
Referential Partitioning Becomes a Reality:

Deep Analysis and Selection Strategies

Ladjel Bellatreche1 and Komla Yamavo Woameno1

LISI/ENSMA - Poitiers University
France

(bellatreche, woamenok)@ensma.fr

Abstract. Most of business intelligence applications use data warehous-
ing solutions. The star schema modelling these applications is composed
of hundreds of dimension tables and multiple huge fact tables. These
applications require efficient access to data. Referential horizontal par-
titioning is one of physical design techniques fitting this requirement. It
consists in splitting a fact table based on fragmentation schemes of set of
dimension tables. Most of the existing works on referential partitioning
are concentrated on how to split dimension tables, and not on how to
select them. Selecting dimension table(s) among a set of candidates is
a crucial performance issue that should be addressed. In this paper, we
first show the complexity of choosing dimension table(s) to referential
partition a fact table. Secondly, we present three strategies for selecting
them. Finally, to validate of our proposal, we conduct intensive experi-
mental studies using a mathematical cost model estimating the number
of inputs outputs required for executing a set of queries on a partitioned
warehouse. The obtained results are implemented using the APB1 bench-
mark data set on Oracle11G that supports referential partitioning.

1 Introduction

Enterprise wide data warehouses are becoming increasingly adopted as the main
source and underlying infrastructure for business intelligence (BI) solutions. Star
schemes or their variants are usually used to model these applications. They are
composed of hundreds of dimension tables and multiple fact tables [10]. Queries
running on such applications contain a large number of costly joins, selections
and aggregations. They are called mega queries [18]. To ensure a high perfor-
mance of mega queries, advanced optimization techniques are mandatory. By
analyzing the main optimization techniques proposed in the literature and sup-
ported by commercial DBMSs, we realize that some are applied when creating
the schema of the data warehouse. Horizontal partitioning and parallel processing
are two examples of such techniques. Any technique having this characteristic
is called an upstream optimization technique, since it is used before populat-
ing the warehouse. Other techniques are usually selected after the creation of
data warehouse schema (when data warehouse is under exploitation). Examples
of these techniques are materialized views and indexes, data compression, etc.



Any technique having this characteristic is called a downstream optimization
technique. The use of upstream optimization techniques is more sensitive com-
pared to the downstream techniques, since the decision of using them is made
at the beginning stage of the warehouse development. For example, if database
administrator (DBA) partitions his/her warehouse using a native data defini-
tion language (DDL), it will be very costly and time consuming to reconstitute
the initial warehouse from the partitions. But, if he/she defines a downstream
technique like a materialized view, he/she can easily drop or replace it by an-
other one. Consequently, the use of upstream optimization techniques needs some
carefulness. Note that upstream and downstream optimization techniques can
be used conjointly (indexes are selected on a partitioned warehouse). Due to the
sensitivity and the carefulness when using upstream techniques, this paper deals
with one these techniques which is the referential horizontal partitioning.

Horizontal partitioning is one of important aspect of physical design [16].
It is a divide-and-conquer approach that improves query performance, opera-
tional scalability, and the management of ever-increasing amounts of data [20].
It divides any access method such as tables, indexes and materialized views into
disjoint sets of rows that are physically stored and accessed separately. Unlike
indexes and materialized views, it does not replicate data, thereby reducing stor-
age requirement and minimizing maintenance overhead. Most of today’s DBMSs
(Oracle, DB2, SQL Server, PostgreSQL, Sybase and MySQL) offer native DDL
support for creating (Create Table ... Partition) and manipulating horizontal
partitions (Merge and Split partitions) [16, 17, 6]. Notice that when horizontal
partitioning is applied on materialized views and indexes, it is considered as a
downstream partitioning. Its classification depends on the nature of the used
access method (table, materialized views and index).

Horizontal partitioning improves performance of queries by the mean of prun-
ing mechanism that reduces the amount of data retrieved from the disk. When
a partitioned table is queried, the database optimizer eliminates non relevant
partitions by looking the partition information from the table definition, and
maps that onto the Where clause predicates of the query. Two main pruning are
possible: partition pruning and partition-wise join pruning. The first one prunes
out partitions based on the partitioning key predicate. It is used when only one
table is partitioned. The second one prunes partitions participating in a join
operation. It is applicable when the partitioning key is same in the two tables.

A large spectrum of partitioning modes have been proposed and supported by
the main DBMSs. We classify them into two main types, based on the number of
participated tables in the partitioning process: single table partitioning and table
dependent partitioning. In single table partitioning, a table is partitioned based
only on its attributes. This partitioning is similar to primary horizontal parti-
tioning [15]. To implement this partitioning, several modes exist: Range, List,
Hash, Round Robin (supported by Sybase), Composite (Range-Range, Range-
List, List-List, etc.), Virtual Column partitioning, etc. Single table partitioning
is well adapted for optimizing selection operations, especially when partition-
ing key matches with selection attributes. In table dependent partitioning, a



table (usually called child) is partitioned based on the fragmentation schemes
of other tables1 of other tables (called parents). This partitioning is feasible if
there is a parent-child relationship among these two tables [4, 6]. It is quite sim-
ilar to the derived horizontal partitioning proposed in 80’s [4]. To implement
this partitioning, two main modes are available: Native Referential Partitioning
and User-driven Referential Partitioning. In the native referential partitioning,
a child table inherits the partitioning characteristics from its parent table. It
is actually supported by Oracle11G, by the use of a native DDL (Create Table
... Partition by Reference ...). It optimizes selection and joins simultaneously.
Therefore, it is well adapted for star join queries2.

Fig. 1. A classification of the proposed partitioning modes

User-driven referential partitioning is a manual implementation of referential
partitioning, i.e., it simulates it using the single table partitioning. More con-
cretely, a parent table is first horizontally partitioned on its primary key then
the child table is splitted using the foreign key referencing the parent table.
This partitioning has been used for designing parallel data warehouses [7]. But,
it is not well adapted for star join queries. Also it has some implementation
restrictions [6]. Figure 1 classifies the proposed partitioning modes3.

The use of referential horizontal partitioning for physical designing advanced
applications such as data warehousing is not straightforward. To ensure a better
utilization of this optimization technique, DBA should do the following steps:
(i) selection of parent table(s) to be used to split the child table (which repre-
sents the fact table), (ii) identification of partitioning keys for each table, (iii)
identification of borders of each partition for the case of Range partitioning and
(iv) effective partitioning of child and parent tables.

1 A fragmentation schema is the result of partitioning process.
2 A star query is a join between a fact table and dimension tables, but the dimension

tables are not joined to each other. Selection predicates are defined on each dimension
table.

3 By referential partitioning we mean the native one throughout the paper.



Most of the existing works on referential partitioning ignore the first step,
since they suppose that dimension tables to be used to partition the fact table
are given. For BI applications, where hundreds of dimension tables are used, it
will be hard for DBA to select the relevant tables. In this paper, we address the
problem of referential partitioning, where we propose a complete methodology
for selecting dimension table(s) candidate to partition the fact table.

This paper is divided in six sections: Section 2 reviews the existing works on
horizontal partitioning in traditional databases and data warehouses. Section 3
proposes three selection strategies of dimension table(s) to support referential
horizontal partitioning. Section 4 gives the experimental results done on the data
set of APB-1 benchmark using a mathematical cost model and on Oracle11.
Section 5 concludes the paper by summarizing the main results and suggesting
future work. Section 6 describes queries used in our experimentations.

2 Related Work

Many research works dealing with horizontal partitioning problem were proposed
in traditional databases and data warehouses. In the traditional database envi-
ronment, researchers concentrate their work on proposing algorithms to partition
a given table by analyzing a set of selection predicates used by queries defined
on that table. Three types of algorithms are distinguished: mimterm generation-
based approach [15], affinity-based approach [9] and cost-based approach [2]. Most
of them concern only single table partitioning.

Online analysis applications characterized by their complex queries motivate
data warehouse community to propose methodology and efficient algorithms for
horizontal partitioning. Noaman et al. [14] have proposed a methodology to
partition a relational data warehouse in a distributed environment, where the
fact table is derived partition based on queries defined on all dimension tables.
Munneke et al. [13] proposed a fragmentation methodology for a multidimen-
sional warehouse, where the global hypercube is divided into sub cubes, where
each one contains a sub set of data. This process is defined by the slice and dice
operations (similar to selection and projection in relational databases). This
methodology chooses manually relevant dimensions to partition the hyper cube.
In [1], a methodology and algorithms dealing with partitioning problem in rela-
tional warehouses are given. The methodology consists first in splitting dimen-
sion tables and using their fragmentation schemes to derive partition the fact ta-
ble. It takes into account the characteristics of star join queries. Three algorithms
selecting fragmentation schemes reducing query processing cost were proposed:
genetic, simulated annealing and hill climbing. As in traditional database, these
algorithms start with a set of predicates defined on all dimension tables. The
main particularity of these algorithms is their control of generated fragments.
[11] proposed an algorithm for fragmenting XML data warehouses based on k-
means technique. Thanks to this k-means, the algorithms controls the number of
fragments as in [1]. Three main steps characterize this approach: (i) extraction of
selection predicates (simple predicates) from the query workload, (ii) predicate



clustering with the k-means method and (iii) fragment construction with respect
to predicate clusters. This approach is quite similar to affinity based approach
[9]. To summarize, most the proposed works proposed in traditional databases
are mainly concentrated on a single table partitioning mode. Most of studies
in data warehouses are mainly concentrated on dependent table partitioning,
where the fact table is partitioned based on the fragmentation schemes of di-
mension tables, without addressing the problem of identification of dimension
tables; except Munneke et al.’s work [13] that points out the idea of choosing
and eliminating dimension to partition a hyper cube.

3 Selection of Dimension Tables

In this section, we propose a complete methodology to support referential hori-
zontal partitioning in relational database (or data warehouse). This methodology
offers to DBA the possibility to choose the dimension table(s) to partition the
fact table and to split dimension and fact tables using his/her favourite parti-
tioning algorithm.

Before proposing this methodology, we formalize the referential horizontal
partitioning problem as follows:
Given a data warehouse with a set of d dimension tables D = {D1,D2, ...,Dd}
and a fact table F , a workload Q of queries Q = {Q1, Q2, ..., Qm} and a main-
tenance constraint W fixed by DBA that represents the maximal number of
fact fragments that he/she can maintain. The referential horizontal partitioning
problem consists in (i) identifying dimension table(s) candidate, (ii) splitting
them using single partitioning mode and (iii) using their partitioning schemes to
decompose the fact table into N fragments, such that: (a) the cost of evaluating
all queries is minimized and (b) N ≤ W .

Based on this formalization, we note that referential partitioning problem
is a combination of two difficult sub problems: identification of relevant dimen-
sion tables and their fragmentation schema selection (which is known as a NP-
complete problem [1]). In the next section, we study the complexity of the first
sub problem (identification of relevant dimension tables).

3.1 Complexity of Selecting Dimension Tables

The number of possibilities that DBA shall consider to partition the fact table
using referential partitioning is given by the following equation:

(

d
1

)

+
(

d
2

)

+ ... +
(

d
d

)

= 2d − 1 (1)

Example 1. Let us suppose a warehouse schema with three dimension tables
Customer, Time and Product and one fact table Sales. Seven scenarios are possi-
ble to referential partition Sales: Sales(Customer), Sales(Time), Sales(Product),
Sales(Customer, Time), Sales(Customer, Product), Sales(Product, Time) and
Sales(Customer, Time, Product). For a schema with a large number of dimen-
sion tables, it is hard for DBA to choose manually dimension table(s) to partition



his/her fact table. In the next section, we give strategies aiding DBA to select
these tables.

3.2 Dimension Table Selection Strategies to Split the Fact Table

Before presenting dimension table selection strategies; some concepts are re-
quired.

The main contribution of referential partitioning is join optimization and
data management. Therefore, any selection strategy should turn around join
operation. In data warehousing, every join involves the fact table. The query
graph of a such query contains a root table (representing the fact table) and
peripheral tables (representing dimension tables) (see Figure 2 (a)). To optimize
the execution of a star join query, an optimal sequence in which the tables are
joined shall be identified4. This is problem is known as join ordering, which is a
hard problem [19].

Intuitively, the join ordering problem is quite similar to dimension table selec-
tion problem. Join ordering is specific to one query (Figure 2 (b)), but dimension
table selection problem is specific to all queries running on data warehouse, since
data partitioning shall optimize performance of overall queries.

A simplest way to partition the fact table is to use the largest dimension
table(s) since join operation is costly, especially when the size of involved tables is
huge. The second naive solution is to choose the most frequently used dimension
table(s). The frequency of a dimension table Di is calculated by counting its
appearance in the workload.

The two naive strategies are simple to use. But they suffer from their igno-
rance of estimating the size of intermediate results of join operation. To consider
this creterion, we propose the following strategy.

Fig. 2. (a) Star Query Graph, (b) Star query execution using left deep tree

4 A join sequence is defined as any permutation of set of dimension tables.



Miminum Share Strategy Optimizing star join queries can be done by mini-
mizing the size of intermediate result during query evaluation process [12]. Based
on this result, we propose to referential partition the fact table based on dimen-
sion table(s) reducing the intermediate results.
Note that the size (in terms of number of tuples) of join between the fact table
F and a dimension table Di (which is a part of a star join query) , denoted by
||F 1 Di|| is estimated by:

||F 1 Di|| = ||Di|| × Share(F.Ai) (2)

where ||Di|| and Share(F.Ai) represent respectively, the cardinality of dimension
table Di and the average number of tuples of the fact table F that refer to
the same tuple of the dimension table Di via the attribute Ai. To reduce the
intermediate result of a star join query, we should choose the dimension table
with a minimum share.

3.3 Referential Partitioning Methodology

Fig. 3. A Methodology to Support Referential Partitioning

Now, we have all ingredients to propose our methodology offering a real
utilization of data partitioning in data warehouse application design. It is sub-
divided into three steps described in Figure 3:

1. Selection of dimension table(s) used to decompose the fact table. This selec-
tion may be done using one of the previous criteria.

2. Extraction of fragmentation attributes (key partitioning) candidate. A frag-
mentation attribute is an attribute used by a selection predicate defined on
a chosen dimension table.



3. Partition each dimension table using single table partitioning type. To gen-
erate partitioning schemes of chosen dimension tables, DBA may use his/her
favourite algorithm. We propose to use one of our algorithms proposed in
[1]. The main characteristic of these algorithms is that they generate a com-
plete fragmentation schema of the warehouse (fact and dimension tables),
where the number of generated fragments is less than a threshold fixed by
DBA. The complete generation of fragmentation schemes (of fact and di-
mension tables) is ensured by using a particular coding. Each fragmenta-
tion schema is represented using a multidimensional array, where each cell
represents a domain partition of a fragmentation schema. To illustrate this
coding, let us suppose the following scenario: DBA choose dimension ta-
ble Customer and Time to referential partition the fact table Sales. Three
attributes (Age, Gender, Season), where Age and Gender belong to Cus-
tomer dimension table, whereas Season belongs to Time. The domain of
these attributes are: Dom(Age) = [0, 120], Dom(Gender) = {‘M’, ‘F’},
and Dom(Season) = {”Summer”, ”Spring”, ”Autumn”, ”Winter”}. DBA
proposes an initial decomposition of domains of these three attributes as
follows: Dom(Age) = d11 ∪ d12 ∪ d13, with d11 = [0, 18], d12 =]18, 60[,
d13 = [60, 120]. Dom(Gender) = d21 ∪ d22, with d21 = {‘M ′}, d22 = {‘F ′}.
Dom(Season) = d31 ∪ d32 ∪ d33 ∪ d34, where d31 = {”Summer”}, d32 =
{”Spring”}, d33 = {”Autumn”}, and d34 = {”Winter”}. Sub domains of all
three fragmentation attributes are represented in Figure 4.

Season
‘Summer’ ‘Spring’ ‘Autumn’ ‘Winter’

Gender

‘M’ ‘F’

Age

d11 d12 d13

0 18 60 120

Season
‘Summer’ ‘Spring’ ‘Autumn’ ‘Winter’

Gender

‘M’ ‘F’

Age

d11 d12 d13

0 18 60 120

Fig. 4. Decomposition of Attribute Do-
mains

Fig. 5. Coding of a Fragmentation
Schema

Domain partitioning of different fragmentation attributes may be repre-
sented by multidimensional arrays, where each array represents the domain
partitioning of a fragmentation attribute. The value of each cell of a given
array representing an attribute belongs to (1..ni), where ni represents the
number of sub domain of the attribute (see Figure 5). Based on this repre-
sentation, fragmentation schema of each dimension table Dj is generated as
follows:
– all cells of a fragmentation attribute of Dj have different values: this

means that all sub domains will be used to partition Dj. For instance, the
cells of each fragmentation attribute in Figure 4 are different. Therefore,
they all participate in fragmenting their corresponding tables (Customer
and Time). The final fragmentation schema will generate 24 fragments
of the fact table.



– all cells of a fragmentation attribute have the same value: this means
that it will not participate in the fragmentation process. Table 1 gives
an example of a fragmentation schema, where all sub domains of Season
(of dimension table Time) have the same value; consequently, it will not
participate in fragmenting the warehouse schema.

– some cells has the same value: their corresponding sub domains will be
merged into one. In Table 1, the first ([0, 18]) and the second (]18, 60[)
sub domains of Age will be merged to form only one sub domain which
is the union of the merged sub domains ([0, 60[). The final fragmentation
attributes are: Gender and Age of dimension table Customer.

4. Partition the fact table using referential partitioning based on the fragmen-
tation schemes generated by our algorithm.

To illustrate this step, let us consider an example. Suppose that our algorithm
generates a fragmentation schema represented by a coding described by Table
1. Based on this coding, DBA can easily generate scripts using DDL to create a

Table 1. Example of a Fragmentation Schema

Table Attribute SubDomain SubDomain SubDomain SubDomain

Customer Age 1 1 2
Customer Gender 1 2

Time Season 1 1 1 1

partitioned warehouse. This may be done as follows: Customer is partitioned us-
ing the composite mode (Range on attribute Age and List on attribute Gender)
and the fact table using the native referential partitioning mode.

CREATE TABLE Customer

(CID NUMBER, Name Varchar2(20), Gender CHAR, Age Number)

PARTITION BY RANGE (Age)

SUBPARTITION BY LIST (Gender)

SUBPARTITION TEMPLATE (SUBPARTITION Female VALUES (’F’),

SUBPARTITION Male VALUES (’M’))

(PARTITION Cust_0_60 VALUES LESS THAN (61),

PARTITION Cust_60_120 VALUES LESS THAN (MAXVALUE));

The fact table is also partitioned into 4 fragments as follows:

CREATE TABLE Sales (customer_id NUMBER NOT NULL, product_id NUMBER NOT NULL,

time_id Number NOT NULL, price NUMBER, quantity NUMBER,

constraint Sales_customer_fk foreign key(customer_id) references CUSTOMER(CID))

PARTITION BY REFERENCE (Sales_customer_fk);

4 Experimental Results

We have conducted intensive experimental studies to evaluate our proposal. They
are classified into two main types: (i) evaluation of the quality of each selection



Fig. 6. Theoretical Results

strategy using a mathematical cost model and (ii) the obtained solutions ob-
tained by this model are implemented on Oracle11G.

Dataset: We use the dataset from the APB1 benchmark [5]. The star schema
of this benchmark has one fact table Actvars (33 323 400 tuples) and four di-
mension tables: Prodlevel (9 900 tuples), Custlevel (990 tuples), Timelevel (24
tuples) and Chanlevel (10 tuples).

Workload: We have considered a workload of 55 single block queries (i.e., no
nested sub queries) with 38 selection predicates defined on 10 different attributes
(lass Level, Group Level, Family Level, Line Level, Division Level, Year Level,
Month Level, Quarter Level, Retailer Level, All Level). The domains of these
attributes are split into: 4, 2, 5, 2, 4, 2, 12, 4, 4, 5 sub domains, respectively.
We did not consider update queries (update and delete operations). Note that
each selection predicate has a selectivity factor computed using SQL queries
executed on the data set of APB1 benchmark. The set of queries are described
in Appendix section.

Our algorithms have been implemented using Visual C++ performed under
Intel Pentium 4 with a memory of 3 Go.

4.1 Theoretical Evaluation of Selection Strategies

The used cost model computes the inputs and outputs required for executing the
set of 38 queries. It takes into account the size of intermediate results of joins
and the size of buffer. For lack of space, this cost model is not included in this
paper; for more details refer to [3].

We use hill climbing algorithm to select fragmentation schema of the APB1
warehouse [1]. It consists of the following two steps: (1) find an initial solution
and (2) iteratively improve this solution by using hill climbing heuristics un-
til no further reduction in total query processing cost. The initial solution is
represented by multidimensional array, where its cells are filled in uniform way.



The first experiments evaluate the quality of each criterion: minimum share,
high frequency, and largest size. The size and frequency of each dimension can-
didate to partition the fact table are easily obtained from the data set of APB1
benchmark and the 38 queries. The share criterion is more complicated to esti-
mate, since it requires more advanced techniques such histograms [8]. For our
case, we calculate the share using SQL queries executed on the data set of APB1
benchmark created on Oracle11G. For instance, the share of the dimension table
CustLevel is computed by the following query:

Select avg(Number) as AvgShare

FROM (Select distinct customer_level, count(*) as Number

From actvars

Group By Customer_level);

For each criterion, we run our hill climbing algorithm with different values of
the threshold (representing the number of generated fragments fixed by DBA)
set to 10, 20, 50 and 100. For each obtained fragmentation schema, we esti-
mate the cost of cost of evaluating the 38 queries. At the end, 12 fragmentation
schemes are obtained and evaluated. Figure 6 summarizes the obtained results.
The main lessons behind these results are: (1) the minimum share criterion out-
performs other criteria (frequency, maximum share), (2) minimum share and
largest dimension table criteria give the same performance. This is because, in
our real data warehouse, the table having the minimum share is the largest one
and (3) the threshold has a great impact on query performance. Note that the
fact of increasing the threshold does not mean getting a better performance,
since when it is equal to 50 and 100; we got practically the same results. Having
a large number of fragments increases the number of union operations which can
be costly, especially when the size of manipulating partition instances is huge.

Fig. 7. Native and User Driven Referential Partitioning Comparaison



Fig. 8. Individual Evaluation of impact of Criterion on Query

4.2 ORACLE 11G Validations

To validate the theoretical results, we conduct experiments using Oracle11G.
We choose this DBMS because it supports referential horizontal partitioning.
The data set of ABP1 benchmark is created and populated using generator
programs offered by ABP1. During this validation, we figure out that Composite
partitioning with more than two modes is not directly supported by Oracle11G
DDL 5. To deal with this problem, we propose the use of virtual partitioning
column proposed by Oracle11G. A virtual column is an expression based on one
or more existing columns in the table. While a virtual column is only stored
as metadata and does not consume physical space. To illustrate the use of this
column, let Di be a partitioned table in Ni fragments. Each instance of this table
belongs to a particular fragment. The identification of the relevant fragment
of a given instance is done by matching partitioning key values with instance
values. To illustrate this mechanism, suppose that dimension table ProdLevel is
partitioned into 8 partitions by the hill climbing algorithm using three attributes.
A virtual column PROD COL is added into ProdLevel in order to facilitate its
partitioning using the List mode:
CREATE TABLE Prodlevel(

CODE_LEVEL CHAR(12) NOT NULL, CLASS_LEVEL CHAR(12) NOT NULL, GROUP_LEVEL CHAR(12) NOT NULL, FAMILY_LEVEL CHAR(12) NOT NULL,

LINE_LEVEL CHAR(12) NOT NULL, DIVISION_LEVEL CHAR(12) NOT NULL,

PROD_COL NUMBER(5) generated always as (case when Class_Level IN(’ADX8MBFPWVIV’,’OC2WOOC8QIJ6’,’LB2RKO0ZQCJD’)

and Group_Level=’VTL9DOE3RSWQ’ and Family_Level in(’JIHR5NBAZWGU’,’OX3BXTCVRRKU’,’M32G5M3AC4T5’, ’Y45VKMTJDNYR’) then 0

when Class_Level IN (’ADX8MBFPWVIV’,’OC2WOOC8QIJ6’,’LB2RKO0ZQCJD’) and Group_Level=’VTL9DOE3RSWQ’ and Family_Level not in

(’JIHR5NBAZWGU’,’OX3BXTCVRRKU’,’M32G5M3AC4T5’, ’Y45VKMTJDNYR’) then 1 when Class_Level IN

(’ADX8MBFPWVIV’,’OC2WOOC8QIJ6’,’LB2RKO0ZQCJD’) and Group_Level not in (’VTL9DOE3RSWQ’) and Family_Level in

(’JIHR5NBAZWGU’,’OX3BXTCVRRKU’,’M32G5M3AC4T5’,’Y45VKMTJDNYR’)

then 2 when Class_Level IN (’ADX8MBFPWVIV’,’OC2WOOC8QIJ6’,’LB2RKO0ZQCJD’) and Group_Level not in (’VTL9DOE3RSWQ’) and

Family_Level not in(’JIHR5NBAZWGU’,’OX3BXTCVRRKU’,’M32G5M3AC4T5’,’Y45VKMTJDNYR’) then 3 when Class_Level NOT IN

(’ADX8MBFPWVIV’,’OC2WOOC8QIJ6’,’LB2RKO0ZQCJD’) and Group_Level=’VTL9DOE3RSWQ’ and Family_Level in

(’JIHR5NBAZWGU’,’OX3BXTCVRRKU’,’M32G5M3AC4T5’,’Y45VKMTJDNYR’) then 4 when Class_Level NOT IN

(’ADX8MBFPWVIV’,’OC2WOOC8QIJ6’,’LB2RKO0ZQCJD’) and Group_Level=’VTL9DOE3RSWQ’ and Family_Level not in

(’JIHR5NBAZWGU’,’OX3BXTCVRRKU’,’M32G5M3AC4T5’,’Y45VKMTJDNYR’) then 5

Else 7 end), PRIMARY KEY (CODE_LEVEL))

PARTITION BY LIST(PROD_COL)

(PARTITION PT1 VALUES(0) TABLESPACE HCTB,PARTITION PT2 VALUES(1) TABLESPACE HCTB,

PARTITION PT3 VALUES(2) TABLESPACE HCTB, PARTITION PT4 VALUES(3) TABLESPACE HCTB,

PARTITION PT5 VALUES(4) TABLESPACE HCTB, PARTITION PT6 VALUES(5) TABLESPACE HCTB,

PARTITION PT7 VALUES(6) TABLESPACE HCTB, PARTITION PT8 VALUES(7) TABLESPACE HCTB);

None materialized views and advanced indexes are created, except indexes
on primary and foreign keys.

5 For example, we can partition a table using three fragmentation attributes



Figure 7 compares the native referential partitioning and user driven refer-
ential partitioning. In both cases, the fact table is partitioned into 8 partitions
based on ProdLevel table. In user driven referential partitioning, the ProdLevel
is horizontally partitioned using the hash mode on the primary key (Code Level)
and the fact table is horizontally partitioned using also the hash mode on the
foreign key (the number of partitions using hash must be a power of 2). Both
partitioning are compared to the non partitioning case. The result shows that
native horizontal partitioning outperforms largely the two other cases. The user
driven referential partitioning is not adapted to optimize star join queries and
even more the non partitioned case outperforms it.

Fig. 9. Evaluation of all Strategies for overall Queries

Figure 8 compares the quality of solution generated by each criteria: Min-
imum Share, Highest frequency and Lowest table. These criteria are also com-
pared with the non partitioned case. To conduct this experiment, we execute
three times our climbing algorithm with a threshold equal to 10. Each query is
executed individually on each generated fragmentation schema (one schema per
selection criterion) and its execution time (given in second) is computed using
Enterprise manager of Oracle 11G. Based on the obtained results, we propose
to DBA the following recommendations:

– to improve performance of queries containing only one join and selection
predicates involving only one dimension table, DBA has to partition the
fact table based on that dimension table; without worrying about its char-
acteristic (minimum share, highest frequency, etc.). More clearly, queries 1,
2, 5 optimized with the minimum share strategy and queries 21, 22 and 23
with high frequency, etc. This case is very limited in real data warehouse
applications, where queries involve all dimension tables,



– to speed up queries involving several dimension tables, but only one of them
has selection predicates, DBA has to partition his/her fact table based on
the dimension table involving selection predicates,

– to accelerate queries involving several dimension tables and each one con-
tains selection predicates (this scenario is most representative in the real life),
DBA has to partition his/her fact table based on the dimension table having
a minimum share. Query 34 is an example of this scenario, where two di-
mension tables are used ProdLevel (with class level=’LB2RKO0ZQCJD) and
TimeLevel (with two predicates Quarter level= ’Q2’ and Year level=’1996’).
Another example is about the query 38, where two dimension tables are used,
and each one has only one selection predicate. In this case, TimeLevel strat-
egy (representing high frequency and also the table having a second minimum
share) outperforms ChanLevel strategy representing the lowest table.
To complete our understanding, we use ”Set autotrace on” utility to get ex-
ecution plan of the query 34. First, we execute it on the non partitioned
data warehouse and we generate its execution plan. We identify that Ora-
cle optimizer starts by joining fact table with ProdLevel table (which has
the minimum share criterion)6. Secondly, we execute the same query on a
partitioned data warehouse obtained by fragmenting the fact table based on
ProdLevel. The query optimizer starts by joining a partition of fact table with
one of ProdLevel table and then does other operation. Based on these two
execution plans, we can conclude that query optimizer uses the same criteria
(minimum share) for ordering join. Referential partitioning gives a partial
order of star join queries problem. Figure 9 summarizes the performance of
each criterion for all queries.

5 Conclusion

Data partitioning is one of important aspect of physical design of advanced
database systems. It is advocated by most commercial DBMS, especially Ora-
cle11G. Two partitioning modes exist: single table partitioning and dependent
table partitioning. The second mode is well adapted for optimizing selection and
joins of mega queries of SAP applications. In this paper, we show the importance
of the use of referential partitioning that consists in splitting a fact table based
on partitioning schemes of dimension tables. A formalization of referential parti-
tioning problem is presented and its complexity is given. In order to facilitate the
task of DBA in choosing dimension tables candidate for referential partitioning
his/her fact tables, we propose three strategies based on the share, frequency and
cardinality of dimension table(s). Selecting the share criteria is similar to select-
ing the order of joins. It reduces the size of intermediate results of joins; therefore,
it may be used in cascade over dimension tables. A complete methodology for
using horizontal partitioning in data warehouse is proposed. It allows the use of
single and dependent table partitioning modes. Two experimental studies were
conducted: one using a mathematical cost model and another using Oracle11G

6 The Oracle cost-based optimizer recognizes star queries.



with APB1 benchmark. We propose to support a composite partitioning with
more than two attributes by Virtual Column partitioning mode. The obtained
results are encouraging. Based on these results some recommendations are given
to aid DBA to partition his/her data warehouse. Our methodology can be easily
incorporated in any DBMS supporting referential partitioning. It will be inter-
esting to consider two main extensions of this work: (i) extension/adaptation of
the proposed methodology to the vertical partitioning and (ii) studying in deep
the effect of the presence of partitioned tables to deal with the problem of join
ordering.

References

1. L. Bellatreche, K. Boukhalfa, and Pascal Richard. Data partitioning in data ware-
houses: Hardness study, heuristics and oracle validation. In International Confer-
ence on Data Warehousing and Knowledge Discovery (DaWaK’2008), pages 87–96,
2008.

2. L. Bellatreche, K. Karlapalem, and A. Simonet. Algorithms and support for hori-
zontal class partitioning in object-oriented databases. in the Distributed and Par-
allel Databases Journal, 8(2):155–179, April 2000.

3. K. Boukhalfa, L. Bellatreche, and P. Richard. Fragmentation primaire et drive:
tude de complexit, algorithmes de slection et validation sous oracle10g. Techreport
http://www.lisi.ensma.fr/members/bellatreche, LISI/ENSMA, 2008.

4. S. Ceri, M. Negri, and G. Pelagatti. Horizontal data partitioning in database de-
sign. Proceedings of the ACM SIGMOD International Conference on Management
of Data. SIGPLAN Notices, pages 128–136, 1982.

5. OLAP Council. Apb-
1 olap benchmark, release ii. http://www.olapcouncil.org/research/bmarkly.htm,
1998.

6. G. Eadon, E. I. Chong, S. Shankar, A. Raghavan, J. Srinivasan, and S. Das. Sup-
porting table partitioning by reference in oracle. SIGMOD’08, 2008.

7. P. Furtado. Experimental evidence on partitioning in parallel data warehouses. In
DOLAP, pages 23–30, 2004.

8. P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of ap-
proximate histograms. ACM Trans. Database Syst., 27(3):261–298, 2002.

9. K. Karlapalem, S. B. Navathe, and M. Ammar. Optimal redesign policies to sup-
port dynamic processing of applications on a distributed database system. Infor-
mation Systems, 21(4):353–367, 1996.

10. T. Legler, W. Lehner, and A. Ross. Query optimization for data warehouse system
with different data distribution strategies. In BTW, pages 502–513, 2007.

11. H. Mahboubi and J. Darmont. Data mining-based fragmentation of xml data ware-
houses. In ACM 11th International Workshop on Data Warehousing and OLAP
(DOLAP’08), pages 9–16, 2008.

12. B. J. McMahan, G. Pan, P. Porter, and M. Y. Vardi. Projection pushing revisited.
In 9th International Conference on Extending Database Technology (EDBT’04),
pages 441–458, 2004.

13. D. Munneke, K. Wahlstrom, and Mohania M. K. Fragmentation of multidimen-
sional databases. in the 8th Australian Database Conference (ADC’99), pages
153–164, 1999.



14. A. Y. Noaman and K. Barker. A horizontal fragmentation algorithm for the fact
relation in a distributed data warehouse. in the 8th International Conference on
Information and Knowledge Management (CIKM’99), pages 154–161, November
1999.

15. M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems : Second
Edition. Prentice Hall, 1999.

16. A. Sanjay, V. R. Narasayya, and B. Yang. Integrating vertical and horizontal
partitioning into automated physical database design. Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 359–370, June
2004.

17. Oracle Data Sheet. Oracle par-
titioning. White Paper: http://www.oracle.com/technology/products/bi/db/11g/,
2007.

18. E. Simon. Reality check: a case study of an eii research prototype encountering cus-
tomer needs. In 11th International Conference on Extending Database Technology
(EDBT’08), page 1, March 2008.

19. M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized opti-
mization for the join ordering problem. VLDB Journal, 6(3):191–208, 1997.

20. Sybase. Sybase Adaptive Server Enterprise 15 Data Partitioning. White paper,
2005.

6 Appendix

--Q1

select Time_level,count(*) from ACTVARS A, PRODLEVEL P

where A.product_level=P.code_level and P.Class_level=’ADX8MBFPWVIV’ group by Time_level;

--Q2

select line_level,sum(Dollarsales) from ACTVARS A,PRODLEVEL P

where A.product_level=P.code_level and P.Class_level=’OC2WOOC8QIJ6’ group by line_level;

--Q3

select count(*) from ACTVARS A,PRODLEVEL P

where A.product_level=P.code_level and P.Class_level=’LB2RKO0ZQCJD’;

--Q4

select Time_level,Avg(UNITSSOLD) from ACTVARS A,Timelevel T

where A.time_level=T.tid and T.Quarter_level=’Q1’ group by Time_level;

--Q5

select division_level,count(*) from ACTVARS A, PRODLEVEL P

where A.product_level=P.code_level and P.group_level=’VTL9DOE3RSWQ’ group by division_level;

--Q6

select Max(UNITSSOLD) from ACTVARS A,Timelevel T

where A.time_level=T.tid and T.Quarter_level=’Q2’;

--Q7

select year_level,sum(Dollarsales) from Actvars A, Prodlevel P, Timelevel T

where A.product_level=P.code_level and A.time_level=T.tid

and P.family_level=’OX3BXTCVRRKU’ group by year_level;

--Q8

select count(*) from ACTVARS A,PRODLEVEL P

where A.product_level=P.code_level and P.family_level=’M32G5M3AC4T5’;

--Q9

select Customer_level,Avg(Unitssold) from ACTVARS A, PRODLEVEL P

where A.product_level=P.code_level and P.family_level=’Y45VKMTJDNYR’ group by Customer_level;

--Q10

select month_level,count(*) from ACTVARS A,Timelevel T

where A.time_level=T.tid and T.Quarter_level=’Q3’ group by month_level;

--Q11

select Sum(Dollarsales) from ACTVARS A,PRODLEVEL P

where A.product_level=P.code_level and P.line_level = ’KYNFXX46DWNI’;

--Q12

select Product_level,count(*) from ACTVARS A,Timelevel T

where A.time_level=T.tid and T.Quarter_level=’Q4’ group by Product_level;

--Q13

select count(*) from ACTVARS A,PRODLEVEL P

where A.product_level=P.code_level and P.division_level = ’SIQV916OFEWC’;

--Q14

select Customer_level,Sum(Dollarsales)from ACTVARS A,PRODLEVEL P

where A.product_level=P.code_level and P.division_level = ’BJE2TCMX5JDS’ group by Customer_level;

--Q15

select count(*) from ACTVARS A,TIMELEVEL T

where A.time_level=T.tid and T.year_level = ’1995’;

--Q16

select Product_level,Sum(Dollarsales) from ACTVARS A, TIMELEVEL T



where A.time_level=T.tid and T.year_level = ’1996’ group by Product_level;

--Q17

select division_level,Avg(Unitssold) from Actvars A,Timelevel T ,Prodlevel P

where A.time_level=T.tid AND A.product_level=P.Code_level and T.month_level = ’1’ group by division_level;

--Q18

select count(*) from ACTVARS A,TIMELEVEL T

where A.time_level=T.tid and T.month_level = ’2’;

--Q19

select Product_level,count(*) from Actvars A, Timelevel T

where A.time_level=T.tid and T.month_level = ’3’ group by Product_level;

--Q20

select division_level,Sum(Dollarsales) from Actvars A,Timelevel T,Prodlevel P

where A.time_level=T.tid and A.product_level=P.Code_level and T.month_level = ’4’ group by division_level;

--Q21

select Avg(Unitssold) from ACTVARS A,TIMELEVEL T

where A.time_level=T.tid and T.month_level = ’5’;

--Q22

select Product_level,count(*) from ACTVARS A, TIMELEVEL T

where A.time_level=T.tid and T.month_level = ’6’ group by Product_level;

--Q23

select division_level,Sum(Dollarsales) from Actvars A,Timelevel T ,Prodlevel P

where A.time_level=T.tid and A.product_level=P.Code_level and T.month_LEVEL = ’7’ group by division_level;

--Q24

select Customer_level,count(*) from ACTVARS A,TIMELEVEL T

where A.time_level=T.tid and T.month_level = ’9’ group by Customer_level;

--Q25

select year_level,Sum(Dollarsales) from ACTVARS A,TIMELEVEL T

where A.time_level=T.tid and T.month_LEVEL = ’10’ group by year_level;

--Q26

select count(*) from ACTVARS A,TIMELEVEL T

where A.time_level=T.tid and T.month_level = ’11’;

--Q27

select Product_level,Time_level,Avg(unitssold) from Actvars A,Timelevel T

where A.time_level=T.tid and T.month_level = ’12’

group by Product_level,Time_level;

--Q28

select year_level,month_level, Max(unitssold)

from Actvars A,Custlevel C ,Timelevel T

where A.customer_level=C.store_level and A.time_level=T.tid and

C.retailer_level = ’AB7D9LJB7BR9’ group by year_level,month_level;

--Q29

select count(*) from ACTVARS A,CUSTLEVEL C

where A.customer_level=C.store_level and C.retailer_level = ’F92YG4VUUA8A’;

--Q30

select Product_level, SUM(unitssold) from Actvars A, Custlevel C

where A.customer_level=C.store_level and C.retailer_level = ’RVC90K3MWOFA’ group by Product_level;

--Q31

select count(*) from ACTVARS A,CHANLEVEL CH

where A.channel_level=CH.base_level and CH.all_level =’AVC90K3MWOFA’;

--Q32

select count(*) from ACTVARS A,CHANLEVEL CH

where A.channel_level=CH.base_level and CH.all_level =’DEFGHIJKLMNO’;

--Q33

select year_Level,month_level, sum(dollarsales)

from Actvars A,Custlevel C,Prodlevel P ,Timelevel T

where A.customer_level=C.store_level and A.time_level=T.tid and A.product_level=P.code_level

and P.class_level=’OC2WOOC8QIJ6’ and C.retailer_level=’F92YG4VUUA8A’ group by year_level,month_level;

--Q34

select sum(dollarsales) from ACTVARS A, PRODLEVEL P,TIMELEVEL T

where A.product_level=P.code_level and A.time_level=T.tid and T.quarter_level=’Q2’ and T.year_level=’1996’ and P.class_level=’LB2RKO0ZQCJD’;

--Q35

select Customer_Level, Time_level, Avg(Unitssold)

from Actvars A, Chanlevel H, Prodlevel P, Timelevel T,Custlevel C

where A.product_level=P.code_level and A.time_level=T.tid and A.channel_level=H.base_level and P.class_level=’LB2RKO0ZQCJD’

and H.all_level =’ABCDEFGHIJKL’ and T.quarter_level=’Q1’

group by Customer_level, Time_level;

--Q36

select year_Level, division_level, Max(Unitssold)

from Actvars A, Custlevel C,Timelevel T ,Prodlevel P

where A.customer_level=C.store_level and A.product_level=P.Code_level and A.time_level=T.tid and T.month_level=’1’

and C.retailer_level=’F92YG4VUUA8A’ group by year_level, division_level;

--Q37

select sum(dollarsales), Avg(Unitssold) from Actvars A, Custlevel C,Timelevel T

where A.customer_level=C.store_level and A.time_level=T.tid and

T.month_level=’12’ and C.retailer_level =’F92YG4VUUA8A’;

--Q38

select Time_level,Min(unitssold)

from Actvars A, Chanlevel H,Timelevel T, Custlevel C

where A.channel_level=H.base_level and A.time_level=T.tid and T.year_level=’1996’ AND T.quarter_level=’Q3’

and H.all_level=’DEJ90EA8F40J’ group by Time_level;


