

τi Ti Di Li Ci(1) Ci(2)
τ1 137 65 1 9 29
τ2 286 139 2 108 108
τ3 248 168 1 32 160

Table 6. Sensitivity analysis after normaliza-
tion step

8687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

Zone removed from the
C-Space due to Equation 2

C2(2)

C2(1)

108

11886

Figure 4. Multiple criticality C-space for task
τ2

is already optimal in the class of fixed-priority algorithm
for scheduling independent task systems with constrained-
deadlines, and as a consequence that the tie braking rule
used in Vestal’s algorithm is not useful for assigning fixed-
priority to multi criticality tasks.

Moreover, we performed two kind of sensitivity anal-
ysis: we first showed that Vestal’s algorithm can be ex-
tended to compute the minimum processor speed so that a
multiple criticality task set is schedulable. For that pur-
pose, Lehoczky’s critical scaling factor is used as a tie
breaker at each task priority level.

We also show how to adapt the sensitivity analysis in
the C-space originally developed by Bini in [6] for the
case of multiple criticality task systems. Such an exten-
sion allows to analyse a subset of tasks. From a practical
point of view, it is particularly useful to analyse all tasks
belonging to the specific critical level.

Future work Lehockzy, in [9] performed a sensitivity
analysis for a single task and the whole task system. Bini
et al., in [6] extends this method to allow a task sensitivity
analysis according to a given direction. Future works may
concern the sensitivity analysis of a task system to draw
the C-space without considering any particular direction.

References

[1] ARINC. Avionics application software standard interface.
ARINC Spec, 653, 1997.

[2] N. Audsley. Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times. Real-Time
Systems, 1991.

9



[3] F. Authority. Software Considerations in Airborne Sys-
tems and Equipment Certification. RTCA Inc: EURO-
CAE, 1992.

[4] S. Baruah and S. Vestal. Schedulability analysis of spo-
radic tasks with multiple criticality specifications. In
ECRTS ’08: Proceedings of the 2008 Euromicro Confer-
ence on Real-Time Systems, pages 147–155, Washington,
DC, USA, 2008. IEEE Computer Society.

[5] E. Bini and G. Buttazzo. Schedulability analysis of pe-
riodic fixed priority systems. Computers, IEEE Transac-
tions on, 53(11):1462–1473, Nov. 2004.

[6] E. Bini, M. Di Natale, and G. Buttazzo. Sensitivity anal-
ysis for fixed-priority real-time systems. Real-Time Sys-
tems, 39(1-3):5 – 30, 2008.

[7] L. Bougueroua, L. George, and S. Midonnet. Dealing with
execution-overruns to improve the temporal robustness of
real-time systems scheduled fp and edf. In The Second
International Conference on Systems (ICONS’07), April
2007.

[8] M. Joseph and P. Pandya. Finding response times in a
real-time system. The Computer Journal, 29(5):390–395,
1986.

[9] J. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. Proceedings of the 11th Real-
Time Systems Symposium, pages 201–209, Dec 1990.

[10] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm-exact characterization and average
case behavior. In in Proc. ZEEE Real-Time Svst. - SvmD,
1989.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J.
ACM, 20(1):46–61, 1973.

[12] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions
for some practical problems in prioritized preemptive
scheduling. In Proceedings IEEE Real-Time Systems Sym-
posium, pages 181–191. IEEE Computer Society Press,
1986.

[13] S. Vestal. Preemptive scheduling of multi-criticality sys-
tems with varying degrees of execution time assurance.
In RTSS ’07: Proceedings of the 28th IEEE International
Real-Time Systems Symposium, pages 239–243, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

10


