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ABSTRACT

Current databases and their associated langudgesaaliser to exploit data according to their
logical model. Usuallythere is a gap between this logical model and theaaconcepts
represented. As a consequence, exploiting, exchgragid integrating data stored in
databases are difficult. To overcome these prohlemseral approaches have proposed
to extend current databases with ontologies. Weda@Intology-Based Databases
(OBDB)such databases. However, current database langsiageas SQL have not
been designed to exploit ontologies. Thus, a neveiggion of languages we called
ontology query languagdsas emerged. The goal of this chapter is to peoaiup to
date survey on ontology query languages. We suareyuages coming from the
Semantic Web community as well as those coming tteerdatabase community.
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INTRODUCTION

Data warehouses are designed to aggregate datallanddecision makers to obtain accurate,
complete and up to date information. In currenadeérehouses, queries are issued to the logical
model of data, making direct use of the table antlron information that describes the
persistence structure. Usually, there is a gap dmtvithis logical model and the actual business
concepts used by decision makers. As a consequesees of data warehouses have to use
existing documentation (e.g, data dictionaried) any and if not out of date — to discover the
meaning of tables and columns. This makes usingjaedying a data warehouse problematic for
all users that have not designed it.

Defined by Gruber as “an explicit specificationao€onceptualization”, ontologies have been
proposed to explicit the semantics of data. Thégwako describe, in a consensual way, the
relevant concepts of a given application domairusTihhe idea to describe a data warehouse with
ontologies in order to make explicit the semantitdata stored has emerged (Xuan et al., 2006).
This idea is concretized by introducing an ontatagiayer in a data warehouse. This layer can
be used by decision makers to express queries umisiness concepts they are used to
manipulate. However, existing query languages s1scBQL or OQL have not been designed to



exploit ontologies. For this purpose, a new gelmmadf query languages, calletitology query
languageshas emerged.

The goal of this chapter is to provide an up toedsurvey on the capabilities of existing
ontology query languages to manage databases extavith_ontologies we catintology-based
databasefOBDBSs).Previous surveys on ontology query languages €Bat al. 2005; Haase et
al. 2004) have focused on the capabilities of Sé¢imalieb query languages to manage RDF-
Schema ontologies and data whatever be the useysteystem. In this chapter, we propose to
complete these previous surveys by taking a datatwasnted point of view. Thus, this chapter
discusses two representatives of Semantic Web quanguages, namely SPARQL
(Prudhommeaux and Seaborne, 2008) and RQL (Kaaralis et al., 2004) as well as two
representatives of database-oriented ontology gaeguages namely, Oracle extension to SQL
(Chong et al., 2005; Wu et al., 2008) and Onto(@ag) 2007; Jean et al., 2006) .

This chapter is organized as follows. In sectiomw&, present our point of view on domain
ontologies and their classification. We conclude section by describing our proposed extension
of the traditional ANSI/SPARC database architectuigh ontologies. Requirements for an
exploitation language of this proposed architectare then defined in section 3. These
requirements are used to compare some existing r8envileb Query Languages and database-
oriented _ontology query languages in section 4 &ndFinally, section 6 concludes this
comparison and introduces future work.

DOMAIN ONTOLOGIES AND THEIR APPLICATION TO DATABASE

In this section, we present the database-orientet pf view on_ontologies we take (Jean et al.,
2007b;Fankam et al., 2008 compare existing ontology query languages.

Definition and Classification of Domain Ontologies

Several definitions have been proposed for_an ogyo(Gruber, 1993; Guarino, 1998). In our
work a domain _ontology is “a formal and consendlielionary of categories and properties of
entities of a domain and the relationships that kmhong them”. This definition emphasizes
three criteria that distinguish ontologies from estimodels used in Computer Science. An
ontology is:
1. formal: it is based on a logical axioms and may be ggsed by computers; so checking
consistency and performing automatic reasoningrede possible;
2. consensualin a community, i.e. several members have agrgeaoh uhe concepts
represented in the ontology;
3. has thecapability to be referenced universally unique identifier can be used toimef
the semantic of a piece of data, whatever are thaeting schema of the ontology and
the data model.

All ontologies are not similar. We distinguish tineee following categories :

» Conceptual Canonical Ontologies (CCOgrovide concepts definitions without
redundancy. In CCOs (for example, (IEC61360-4, Jpd98formation is represented in
terms of classes and properties that have unicraifibrs.

« Non Conceptual Canonical Ontologies (NCC@sentain not only primitives concepts
(canonical) but also defined concepts, i.e. thaseepts for which the ontology provides



a complete axiomatic definition by means of neagssand sufficient conditions
expressed in terms of other - primitive or defin@dncepts.

« Linguistic Ontologies (LOsylefine terms appearing in the universe of dismwka
given domain. Relationships between terms are oeghtin a semi-formal way by
linguistic relationships (e.g, synonymy or hyponymdn example of LO is Wordnet.

These three categories of ontologies can be comihitie a layered model, called the Onion
Model, shown in Figure 1. At the heart of this middea CCO. It provides with a formal basis to
model and to exchange efficiently the knowledgea afomain. From primitive concepts of the
CCO, a NCCO can be designed. This NCCO providesstagetors to relate different
conceptualizations made on this domain. FinallyL@ may provide a natural language
representation of NCCO or CCO concepts, possibthénvarious natural languages where these
concepts are meaningful.

Class Expressiol

Description Logi <> : operators tderive

NCCO concepts from
CCOconcept

<-> : operators tderive
LO concepts from CCO

Propert) Expression or NCCOconcept

Derivation Functio

Figure 1. The onion model of domain Ontology

When they are designed according to the onion maablogies have always a canonical
layer, they may have a non canonical layer and &hegys have a minimum of linguistic aspects
and in particular, terms that denote the represeatmcept. In this chapter, we focus on the
exploitation of such ontologies in databases.

Extension of the ANSI/SPARC Architecture with Ontologies

The major objectives of a database are to ensuedfigient management of data and to provide
access to data independently of their physicalesgtation. The ANSI/SPARC architecture has
been proposed to fulfil these objectives. It digtilshes two main access levels:
« the physical levelwhich defines how data are stored and managedg uairfile
management system;
» thelogical levelwhich defines how data are structured using thebdse data model
(e.g., the relational or object model).

When designing a database according to this aothite a large amount of data semantics
may be lost during the transformation from the eptoal model (CM) to a logical model.



Moreover, the meaning of the CM is not formally dowented, and thus it cannot be stored in the
database. To solve these difficulties, referenceart_ontology appear as a relevant solution.
Thus, we propose to extend this architecture whth ontological level. This level defines
explicitly data semantics. Moreover, the CM will baodelled by referring to the ontology
concept to which they correspond. This extendelitecture is shown in Figure 2.
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(A) Traditional ANSI database architectt (B) Proposed architectu
Figure 2. Proposed extension of ANSI/SPARC Ardhitec

Figure 2(A) presents the traditional database sechire. A conceptual model is represented
in a modeling language like Entity-Relationshipemhit is often used to generate automatically
the logical model of data. This logical model ipnesented at the physical level by a set of files.
In Figure 2(B) we propose to extend this architextuith the following elements.

» Ontological level It is composed of one (or several if the scopeth# system
encompasses the domain of several existing onespgintology defining the concepts of
the universe of discourse in terms of well-defiokbses and properties.

» Subsumption linksThey link the ontological and conceptual levésis defining the set
of ontology concepts used to fulfil applicationgugements. The meaning of these links,
represented in the CM by the absolute identifieamfontology concept, is that the CM
concept is equal or is a special case of the nefect ontology concept (i.e.,
subsumption).

The goal of this chapter is to study capabilitiésxisting ontology query languages to exploit
the OBDB architecture proposed in this sectionsTahguage should (1) be®mogeneoys.e. it
should provide an access to the different levelghisf architecture meaningful for the end-user
and (2) it should exploit the specificities of thadifferent levels. We detail these requirements in
the next section.

REQUIREMENTS FOR AN EXPLOITATION LANGUAGE OF OBDB

To illustrate our proposed requirements for an @fqtion language of the OBDB architecture
presented in the previous section, we use the agyabresented as a graph on Figure 3. This
example is an extract of the SIQC ontolobitf:// sioc-project.orgl This_ontology describes the



domain of on-line communities. A forurkr@grum) is hosted by a siteS{te ) administered by a
moderator lfas_moderator ). Users (User ) can subscribe to forumsupscriber_of ) and
create messageBdst ) on these forumsh@s_container ). Several answers may be provided
for a given messagbds_reply ).

Ontology Resource String
http://rdfs.org/sioc/ns T W

title first_name

content +  gtrin g Iast_pame @
email
Legend : | has_creator ’[‘
> Class ‘ has_moderator T
—> Property subscriber_of (collection)
—> Inheritance

Figure 3. Running example

Requirements Resulting from the Onion Model

One of the most important characteristics of theSNSPARC architecture is to separate the
physical and logical representation of data. Dafinimanipulating and querying data at the
logical level independently of their physical reggatation are possible. Our architecture adds
one more independency, representing both the cturedepnd the ontological description of the

represented data. Thus, exploitation of data indegetly of their logical schema is possible.

Requiremert 1: (Queries at the ontological leve) The language should allow to
express queries at the ontological level indepetiglehthe logical representation
(schema) of data.

Example. Retrieve all (direct and/or indirect) instancedtaf classtem .

Another fundamental characteristic of the ANSI/SRAR chitecture is to define an external
level. This level defines external schemas (vietha) reflect users perception of the application
domain (e.g., woman in place of person whose geisdfamale). These views can be used to
define queries. The query engine rewrites them rdaoog to the logical model of data. In our
architecture, the NCCO layer of an ontology prowiilswvs at the onlogical level. It allows each
user to represent its own perception of the apidicalomain by defining non canonical concepts
expressed in terms of other - canonical or non mi@ab- concepts. Thus, the language should
support the exploitation of such concepts.

Requirement z: (Definition of non canonical concepts The language should support the
definition of non canonical concepts. Queries magkpressed using these concepts, the query




| engine interpretir them in terms of canonical conce

ExampleCreate the clag3ostDupont defined as all messages of the U3epont .

The last layer of the Onion Model is composed eflt part. When an ontology is designed
according to the Onion Model, its LO part assosidteeach concept, one or several terms and
textual definitions. These linguistic definitiondosy human users to understand the ontology and
to reference ontology concepts using their nambss@ linguistic definitions are often given in
different natural languages. To make it easy fomimers of different countries to use the same
ontologies, the language may support the definiiot exploitation of multilingual LO.

Requirement & (Linguistic exploitation) The language should support the definition and
exploitation of linguistic definitions of conceptsgat may be defined in different natural
languages.

Example.Return the first name and last name of users wijhexy written using English names
of concepts and one using French names.

The Onion Model is based on the complementarityoofology models. Indeed, many
ontology models have been proposed such as RDFR¥&clBrickley and Guha, 2004), OWL
(Dean and Schreiber, 2004) or PLIB (Pierra, 2008)these ontology models have constructors
to define a CCO composed of classes, propertigatyp@s, and instances. In addition to these
core constructors, each ontology model providesiipeonstructors to define an ontology. For
example, PLIB provide constructors to define prelgisind contextually primitive concepts while
OWL provides conceptual equivalence constructodefine a NCCO. All these constructors are
useful to define an ontology according to the Ortadel. Thus, the language should be able to
integrate constructors coming from different ongglonodels. This feature would also help to
support evolution of existing ontology models (fexample, the support of OWL2 (Patel-
Schneider and Motik, 2008)).

Requirement _4: (Ontology model extensibility) The ontology model supported by the
language should be extendable to support its éealaind to manage ontologies defined with an
other ontology model.

Example Add the OWL constructoAllValuesFrom  (a class composed of all instances
whose values of a given property are all instainé@sgiven class) to the ontology model
supported by the language.

Requirements Resulting from Preserving Compatibility with the
ANSI/SPARC Architecture

Our proposed architecture extends the ANSI/SPAR®Bitcture, and thus, it also includes the
usual logical level. Since many applications hawerb built using the SQL language to
manipulate data at this level, the language sheuftport manipulation of data not only at the
ontological level (see previous section) but alstha logical level. Thus, the language will keep
upward compatibility for existing applications awdl permit to manipulate data at the different
levels of our proposed architecture.



Requirement 5: (SOL compatibility) The language should permit the manipulation o G
the logical level preserving SQL compatibility.

Example Assuming that instances of the classer are stored in the tablE User (uri,
first_name, last_name, email) , retrieve all users using a SQL query.

Designing a layered architecture has the drawbackntrease the complexity of data
processing in upper levels. The introduced complehas in general consequences on efficiency
of query processing. In such architecture, one t@agptimize processing at a given level is to
use the lower level (e.g., create an index to dpértogical queries). In the proposed architecture,
the ontological level has been added on top ofcibreceptual level. Thus, to optimize query
processing at this level, the DBMS shall provideaaness to the lower level, i.e. the conceptual
level.

Requirement 6: (Access to the conceptual model ofath) The language should allow to
define, manipulate and query the conceptual madgata from the ontological level.

ExampleCreate the conceptual model of data corresponditiget clas$Jser knowing that only
the propertiefirst_ name , last name andemail will be used in the target application.

Requirements on the Expressive Power of the Language

In traditional databases, the data definition lamgu(DDL) is used to create tables and the data
manipulation language (DML) to insert rows with ithproperties values. The DML has the
advantage to be a powerful declarative languagegbembined with the query language. In the
proposed architecture both ontologies and datestaned. A data definition and manipulation
languages is required to define and manipulate them

Requirement 7. (Ontology & data definition and manipulation) The language should offa
definition and manipulation language for ontologesl data.

ExampleCreate the claddser of our example and add some instances.

Ontologies are a conceptualization of a domainragnait covering a wide and diverse range of
technical and business requirements. As a conseguemtologies usually define a lot of
concepts. For example, the IEC ontology (IEC61360:999) on the domain of electronic
components contains approximately 100 classes amd than 1000 properties. Moreover, users
of an_ontology are rarely its designer. Thus, ushmild have a mean to discover ontologies with
the language.

In addition, since an ontology defines generallptaof concepts, a hierarchy of classes may
have many levels. When a query is expressed oass elt a given level, the result may contain
instances of this class and of its subclasses.,thase instances can be associated to different
ontological description that the user may wanetoieve. This example shows the need to be able
to query both ontologies and data. Notice that¢hjzability would also be useful to extract a part
of an_ontology with its instances. In traditionahtjuages, this operation requires the composition



of two queries. Thus, this capability would be uséf distributed architecture where the network
trips have to be minimized.

Requirement & (Queries onontologies and on ontologies and dat: The language shou
offer querying capabilities on ontologies and bohontologies and data.

Example Return all instances dResource . For each instance, retrieve also the classes it
belongs to.

In this section, we have defined a requirementsipation for an exploitation language of
the OBDB architecture defined in section 3. A laagg fulfilling these requirements would allow
to fully exploit this architecture. Using these uggments, we are now able to compare existing
ontology query languages.

ANALYSIS OF SEMANTIC WEB ONTOLOGY QUERY LANGUAGES

A lot of ontology query languages have been propasehe context of the Semantic Web. In a
recent survey (Bailey et al., 2005), these langsiage classified in seven categories (SPARQL
family, RQL family, languages inspired from XPaXSLT or XQuery, languages in controlled
English, languages with reactives rules, deductareguages and other languages). In this
section, we present a representative languageedfmb first categories that fit the most with the
requirements we have defined.

SPARQL

The first category of language is named “SPARQLIfigin It is composed of the languages
SPARQL (Prud’hommeaux and Seaborne, 2008), RDQhl&me, 2004), SquishQL (Miller et
al., 2002) and TriQL (Caroll et al., 2005). Thesmduages consider all information (both
ontologies and instances data) as a set of RDIgi{gubject, predicate, object)
As a representative we have chosen SPARQL whiahW8C Recommendation.

SPARQL is a graph-matching query language. A qeensists of a pattern (a set of triples
with variables and filters) defined in tM¥HEREIlause. This pattern is matched against a data
source, and the values obtained from this matchiegprocessed in tH&ELECT clause to give
the answer. We describe more precisely this languag discussing its capability w.r.t. the
defined requirements.

Requirement 1 (Queries at the ontological level)

Example The following SPARQL quefycan be used to rretrieve the instances of thesclas
Item.

SELECT ?i

WHERE {?i rdf:type sioc:ltem}

Explanation The triple in theFROMclause introduces the varialite (a variable is prefixed by
?) to iterate over instances of the clét®sn. This variable is specified in tHeELECTclause
to return its values.

! For readability and conciseness, we omit spetifina of namespaces and use names instead of URI.



However, the result of the previous query depemdthe triples represented in the OBDB. On

the one hand, if for a clagy a triple (i, rdf:type, C) is represented for each direct or
indirect instance o, then the previous query returns also all theaimsts of the clasBost
subclass oftem . On the other hand, if a triple rdf:type, C) is represented only for

each direct instance @, then the query returns only direct instancesCaidnless the query
interpreter computes the transitive closure ofghbsumption relationship. Thus, the SPARQL
fulfill partially this requirement. Ontological gties can be expressed but their results depend on
the represented triples or of their interpretation.

Requirement 2 (Definition of non canonical concepls

SPARQL does not provide a data definition langudgeaus, it can not be used to define non
canonical concepts. However, if these concepts baea defined in the data source, SPARQL
provides &ONSTRUCTuery form that can be used to compute automstittadir instances.

Example Compute instances of the clé&&sstDupont
CONSTRUCT ?p rdf:type sioc:PostDupont
WHERE {?p rdf:type sioc:Post . ?p sioc:has_creator “Dupont}

Explanation.The WHEREIlause retrieves instance®pj of the clasdPost created by the user
Dupont . TheCONSTRUCTElause replaces the traditiorf@ELECTclause. It is constructed as a
WHERElause (a set of triples with variables and fijerThe result is a new RDF graph
constructed by replacing variables in tB®NSTRUCTlause by values satisfying tNeHERE
clause. Thus, each post created Doypont is associated to the claBostDupont in the
resulting graph.

Thus, SPARQL fulfill partially requirement 2. It manot be used to define non canonical
concepts but permits to compute their instaneatefision Notice that theCONSTRUCGuery
form produces a new RDF graph. As a consequencecanttary to views of databases,
extensions of non canonical concepts have to benmmpated whenever extensions of
corresponding canonical concepts are modified yinexample, each time a message is added or
deleted byDupont ).

Requirement 3 (Linguistic exploitation)

SPARQL is equipped with operators to manipulategtiefined in different natural languages.

Example.Return the first name and last name of users aifjuery written using English names
of concepts and one using French names.

SELECT ?fn ?In SELECT ?fn ?In

WHERE {?u rdf:type ?c . WHERE {?u rdf:type ?c .
?c rdfs:label “User"@en . ?c rdfs:label “Utilisateur"@fr .
?u sioc:first_name ?fn . ?u sioc:first_name ?fn .

?u sioc:last_name ?In} ?u sioc:last_name ?In}




Explanation The query written using English (resp. Frenchjes is on the left (resp. right) part.
The WHERElause of this query retrieves instances)(of a class {c) whose name in English
(suffix @er) is User . The query written in French is equivalent to thie. The suffix@fr allow

to use the French name of the cldser (“Utilisateur” ).

Thus, SPARQL fulfil requirement 3. It provides alsther functions to manipulate multilingual
ontologies. For example, ti@ng function return the natural language of a giveimgt

Reqguirement 4 (Ontology model extensibility)

SPARQL does not provide a definition language fototbgy and thus we can not define the
OWL AllValuesFrom constructor (sample example). However, since SPIAR@s been
designed for RDF, it considers an OWL ontology agteof triples that use the OWL constructors
defined in the OWL namespace. Thus, it can be tsgdery OWL ontologies but the semantics
of OWL constructors has to be coded in the quetsrjmeter.

Requirements 5 and 6 (Compatibility with the traditional database architecture)

Even if a SPARQL query has a form similar to an S@kry (clauseSELECT-FROM-WHERE

it is adapted to RDF (triples) querying and thussidifferent from SQL (requirement 5). In
addition, data schema is considered fixed (subjgetlicate, object) and thus SPARQL does not
provide any operator to modify it (requirement 6).

Requirement 7 (Ontology & data definition and manigulation)

Currently, SPARQL provides only a query languadesinot equipped with a definition and
manipulation language (requirement 7). Thus, diédimiand manipulation of data are considered
external functionalities provided by the data seuithe need of a standard mechanism to update
data sources has been addressed in (Seaborne amjdnkth, 2008) with the proposition of
SPARQL/Update. But, this language is not yet iraégpt in the recommendation of the W3C.

Requirement 8 (Queries on ontologies and on ontolexs and data)

Since, SPARQL considers all information as RDF dittacan be easily used to combined
ontology and data querying.

Example Return all instances &fesource with the classes it belongs to.
SELECT ?i ?c
WHERE {?i rdf:type sioc:Resource . ?i rdfitype ?c}

Explanation The first triple of theWHEREclause retrieves instance®i | of the class
Resource . The second triples retrieves class#s) (these instances belong to.

Notice that in this example, like in all SPARQL ges, results depend on the triples
represented in the data source and/or the intetjoetof these triples by the query interpreter.



RQL

The second category of Semantic Web languagedlésl ¢RQL family”. It is mainly composed
of the languages RQL (Karvounarakis et al., 208RQL (Broeskstra and Kampman, 2003)
and eRQL (Tolle and WIieklinski, 2004). We have @mo$o discuss the RQL language which is
the most complete.

RQL has been designed following a functional apghmoaimilar to the object-oriented
language OQL (Cattell, 1993). Thus, simple querieansist of function calls (e.qg,
SubClassOf(Resource) to retrieve all subclasses Besource ). More elaborate queries
can be defined using a traditiorBELECT-FROM-WHEREyntax. TheFROMlause introduces
path expressions (with variables) built from a eétpredefined basic path expressions and
operators (e.gC{X} is a basic path expression that introduces ahlar¥aon all instances of the
classC). The WHERElause is used to define conditions on variabhoduced in theFROM
clause. Finally, th€ ELECTclause defines the variable projected in the tébké in SPARQL).

RQL is also composed of a manipulation languageedaRIJL (Magiridou et al., 2005) and a
view language named RVL (Magkanaraki et al., 2004&. present these different languages by
discussing capabilities of RQL to fulfil the progasrequirements.

Requirement 1 (Queries at the ontological level)

The data model of RQL is based on RDF-Schema. 3tinduish clearly the data, ontology and
ontology model levels, the data model of RQL hamesoestrictions compared to RDF-Schema
(e.g., a class can not be subsumed by an ontolagielhtonstructor). Yet, this model contains
the main constructors of RDF-Schema (class, prgentl subsumption) and thus, queries at the
ontological level are possible.

ExampleRetrieve all instances of the cldtsm
SELECT |
FROM sioc:ltem{l}

Explanation TheFROMclause introduces the variableon all (direct and indirect) instances of
the classltem . The SELECT clause projects URI of these instances. To redrienly direct
instances, the clas®m must be prefixed with (i.e.,Mltem )

Requirement 2 (Definition of non canonical concepis

The view language associated to RQL (RVL) can us represent non canonical concepts
such as OWL restrictions.

ExampleCreate the clag3ostDupont defined as all messages of the Usepont .
CREATE NAMESPACE myview=&http://www.lisi.ensma.fr/e X-view.rdf#
VIEW rdfs:Class(“PostDupont”)
Property(P, PostDupont, range(P))
FROM Property{P}
WHERE domain(P) >= sioc:Post
VIEW PostDupont(P), title(P, T), has_creator(P, C )



FROM sioc:Post{P}.sioc:title{T}, {P}sioc:has_creato r{C}
WHERE C = “Dupont”

Explanation.In RVL, views (non canonical concepts) are separdtom classes (canonical
concepts). Thus, a new namespace is created fos {tp://www.lisi.ensma.fr/ex-

view.rdf ). The firstVIEW clause is used to create the vieastDupont with all properties
defined on the cladost . This is done using a RQL query that searchgsrafierties defined on
Post or on a superclass Bost (domain(P) >= sioc:Post) . The secon¥/IEW clause

is used to compute instances of the vieestDupont by searching all messagd? (ith their
title (T) that have been created Bupont (C). Notice that, for conciseness, we have only
retrieved values of thétle property. To define the complete view, other prope values
must be searched.

Thus, RQL fulfil requirement 2. However, notice ttiae distinction between canonical and non
canonical concepts forbids the definition of subptiom relationships between these two kind of
concepts. Thus, it is necessary to reproduces rriths behaviour (by importing properties
and their values in the NCCO).

Requirement 3 (Linguistic exploitation)

RDF-Schema allows to associate names defined farelift natural languages to classes and
properties. It permits also to define string valireslifferent natural languages. RQL does not
exploit these features.

Requirement 4 (Ontology model extensibility)

The ontology model supported by RQL is composeithefconstructor€lass andProperty

This ontology model can be extended by speciatimatbf these two constructors. But, a
constructor can not be added if it does not infesin Class or Property . For example, this
limitation prevents to add thBocument constructor of PLIB (to describe a concept by a
document) or theOntology constructor of OWL (to regroup all concepts ddifin@ an
ontology). Moreover, if these capabilities are defl on the data model of RQL, the language
does not provide any operator to use them. Thuscave not use RQL to define the OWL
AllValuesFrom  constructor.

Reqguirements 5 and 6 (Compatibility with the traditional database architecture)

The syntax of RQL is close to the one of objecewtéd languages. However, it keeps no
compatibility with SQL (requirement 5). In additioRQL considers all instances as a URI

independently of the classes it belongs to andsgbrioperties values. Thus, it can not be used to
manipulate the data schema (requirement 6).

Requirement 7 (Ontology & data definition and manigulation)




As we have seen in requirement 4, RQL does notigeca syntax to define the ontology model
used. But RVL provides constructors to create nlasses and properties and RUL can be used
to insert new instances.

ExampleCreate the claddser of our example and add some instances.
VIEW Class(“User”)<Resource>

Property(“first_name”, User, xsd:string)

Property(“susbscriber_of”, User, Forum)

INSERT User(&http://www.lisi.ensma.fr/Dupont)
INSERT first_name (&http://www.lisi.ensma.fr/Dupont , “patrick”)

Explanation The constructo€lass takes only one parameter: the URI of the clagsiefme (for
readability we use only the nanidser). This class is defined as a subclassRetource
(operator <>). lts properties are defined with tHeroperty  constructor. It takes three
parameters: URI, domain and range of the propertjefine. The language RUL is then used to
insert one instance of the clddser . The operatiodNSERT s first used to define the URI of
the instance and then to define its properties eml(we define only value of the property
first_name ).

As this example shows, the RVL language is notraptete data definition language. It can
only be used to create classes with a URI and ptiepewith a URI, their domain and range.
Other characteristics of classes and propertigs, [@mes in different natural languages) can not
be specified. On the other hand, RUL provides aptete set of operation$NSERT-MODIFY-
DELETH to manipulate data.

Reqguirement 8 (Queries on ontologies and on ontol@s and data)

RQL is equipped with powerful path expressions thake it possible to query both ontologies
and data.

Example Return all instances &fesource with the classes it belongs to.
SELECT U $C

FROM $C{U}

WHERE C <= sioc:Resource

Explanation The basic path expressi®éc{U} of the FROMlause introduces a variablethat
denotes direct instances of a cl&3 (variables for classes are prefixed $yin RQL). The
WHEREclause adds a condition to retrieve only directanses oResource or of a subclass
of Resource . Finally, theSELECTclause projects the URI of instances and classes.

In this section, we have discussed capabilitieSehantic Web query languages w.r.t. the

defined requirements. In next section, we studgmolthAnguages that have been designed to keep
some degree of compatibility with traditional dagaés.

ANALYSIS OF DATABASE-ORIENTED ONTOLOGY QUERY LANGUAGES



Several languages have been defined specificatlyeXploiting ontologies stored in databases
such as Oracle extension to SQL (Chong et al., 2005 et al., 2008), OntoQL (Jean et al.,
2006), SOQA-QL (Ziegler et al., 2005) or CQL (Mizapi-Shimogori et al., 2002). In this
section we discuss the most recent and active appes i.e., Oracle extension to SQL and the
OntoQL exploitation language.

Oracle Extension to SQL

The main objective of Oracle (Chong et al., 200% &Y al., 2008) was to provide efficient RDF
data querying capabilities that integrate smoottith SQL queries. The proposed solution is a
SQL table function to query RDF data.

The table function nameDF_MATCHakes four parameters. The first parameter isaplgr
pattern to be matched. This graph pattern is defivigh a syntax similar to the claug¢HERIBf
SPARQL (basically a set of triples with variable$he second parameter specifies the RDF
graph to be queried. The third parameter spedifiesulebase (if any) that must be used to infer
new RDF data. A rulebase is composed of a setle§.rieach rule consists of a left hand side
graph pattern for the antecedents, filter cond#jcend a right hand side graph pattern for the
consequents. Notice that RDF-Schema inference (algs transitive closure of the subsumption
relationship) is created by the system (namdfd ) and available to users. Finally, the last
parameter specifies user-defined namespaces alilse®RDF_MATCHunction returns a table
having a column for each variable used in the grgitern. Thus, this function can be seamlessly
combined with SQL queries.

A strong effort has been made to optimize RigF_MATCHunction. Indeed, this function is
rewritten has a SQL query so that it can be optuaizvith the rest of the query. Moreover,
indexes and materialized views are used to exedfitéently queries. Scalability of the proposed
approach has been demonstrated on 80 million RipEgt

Reqguirement 1 (Queries at the ontological level)

The RDF_MATCHunction can be used to express ontological gsatEcomposed in a triples
pattern.

Example Retrieve instances of the cldsam.
SELECT t.i
FROM TABLE(RDF_MATCH('(?i rdf:type Item)’, NULL, NULL, NULL))

Explanation The table functiorRDF_MATCHks used in the claudEROMof the query. It only
takes a simple graph pattern as parameter to séastdnces of the cladteem (?i ). This
function returns a table with a column namedor the variable?i . This variable can be
projected in the&eELECTclause.

Like SPARQL, result of the previous query dependshe triple represented in the RDF data
source. For th&kRDF_MATCHunction, it depends also of the rulebase spetifiedeed, if we
specify therdfs rulebase in the previous example, all (direct amlirect) instances dtem
will be returned (the transitive closure of the suption relationship is computed by a rule).

Requirement 2 (Definition of non canonical concepis




The data manipulation language of SQL can be usedlefine the non canonical class
PostDupont A rule can be used to compute automaticallyitsresion (set of instances).

Examplé. Create the clasBostDupont  defined as all messages of the U3apont .

INSERT INTO rdf_example
VALUES (‘PostDupont’, rdf:type, rdfs:Class)

SELECT i FROM TABLE(
RDF_MATCH('(?i rdf:type PostDupont)’, NULL, rb_ example, NULL)

The rulebaseb_example contains the following rule:

(‘(?p rdf:type Post)(?p has_creator ?c)’,
“?c = Dupont’,
‘(?p rdf:itype PostDupont)’)

Explanation In this example, we suppose that a table namie@éxample has been created to
store RDF data. Afnsert  statement is used to insert the clRsstDupont . Instances of
PostDupont can be retrieved through a SQL query that usefRkle_MATCHunction. This
function infers all instances ¢fostDupont thanks to a rule. The meaning of this rule is the
following. If a messag@p has been created B¢ (antecedent defined in the first paramgter
which isDupont (filter defined in the second parameter), tf¥nis inferred to be an instance
of PostDupont  (consequent defined in the third paramgeter

Requirement 3 (Linquistic exploitation)

Like SPARQL, the graph pattern of tRODF_MATCHLunction can use string values suffixed by a
language code (e.g@fr for a French string). Thus, our sample queries lmanvritten like in
SPARQL (see section 4).

Reqguirement 4 (Ontology model extensibility)

Like SPARQL, theRDF_MATCHunction has been designed for RDF data and thasnsiders
OWL ontology as a set of triples that use the OWghstructors defined in the OWL namespace.
However, contrary to SPARQL, predefined rulebasespaovided to take into account semantics
of OWL constructors.

Requirements 5 and 6 (Compatibility with the traditional database architecture)

The RDF_MATCHunction is directly integrated in SQL (requirerh&). To use this function, a
table has to be created to store triples. Mategdliviews are automatically created to optimize

2 For conciseness, we use a simplified syntax. Famerdetails, the interested reader can consulDthele
documentationhttp://www.oracle.com/technology/tech/semantic_tetbgies/index.html




gueries on this table. However the representatfamiles in this table can not be customized
(requirement 6).

Requirement 7 (Ontology & data definition and manipulation)

The data manipulation language of SQL can be wsetkhte classes and instances.

ExampleCreate the claddser of our example and add some instances.
INSERT INTO rdf_example VALUES (‘User’, rdf:type, r dfs:Class)
INSERT INTO rdf_example

VALUES (‘User’, rdfs:subClassOf, ‘Resource’)
INSERT INTO rdf_example

VALUES (first_name’, rdf:type, rdf:Property ) ..
INSERT INTO rdf_example VALUES (‘Userl’, rdf:type, User)
INSERT INTO rdf_example VALUES (‘Userl’, first_name , ‘Patrick’) ...

Explanation.All information has to be inserted as RDF tripl€bus, manyNSERT statements
are necessary to insert the clils®r with its properties and its instances.

As this example shows, usage of the DML of SQL bartedious to create ontologies and
their instances.

Requirement 8 (Queries on ontologies and on ontol@s and data)

Since, the RDF_MATCHfunction provides similar graph pattern matchingpabilities as
SPARQL, it can be used to combined ontology and dagrying.

Thus, theRDF_MATCHis a powerful extension of SQL to query RDF data.the next
section we discuss the OntoQL exploitation languthge extends SQL following a different
approach.

OntoQL

OntoQL (Jean, 2007; Jean et al., 2006) has beémededpecifically for OBDBs. To exploit data,
OntoQL has been defined in different layers:

» data access at the logical level by compatibilithvQL;

» data access at the ontological level, CCO layemifve concepts being mainly defined
with object-oriented constructors, OntoQL adapts extends SQL99 providing powerful
relational-object operators;

» data access at the ontological level, NCCO layertoQL provides a View Definition
Language for defining and querying defined congepts

» data access at the ontological level, LO layer.hEalass and each property can be
referenced by a name (in a given natural languiagan OntoQL query.



Ontologies being recorded in OBDBs, OntoQL providaa Ontology Definition,
Manipulation and Query Language (ODL, OML and OQd)exploit them. To keep a uniform
syntax, these languages have been designed toaksgmax near SQL99. They are based on a
core ontology model that contains the main constracof existing ontology models. This core
ontology model is an object-oriented model compasiedlasses and properties named entities
and attributes to distinguish them from ontologgssles and properties. This core ontology model
can be extended with new entities and new attrfbuing the ODL. Since this model can be
extended, names of entities and attributes aremoided as keywords in the OntoQL grammar
but they are prefixed by the character #.

Reqguirement 1 (Queries at the ontological level)

Ontological queries can be expressed following &-8kg syntax.

Example Retrieve instances of the cldsam.
SELECT uri
FROM Item
USING NAMESPACE ‘http://rdfs.org/sioc/ns’

Explanation The USING clause is used to define a default namespacénéoqaiery. When the
SIOC namespace is set, each element without pfefix, Item ) is searched in this ontology.
This query retrieves all instances ltdm . To retrieve only direct instances, one can uge th
ONLYoperator like in SQL99 (i.eQNLY(Item) ).

Requirement 2 (Definition of non canonical concepis

OntoQL provides a View Definition Language to defimon canonical concepts.

Example Create the clag3ostDupont  defined as all messages of the uUsepont .
CREATE #Class PostDupont AS VIEW UNDER Post

CREATE VIEW OF PostDupont AS
SELECT * FROM Post AS p
WHERE p.has_creator.last_name = ‘Dupont’

Explanation. The first statement creates the cl&&sstDupond as a non canonical concept
(keywordVIEW), subclass oPost . The second statement defines the extension sfctags by
providing an OntoQL query that computes its insésnc

When non canonical classes are defined using OWistoactors (e.g., restrictions), an
inference engine can automatically compute subsomptlationships between canonical and
non canonical concepts. OntoQL (like RQL) has hi tapability: canonical and non canonical
classes must be placed manually in the hierarchy.

Requirement 3 (Linquistic exploitation)




In OntoQL, each class and each property can beergfed by a name in a given natural
language. It makes it possible to write the sanerygin many natural languages.

Example.Return the first name and last name of users aifjuery written using English names
of concepts and one using French names.

SELECT “first name”, SELECT prénom,
“last name” nom
FROM User FROM Utilisateur
USING LANGUAGE EN USING LANGUAGE FR

Explanation.The USING clause of OntoQL can be used to specify the ahtanguage in which
a query is expressed. The left query used Englishes. For names with a space (diggst
name) double quotes are used. The right query is etgrivdut written with French names.

Requirement 4 (Ontology model extensibility)

The ontology model supported by OntoQL can be @kddrusing its ODL.
Example Add the OWL constructofllValuesFrom

CREATE ENTITY #AllValuesFrom UNDER #Class(
#onProperty REF(#Property),
#allValuesFrom REF(#Class)

)

Explanation.An OWL restriction being a class, tii¢.L ValuesFrom constructor is added as a
subentity of#Class . This entity has an attributéallValuesFrom to specify the class in
which its instances take their values for the prgpgefined by the attributéonProperty

When an extension is made by specialization, likehie previous example, new entities
inherit the behaviour of their super entities. Tihaviour is defined in the operational semantics
of the core ontology model. Thus, every speciadtimabf the entity#Class defines a new
category of classes which supports by inheritartee @sual behaviour of a class. As a
consequence, each OWL restriction may be assodiataaontainer to store its instances. These
instances may be computed using a view (all insahaving all values of a property in a given
class). However, OntoQL does not provide yet thpabdity to express this semantics.

Requirement 5 (SOL compatibility)

If a default namespace is not specified, each elemiean OntoQL query without a namespace
alias prefix is considered as an element of thécégnodel (a table or a column). Thus, an
OntoQL query without namespace specification issamered as a SQL query (requirement 5).
Moreover, the semantics of OntoQL (an algebra)leeen defined so that each operator returns a
relation (Jean et al., 2007a). Thus, queries atldbical level and ontological level can be
combined (like Oracle).



Reqguirement 6 (Access to the conceptual model of @

OntoQL provides basic functionalities to define aodess the conceptual model of data.

Example.Create the conceptual model corresponding to thsstlser knowing that only the
propertiedirst_name ,last_ name andemail will be used in the target application.

CREATE EXTENT OF User (“first name”, “last name”, e mail)
TABLE T_User (first_name, last_name, ema il)

Explanation.The CREATE EXTENTstatement defines the conceptual model correspgridia
class specifying the set of properties used tordesmstances of this class. ThRABLE clause is
used to choose the logical implementation of tliaceptual model (i.e., tables and columns
necessary).

Currently, in OntoQL, the conceptual model of deaa only be defined through a subset of
the ontology.

Requirement 7 (Ontology & data definition and manipulation)

The data manipulation language of SQL can be usetktte classes and instances.

ExampleCreate the claddser of our example and add some instances.
CREATE #Class User UNDER Resource (

DESCRIPTOR (#name|fr] = ‘Utilisateur)

#property (“first name” String, “last name” Strin g, ...)

)
INSERT INTO User VALUES(‘Userl’, ‘Patrick’, ‘Dupond )

Explanation. The first statement creates the cld$ser. This class is defined as a class
(#Class ), subclass ofResource . The name in French of this class is specifiedtha
DESCRIPTORclause. The#property  clause is used to create properties havilsgr as
domain. The second statement supposes that wecheated an extent for the cladser (see
previous requirement). It uses a SQL-IINSERT statement to insert an instance.

One limitation of the data manipulation languageéatoQL is that it does not support multi-
instanciation, i.e., that an instance may belongminy classes not linked by subsumption
relationships. This limitation allows to define afficient storage structure when instances have
many properties values (Dehainsala et al., 2007).

Requirement 8 (Queries on ontologies and on ontol@s and data)

OntoQL is equipped of operators to combine ont@sgand data querying. In particular, it
provides thel YPEOFoperator to return the class an instance belangs t



Example Return all instances &fesource with the classes it belongs to.
SELECT r.uri, TYPEOF(r).#name[en]
FROM Resource AS r

Explanation The FROMlauses introduces the aliason instances of the claBesource . For
each instance, its URI is projected as well asrthme in English of the class it belongs to
(retrieved with thel YPEOFoperator).

This brief presentation of OntoQL ends our analysiscapabilities of_ontology query
languages to exploit OBDBs. We draw main conclusiorthe next section.

CONCLUSIONS

In this chapter, we have presented capabilitieh®fmain_ontology query languages to exploit
databases extended with ontologies. To compare theguages, we have first defined a set of
requirements for an architecture that extends thditional ANSI/SPARC architecture with
conceptual and ontological levels. Then, we haseudsed the capabilities of two Semantic Web
guery languages (SPARQL and RQL), and two databdeeted _ontology query languages
(Oracle extension to SQL and OntoQL) to fulfill Heerequirements. The result of this study is
summarized in Table 1. In this table, the symbads used when the requirement is fulfilled,
when it is partially fulfilled, and  when it is not fulfilled

SPARQL | RQL | Oracle | OntoQL

Queries at the ontological level 0] . 0] .
Definition of non canonical concepts 0] 0] o 0]
Linguistic exploitation o - o .
Ontology model extensibility 0] 0] o 0]
SQL compatibility - - o o
Access to the conceptual model of data - - - 0
Ontology & data definition and manipulation - 0] 0] 0]
Queries on ontologies and on ontologies and data o o o o

Table 1. Analysis of the main ontology query larggpsaw.r.t. to the defined requirements

Results presented in Table 1 lead us to draw thewimg conclusions. The main drawback
of SPARQL and Oracle approaches to query OBDBIsatthey consider all information as RDF
data. As a consequence, when querying at the gitalolevel, the semantics of the ontology
models has to be coded either in the query integpdf SPARQL or by a set of deductive rules
in the Oracle approach. Moreover, they don't previgherators to exploit this semantics (e.g., an
operator to retrieve direct instances of a cla&spther consequence is that the syntax of these
two languages is adapted to query triple data. Aersequence, an ontological query has to be
decomposed in triples (e.@i rdf:type User) (?i sioc:name ?n) for retrieving
names of users) which can be tedious for users.



On the contrary, the semantics of RQL and Onto(®.l@sed on the core constructors of
ontology models. They provide a syntax near the anebject-oriented query languages. We
think that this syntax is more adapted for ontaégghan a triple syntax because ontologies share
many constructors with the object-oriented dataehod

However, RQL and OntoQL may benefit from effortsdmdy Oracle to provide semantics
technologies. Indeed, Oracle provides customizabte optimized triple storage with capability
to load quickly a huge amount of RDF data. Thusiolgr provides the built-in functions to serve
as a scalable storage structure for RQL or Ontd@dreover, Oracle is now equipped with an
inference engine for RDFS/OWL constructs which via# particularly useful for RQL and
OntoQL to take into account the semantics of OWiIs. & future work we plan to put this
observation in application by implementing OntoQi.top of Oracle.
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KEY TERMS & DEFINITIONS

Ontology: a formal and consensual dictionary of categories and properties of
entities of a domain and the relationships that hold among them.

Ontology-based Database (OBDB): a data source which contains i) a (local)
ontology, ii) possibly some references from this ontology to external (shared)
ontologies, iii) a set of data, iv) and finally a relationship between each data and
the ontological notion which explicit its meaning. An OBDB has two main
characteristics: i) both ontologies and data are represented in a unique database
and the same processing can be applied on them (Insert, Update, Querying,
Versioning, etc.); ii) any data is associated to an ontological element which
defines it meaning and vice versa (Dehainsala et al., 2007).

Ontology query language: a language that has been designed to exploit
ontologies and their instances.
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