
Ontology Ontology Ontology Ontology Query Languages for Query Languages for Query Languages for Query Languages for

OntologyOntologyOntologyOntology----Based DatabasesBased DatabasesBased DatabasesBased Databases: a S: a S: a S: a Surveyurveyurveyurvey

Stéphane Jean
LISI/ENSMA and University of Poitiers, France
Yamine Aït Ameur
LISI/ENSMA and University of Poitiers, France
Guy Pierra
LISI/ENSMA and University of Poitiers, France

ABSTRACT
Current databases and their associated languages allow a user to exploit data according to their
logical model. Usually, there is a gap between this logical model and the actual concepts
represented. As a consequence, exploiting, exchanging and integrating data stored in
databases are difficult. To overcome these problems, several approaches have proposed
to extend current databases with ontologies. We called Ontology-Based Databases
(OBDB) such databases. However, current database languages such as SQL have not
been designed to exploit ontologies. Thus, a new generation of languages we called
ontology query languages has emerged. The goal of this chapter is to provide an up to
date survey on ontology query languages. We survey languages coming from the
Semantic Web community as well as those coming from the database community.

Keywords: Ontology, Ontology-Based Database (OBDB), Ontology Query Language

INTRODUCTION
Data warehouses are designed to aggregate data and allow decision makers to obtain accurate,
complete and up to date information. In current data warehouses, queries are issued to the logical
model of data, making direct use of the table and column information that describes the
persistence structure. Usually, there is a gap between this logical model and the actual business
concepts used by decision makers. As a consequence, users of data warehouses have to use
existing documentation (e.g, data dictionaries) - if any and if not out of date – to discover the
meaning of tables and columns. This makes using and querying a data warehouse problematic for
all users that have not designed it.

Defined by Gruber as “an explicit specification of a conceptualization”, ontologies have been
proposed to explicit the semantics of data. They allow to describe, in a consensual way, the
relevant concepts of a given application domain. Thus, the idea to describe a data warehouse with
ontologies in order to make explicit the semantics of data stored has emerged (Xuan et al., 2006).
This idea is concretized by introducing an ontological layer in a data warehouse. This layer can
be used by decision makers to express queries using business concepts they are used to
manipulate. However, existing query languages such as SQL or OQL have not been designed to

exploit ontologies. For this purpose, a new generation of query languages, called ontology query
languages, has emerged.

The goal of this chapter is to provide an up to date survey on the capabilities of existing
ontology query languages to manage databases extended with ontologies we call ontology-based
databases (OBDBs). Previous surveys on ontology query languages (Bailey et al. 2005; Haase et
al. 2004) have focused on the capabilities of Semantic Web query languages to manage RDF-
Schema ontologies and data whatever be the used storage system. In this chapter, we propose to
complete these previous surveys by taking a database-oriented point of view. Thus, this chapter
discusses two representatives of Semantic Web query languages, namely SPARQL
(Prud'hommeaux and Seaborne, 2008) and RQL (Karvounarakis et al., 2004) as well as two
representatives of database-oriented ontology query languages namely, Oracle extension to SQL
(Chong et al., 2005; Wu et al., 2008) and OntoQL (Jean, 2007; Jean et al., 2006) .

This chapter is organized as follows. In section 2, we present our point of view on domain
ontologies and their classification. We conclude this section by describing our proposed extension
of the traditional ANSI/SPARC database architecture with ontologies. Requirements for an
exploitation language of this proposed architecture are then defined in section 3. These
requirements are used to compare some existing Semantic Web Query Languages and database-
oriented ontology query languages in section 4 and 5. Finally, section 6 concludes this
comparison and introduces future work.

DOMAIN ONTOLOGIES AND THEIR APPLICATION TO DATABASE
In this section, we present the database-oriented point of view on ontologies we take (Jean et al.,
2007b; Fankam et al., 2008) to compare existing ontology query languages.

Definition and Classification of Domain Ontologies
Several definitions have been proposed for an ontology (Gruber, 1993; Guarino, 1998). In our
work a domain ontology is “a formal and consensual dictionary of categories and properties of
entities of a domain and the relationships that hold among them”. This definition emphasizes
three criteria that distinguish ontologies from other models used in Computer Science. An
ontology is:

1. formal : it is based on a logical axioms and may be processed by computers; so checking
consistency and performing automatic reasoning are made possible;

2. consensual in a community, i.e. several members have agreed upon the concepts
represented in the ontology;

3. has the capability to be referenced. A universally unique identifier can be used to define
the semantic of a piece of data, whatever are the modeling schema of the ontology and
the data model.

All ontologies are not similar. We distinguish the three following categories :
• Conceptual Canonical Ontologies (CCOs) provide concepts definitions without

redundancy. In CCOs (for example, (IEC61360-4, 1999)), information is represented in
terms of classes and properties that have unique identifiers.

• Non Conceptual Canonical Ontologies (NCCOs) contain not only primitives concepts
(canonical) but also defined concepts, i.e. those concepts for which the ontology provides

a complete axiomatic definition by means of necessary and sufficient conditions
expressed in terms of other - primitive or defined - concepts.

• Linguistic Ontologies (LOs) define terms appearing in the universe of discourse of a
given domain. Relationships between terms are captured in a semi-formal way by
linguistic relationships (e.g, synonymy or hyponymy). An example of LO is Wordnet.

These three categories of ontologies can be combined into a layered model, called the Onion

Model, shown in Figure 1. At the heart of this model is a CCO. It provides with a formal basis to
model and to exchange efficiently the knowledge of a domain. From primitive concepts of the
CCO, a NCCO can be designed. This NCCO provides constructors to relate different
conceptualizations made on this domain. Finally, a LO may provide a natural language
representation of NCCO or CCO concepts, possibly in the various natural languages where these
concepts are meaningful.

Figure 1. The onion model of domain Ontology

When they are designed according to the onion model, ontologies have always a canonical

layer, they may have a non canonical layer and they always have a minimum of linguistic aspects
and in particular, terms that denote the represented concept. In this chapter, we focus on the
exploitation of such ontologies in databases.

Extension of the ANSI/SPARC Architecture with Ontologies
The major objectives of a database are to ensure an efficient management of data and to provide
access to data independently of their physical representation. The ANSI/SPARC architecture has
been proposed to fulfil these objectives. It distinguishes two main access levels:

• the physical level which defines how data are stored and managed using a file
management system;

• the logical level which defines how data are structured using the database data model
(e.g., the relational or object model).

When designing a database according to this architecture, a large amount of data semantics

may be lost during the transformation from the conceptual model (CM) to a logical model.

CCO

: operators to derive
NCCO concepts from
CCO concepts

Class Expression:
Description Logic

Other
…

Property Expression:
Derivation Function

NCCO
LO Property

Expression:

F-Logic : operators to derive

LO concepts from CCO
or NCCO concepts

Moreover, the meaning of the CM is not formally documented, and thus it cannot be stored in the
database. To solve these difficulties, references to an ontology appear as a relevant solution.
Thus, we propose to extend this architecture with the ontological level. This level defines
explicitly data semantics. Moreover, the CM will be modelled by referring to the ontology
concept to which they correspond. This extended architecture is shown in Figure 2.

Figure 2. Proposed extension of ANSI/SPARC Architecture

Figure 2(A) presents the traditional database architecture. A conceptual model is represented
in a modeling language like Entity-Relationship. Then, it is often used to generate automatically
the logical model of data. This logical model is represented at the physical level by a set of files.
In Figure 2(B) we propose to extend this architecture with the following elements.

• Ontological level. It is composed of one (or several if the scope of the system
encompasses the domain of several existing ontologies) ontology defining the concepts of
the universe of discourse in terms of well-defined classes and properties.

• Subsumption links. They link the ontological and conceptual levels, thus defining the set
of ontology concepts used to fulfil applications requirements. The meaning of these links,
represented in the CM by the absolute identifier of an ontology concept, is that the CM
concept is equal or is a special case of the referenced ontology concept (i.e.,
subsumption).

The goal of this chapter is to study capabilities of existing ontology query languages to exploit

the OBDB architecture proposed in this section. This language should (1) be homogeneous, i.e. it
should provide an access to the different levels of this architecture meaningful for the end-user
and (2) it should exploit the specificities of these different levels. We detail these requirements in
the next section.

REQUIREMENTS FOR AN EXPLOITATION LANGUAGE OF OBDB
To illustrate our proposed requirements for an exploitation language of the OBDB architecture
presented in the previous section, we use the ontology presented as a graph on Figure 3. This
example is an extract of the SIOC ontology (http:// sioc-project.org/). This ontology describes the

Physical layer

Logical layer

Conceptual layer

Ontological layer

CCO,NCCO, LO

(A) Traditional ANSI database architecture (B) Proposed architecture

transformation

implementation
implementation

transformation

subsomption links

Logical layer

Physical layer

Conceptual layer

domain of on-line communities. A forum (Forum) is hosted by a site (Site) administered by a
moderator (has_moderator). Users (User) can subscribe to forums (subscriber_of) and
create messages (Post) on these forums (has_container). Several answers may be provided
for a given message (has_reply).

Figure 3. Running example

Requirements Resulting from the Onion Model
One of the most important characteristics of the ANSI/SPARC architecture is to separate the
physical and logical representation of data. Defining, manipulating and querying data at the
logical level independently of their physical representation are possible. Our architecture adds
one more independency, representing both the conceptual and the ontological description of the
represented data. Thus, exploitation of data independently of their logical schema is possible.

Requirement 1: (Queries at the ontological level) The language should allow to
express queries at the ontological level independently of the logical representation
(schema) of data.

Example. Retrieve all (direct and/or indirect) instances of the class Item .

Another fundamental characteristic of the ANSI/SPARC architecture is to define an external

level. This level defines external schemas (views) that reflect users perception of the application
domain (e.g., woman in place of person whose gender is female). These views can be used to
define queries. The query engine rewrites them according to the logical model of data. In our
architecture, the NCCO layer of an ontology provide views at the onlogical level. It allows each
user to represent its own perception of the application domain by defining non canonical concepts
expressed in terms of other - canonical or non canonical - concepts. Thus, the language should
support the exploitation of such concepts.

Requirement 2: (Definition of non canonical concepts) The language should support the
definition of non canonical concepts. Queries may be expressed using these concepts, the query

engine interpreting them in terms of canonical concepts.

Example. Create the class PostDupont defined as all messages of the user Dupont .

The last layer of the Onion Model is composed of the LO part. When an ontology is designed

according to the Onion Model, its LO part associates to each concept, one or several terms and
textual definitions. These linguistic definitions allow human users to understand the ontology and
to reference ontology concepts using their names. These linguistic definitions are often given in
different natural languages. To make it easy for members of different countries to use the same
ontologies, the language may support the definition and exploitation of multilingual LO.

Requirement 3: (Linguistic exploitation) The language should support the definition and
exploitation of linguistic definitions of concepts that may be defined in different natural
languages.

Example. Return the first name and last name of users with a query written using English names
of concepts and one using French names.

 The Onion Model is based on the complementarity of ontology models. Indeed, many

ontology models have been proposed such as RDF-Schema (Brickley and Guha, 2004), OWL
(Dean and Schreiber, 2004) or PLIB (Pierra, 2008). All these ontology models have constructors
to define a CCO composed of classes, properties, datatypes, and instances. In addition to these
core constructors, each ontology model provides specific constructors to define an ontology. For
example, PLIB provide constructors to define precisely and contextually primitive concepts while
OWL provides conceptual equivalence constructors to define a NCCO. All these constructors are
useful to define an ontology according to the Onion Model. Thus, the language should be able to
integrate constructors coming from different ontology models. This feature would also help to
support evolution of existing ontology models (for example, the support of OWL2 (Patel-
Schneider and Motik, 2008)).

Requirement 4: (Ontology model extensibility) The ontology model supported by the
language should be extendable to support its evolution and to manage ontologies defined with an
other ontology model.

Example. Add the OWL constructor AllValuesFrom (a class composed of all instances
whose values of a given property are all instances of a given class) to the ontology model
supported by the language.

Requirements Resulting from Preserving Compatibility with the
ANSI/SPARC Architecture
Our proposed architecture extends the ANSI/SPARC architecture, and thus, it also includes the
usual logical level. Since many applications have been built using the SQL language to
manipulate data at this level, the language should support manipulation of data not only at the
ontological level (see previous section) but also at the logical level. Thus, the language will keep
upward compatibility for existing applications and will permit to manipulate data at the different
levels of our proposed architecture.

Requirement 5: (SQL compatibility) The language should permit the manipulation of data at
the logical level preserving SQL compatibility.
.
Example. Assuming that instances of the class User are stored in the table T_User (uri,
first_name, last_name, email) , retrieve all users using a SQL query.

Designing a layered architecture has the drawback to increase the complexity of data

processing in upper levels. The introduced complexity has in general consequences on efficiency
of query processing. In such architecture, one way to optimize processing at a given level is to
use the lower level (e.g., create an index to optimize logical queries). In the proposed architecture,
the ontological level has been added on top of the conceptual level. Thus, to optimize query
processing at this level, the DBMS shall provide an access to the lower level, i.e. the conceptual
level.

Requirement 6: (Access to the conceptual model of data) The language should allow to
define, manipulate and query the conceptual model of data from the ontological level.

Example. Create the conceptual model of data corresponding to the class User knowing that only
the properties first_name , last_name and email will be used in the target application.

Requirements on the Expressive Power of the Language
In traditional databases, the data definition language (DDL) is used to create tables and the data
manipulation language (DML) to insert rows with their properties values. The DML has the
advantage to be a powerful declarative language being combined with the query language. In the
proposed architecture both ontologies and data are stored. A data definition and manipulation
languages is required to define and manipulate them.

Requirement 7: (Ontology & data definition and manipulation) The language should offer a
definition and manipulation language for ontologies and data.

Example. Create the class User of our example and add some instances.

Ontologies are a conceptualization of a domain aiming at covering a wide and diverse range of

technical and business requirements. As a consequence, ontologies usually define a lot of
concepts. For example, the IEC ontology (IEC61360-4, 1999) on the domain of electronic
components contains approximately 100 classes and more than 1000 properties. Moreover, users
of an ontology are rarely its designer. Thus, users should have a mean to discover ontologies with
the language.

In addition, since an ontology defines generally a lot of concepts, a hierarchy of classes may
have many levels. When a query is expressed on a class at a given level, the result may contain
instances of this class and of its subclasses. Thus, these instances can be associated to different
ontological description that the user may want to retrieve. This example shows the need to be able
to query both ontologies and data. Notice that this capability would also be useful to extract a part
of an ontology with its instances. In traditional languages, this operation requires the composition

of two queries. Thus, this capability would be useful in distributed architecture where the network
trips have to be minimized.

Requirement 8: (Queries on ontologies and on ontologies and data) The language should
offer querying capabilities on ontologies and both on ontologies and data.

Example. Return all instances of Resource . For each instance, retrieve also the classes it
belongs to.

In this section, we have defined a requirements specification for an exploitation language of

the OBDB architecture defined in section 3. A language fulfilling these requirements would allow
to fully exploit this architecture. Using these requirements, we are now able to compare existing
ontology query languages.

ANALYSIS OF SEMANTIC WEB ONTOLOGY QUERY LANGUAGES
A lot of ontology query languages have been proposed in the context of the Semantic Web. In a
recent survey (Bailey et al., 2005), these languages are classified in seven categories (SPARQL
family, RQL family, languages inspired from XPath, XSLT or XQuery, languages in controlled
English, languages with reactives rules, deductive languages and other languages). In this
section, we present a representative language of the two first categories that fit the most with the
requirements we have defined.

SPARQL
The first category of language is named “SPARQL familiy”. It is composed of the languages
SPARQL (Prud’hommeaux and Seaborne, 2008), RDQL (Seaborne, 2004), SquishQL (Miller et
al., 2002) and TriQL (Caroll et al., 2005). These languages consider all information (both
ontologies and instances data) as a set of RDF triples (subject, predicate, object) .
As a representative we have chosen SPARQL which is a W3C Recommendation.

SPARQL is a graph-matching query language. A query consists of a pattern (a set of triples
with variables and filters) defined in the WHERE clause. This pattern is matched against a data
source, and the values obtained from this matching are processed in the SELECT clause to give
the answer. We describe more precisely this language by discussing its capability w.r.t. the
defined requirements.

Requirement 1 (Queries at the ontological level)

Example. The following SPARQL query1 can be used to rretrieve the instances of the class
Item.

SELECT ?i
WHERE {?i rdf:type sioc:Item}

Explanation. The triple in the FROM clause introduces the variable ?i (a variable is prefixed by
?) to iterate over instances of the class Item. This variable is specified in the SELECT clause
to return its values.

1 For readability and conciseness, we omit specifications of namespaces and use names instead of URI.

However, the result of the previous query depends on the triples represented in the OBDB. On

the one hand, if for a class C, a triple (i, rdf:type, C) is represented for each direct or
indirect instance of C, then the previous query returns also all the instances of the class Post
subclass of Item . On the other hand, if a triple (i, rdf:type, C) is represented only for
each direct instance of C, then the query returns only direct instances of C unless the query
interpreter computes the transitive closure of the subsumption relationship. Thus, the SPARQL
fulfill partially this requirement. Ontological queries can be expressed but their results depend on
the represented triples or of their interpretation.

Requirement 2 (Definition of non canonical concepts)

SPARQL does not provide a data definition language. Thus, it can not be used to define non
canonical concepts. However, if these concepts have been defined in the data source, SPARQL
provides a CONSTRUCT query form that can be used to compute automatically their instances.

Example. Compute instances of the class PostDupont

CONSTRUCT ?p rdf:type sioc:PostDupont
WHERE {?p rdf:type sioc:Post . ?p sioc:has_creator “Dupont”}

Explanation. The WHERE clause retrieves instances (?p) of the class Post created by the user
Dupont . The CONSTRUCT clause replaces the traditional SELECT clause. It is constructed as a
WHERE clause (a set of triples with variables and filters). The result is a new RDF graph
constructed by replacing variables in the CONSTRUCT clause by values satisfying the WHERE
clause. Thus, each post created by Dupont is associated to the class PostDupont in the
resulting graph.

Thus, SPARQL fulfill partially requirement 2. It can not be used to define non canonical
concepts but permits to compute their instances (extension). Notice that the CONSTRUCT query
form produces a new RDF graph. As a consequence and contrary to views of databases,
extensions of non canonical concepts have to be recomputed whenever extensions of
corresponding canonical concepts are modified (in our example, each time a message is added or
deleted by Dupont).

Requirement 3 (Linguistic exploitation)

SPARQL is equipped with operators to manipulate string defined in different natural languages.

Example. Return the first name and last name of users with a query written using English names
of concepts and one using French names.
SELECT ?fn ?ln
WHERE {?u rdf:type ?c .

 ?c rdfs:label “User”@en .
 ?u sioc:first_name ?fn .
 ?u sioc:last_name ?ln}

SELECT ?fn ?ln
WHERE {?u rdf:type ?c .
?c rdfs:label “Utilisateur”@fr .

 ?u sioc:first_name ?fn .
 ?u sioc:last_name ?ln}

Explanation. The query written using English (resp. French) names is on the left (resp. right) part.
The WHERE clause of this query retrieves instances (?u) of a class (?c) whose name in English
(suffix @en) is User . The query written in French is equivalent to this one. The suffix @fr allow
to use the French name of the class User (“Utilisateur”).

Thus, SPARQL fulfil requirement 3. It provides also other functions to manipulate multilingual
ontologies. For example, the lang function return the natural language of a given string.

Requirement 4 (Ontology model extensibility)

SPARQL does not provide a definition language for ontology and thus we can not define the
OWL AllValuesFrom constructor (sample example). However, since SPARQL has been
designed for RDF, it considers an OWL ontology as a set of triples that use the OWL constructors
defined in the OWL namespace. Thus, it can be used to query OWL ontologies but the semantics
of OWL constructors has to be coded in the query interpreter.

Requirements 5 and 6 (Compatibility with the traditional database architecture)

Even if a SPARQL query has a form similar to an SQL query (clauses SELECT-FROM-WHERE),
it is adapted to RDF (triples) querying and thus it is different from SQL (requirement 5). In
addition, data schema is considered fixed (subject, predicate, object) and thus SPARQL does not
provide any operator to modify it (requirement 6).

Requirement 7 (Ontology & data definition and manipulation)

Currently, SPARQL provides only a query language; it is not equipped with a definition and
manipulation language (requirement 7). Thus, definition and manipulation of data are considered
external functionalities provided by the data source. The need of a standard mechanism to update
data sources has been addressed in (Seaborne and Manjunath, 2008) with the proposition of
SPARQL/Update. But, this language is not yet integrated in the recommendation of the W3C.

Requirement 8 (Queries on ontologies and on ontologies and data)

Since, SPARQL considers all information as RDF data, it can be easily used to combined
ontology and data querying.

Example. Return all instances of Resource with the classes it belongs to.

SELECT ?i ?c
 WHERE {?i rdf:type sioc:Resource . ?i rdf:type ?c}

Explanation. The first triple of the WHERE clause retrieves instances (?i) of the class
Resource . The second triples retrieves classes (?c) these instances belong to.

Notice that in this example, like in all SPARQL queries, results depend on the triples
represented in the data source and/or the interpretation of these triples by the query interpreter.

RQL
The second category of Semantic Web languages is called “RQL family”. It is mainly composed
of the languages RQL (Karvounarakis et al., 2004), SeRQL (Broeskstra and Kampman, 2003)
and eRQL (Tolle and Wleklinski, 2004). We have chosen to discuss the RQL language which is
the most complete.

RQL has been designed following a functional approach similar to the object-oriented
language OQL (Cattell, 1993). Thus, simple queries consist of function calls (e.g,
SubClassOf(Resource) to retrieve all subclasses of Resource). More elaborate queries
can be defined using a traditional SELECT-FROM-WHERE syntax. The FROM clause introduces
path expressions (with variables) built from a set of predefined basic path expressions and
operators (e.g., C{X} is a basic path expression that introduces a variable X on all instances of the
class C). The WHERE clause is used to define conditions on variables introduced in the FROM
clause. Finally, the SELECT clause defines the variable projected in the result (like in SPARQL).

RQL is also composed of a manipulation language named RUL (Magiridou et al., 2005) and a
view language named RVL (Magkanaraki et al., 2004). We present these different languages by
discussing capabilities of RQL to fulfil the proposed requirements.

Requirement 1 (Queries at the ontological level)

The data model of RQL is based on RDF-Schema. To distinguish clearly the data, ontology and
ontology model levels, the data model of RQL has some restrictions compared to RDF-Schema
(e.g., a class can not be subsumed by an ontology model constructor). Yet, this model contains
the main constructors of RDF-Schema (class, property and subsumption) and thus, queries at the
ontological level are possible.

Example. Retrieve all instances of the class Item
SELECT I

FROM sioc:Item{I}

Explanation. The FROM clause introduces the variable I on all (direct and indirect) instances of
the class Item . The SELECT clause projects URI of these instances. To retrieve only direct
instances, the class Item must be prefixed with ^ (i.e., ̂ Item)

Requirement 2 (Definition of non canonical concepts)

The view language associated to RQL (RVL) can be used to represent non canonical concepts
such as OWL restrictions.

Example. Create the class PostDupont defined as all messages of the user Dupont .
CREATE NAMESPACE myview=&http://www.lisi.ensma.fr/e x-view.rdf#
 VIEW rdfs:Class(“PostDupont”)
 Property(P, PostDupont, range(P))
 FROM Property{P}
 WHERE domain(P) >= sioc:Post
 VIEW PostDupont(P), title(P, T), has_creator(P, C)

FROM sioc:Post{P}.sioc:title{T}, {P}sioc:has_creato r{C}
 WHERE C = “Dupont”

Explanation. In RVL, views (non canonical concepts) are separated from classes (canonical
concepts). Thus, a new namespace is created for views (http://www.lisi.ensma.fr/ex-
view.rdf). The first VIEW clause is used to create the view PostDupont with all properties
defined on the class Post . This is done using a RQL query that searches all properties defined on
Post or on a superclass of Post (domain(P) >= sioc:Post) . The second VIEW clause
is used to compute instances of the view PostDupont by searching all messages (P) with their
title (T) that have been created by Dupont (C). Notice that, for conciseness, we have only
retrieved values of the title property. To define the complete view, other properties values
must be searched.

Thus, RQL fulfil requirement 2. However, notice that the distinction between canonical and non
canonical concepts forbids the definition of subsumption relationships between these two kind of
concepts. Thus, it is necessary to reproduces manually this behaviour (by importing properties
and their values in the NCCO).

Requirement 3 (Linguistic exploitation)

RDF-Schema allows to associate names defined in different natural languages to classes and
properties. It permits also to define string values in different natural languages. RQL does not
exploit these features.

Requirement 4 (Ontology model extensibility)

The ontology model supported by RQL is composed of the constructors Class and Property .
This ontology model can be extended by specialization of these two constructors. But, a
constructor can not be added if it does not inherit from Class or Property . For example, this
limitation prevents to add the Document constructor of PLIB (to describe a concept by a
document) or the Ontology constructor of OWL (to regroup all concepts defined in an
ontology). Moreover, if these capabilities are defined on the data model of RQL, the language
does not provide any operator to use them. Thus, we can not use RQL to define the OWL
AllValuesFrom constructor.

Requirements 5 and 6 (Compatibility with the traditional database architecture)

The syntax of RQL is close to the one of object-oriented languages. However, it keeps no
compatibility with SQL (requirement 5). In addition, RQL considers all instances as a URI
independently of the classes it belongs to and of its properties values. Thus, it can not be used to
manipulate the data schema (requirement 6).

Requirement 7 (Ontology & data definition and manipulation)

As we have seen in requirement 4, RQL does not provide a syntax to define the ontology model
used. But RVL provides constructors to create new classes and properties and RUL can be used
to insert new instances.

Example. Create the class User of our example and add some instances.
VIEW Class(“User”)<Resource>
 Property(“first_name”, User, xsd:string)
 Property(“susbscriber_of”, User, Forum)

INSERT User(&http://www.lisi.ensma.fr/Dupont)
INSERT first_name (&http://www.lisi.ensma.fr/Dupont , “patrick”)

Explanation. The constructor Class takes only one parameter: the URI of the class to define (for
readability we use only the name User). This class is defined as a subclass of Resource
(operator <>). Its properties are defined with the Property constructor. It takes three
parameters: URI, domain and range of the property to define. The language RUL is then used to
insert one instance of the class User . The operation INSERT is first used to define the URI of
the instance and then to define its properties values (we define only value of the property
first_name).

As this example shows, the RVL language is not a complete data definition language. It can
only be used to create classes with a URI and properties with a URI, their domain and range.
Other characteristics of classes and properties (e.g., names in different natural languages) can not
be specified. On the other hand, RUL provides a complete set of operations (INSERT-MODIFY-
DELETE) to manipulate data.

Requirement 8 (Queries on ontologies and on ontologies and data)

RQL is equipped with powerful path expressions that make it possible to query both ontologies
and data.

Example. Return all instances of Resource with the classes it belongs to.

SELECT U $C
 FROM $C{U}
 WHERE C <= sioc:Resource

Explanation. The basic path expression $C{U} of the FROM clause introduces a variable U that
denotes direct instances of a class $C (variables for classes are prefixed by $ in RQL). The
WHERE clause adds a condition to retrieve only direct instances of Resource or of a subclass
of Resource . Finally, the SELECT clause projects the URI of instances and classes.

In this section, we have discussed capabilities of Semantic Web query languages w.r.t. the
defined requirements. In next section, we study other languages that have been designed to keep
some degree of compatibility with traditional databases.

ANALYSIS OF DATABASE-ORIENTED ONTOLOGY QUERY LANGUAGES

Several languages have been defined specifically for exploiting ontologies stored in databases
such as Oracle extension to SQL (Chong et al., 2005; Wu et al., 2008), OntoQL (Jean et al.,
2006), SOQA-QL (Ziegler et al., 2005) or CQL (Mizoguchi-Shimogori et al., 2002). In this
section we discuss the most recent and active approaches i.e., Oracle extension to SQL and the
OntoQL exploitation language.

Oracle Extension to SQL
The main objective of Oracle (Chong et al., 2005; Wu et al., 2008) was to provide efficient RDF
data querying capabilities that integrate smoothly with SQL queries. The proposed solution is a
SQL table function to query RDF data.

The table function named RDF_MATCH takes four parameters. The first parameter is a graph
pattern to be matched. This graph pattern is defined with a syntax similar to the clause WHERE of
SPARQL (basically a set of triples with variables). The second parameter specifies the RDF
graph to be queried. The third parameter specifies the rulebase (if any) that must be used to infer
new RDF data. A rulebase is composed of a set of rules. Each rule consists of a left hand side
graph pattern for the antecedents, filter conditions, and a right hand side graph pattern for the
consequents. Notice that RDF-Schema inference rules (e.g, transitive closure of the subsumption
relationship) is created by the system (named rdfs) and available to users. Finally, the last
parameter specifies user-defined namespaces aliases. The RDF_MATCH function returns a table
having a column for each variable used in the graph pattern. Thus, this function can be seamlessly
combined with SQL queries.

A strong effort has been made to optimize the RDF_MATCH function. Indeed, this function is
rewritten has a SQL query so that it can be optimized with the rest of the query. Moreover,
indexes and materialized views are used to execute efficiently queries. Scalability of the proposed
approach has been demonstrated on 80 million RDF triples.

Requirement 1 (Queries at the ontological level)

The RDF_MATCH function can be used to express ontological queries decomposed in a triples
pattern.

Example. Retrieve instances of the class Item.

SELECT t.i
 FROM TABLE(RDF_MATCH(‘(?i rdf:type Item)’, NULL, NULL, NULL))

Explanation. The table function RDF_MATCH is used in the clause FROM of the query. It only
takes a simple graph pattern as parameter to search instances of the class Item (?i). This
function returns a table with a column named i for the variable ?i . This variable can be
projected in the SELECT clause.

Like SPARQL, result of the previous query depends on the triple represented in the RDF data
source. For the RDF_MATCH function, it depends also of the rulebase specified. Indeed, if we
specify the rdfs rulebase in the previous example, all (direct and indirect) instances of Item
will be returned (the transitive closure of the subsumption relationship is computed by a rule).

Requirement 2 (Definition of non canonical concepts)

The data manipulation language of SQL can be used to define the non canonical class
PostDupont A rule can be used to compute automatically its extension (set of instances).

Example2. Create the class PostDupont defined as all messages of the user Dupont .

INSERT INTO rdf_example
 VALUES (‘PostDupont’, rdf:type, rdfs:Class)

SELECT i FROM TABLE(
 RDF_MATCH(‘(?i rdf:type PostDupont)’, NULL, rb_ example, NULL)

The rulebase rb_example contains the following rule:

(‘(?p rdf:type Post)(?p has_creator ?c)’,
 ‘?c = Dupont’,
 ‘(?p rdf:type PostDupont)’)

Explanation. In this example, we suppose that a table named rdf_example has been created to
store RDF data. An Insert statement is used to insert the class PostDupont . Instances of
PostDupont can be retrieved through a SQL query that uses the RDF_MATCH function. This
function infers all instances of PostDupont thanks to a rule. The meaning of this rule is the
following. If a message ?p has been created by ?c (antecedent defined in the first parameter)
which is Dupont (filter defined in the second parameter), then ?p is inferred to be an instance
of PostDupont (consequent defined in the third parameter) .

Requirement 3 (Linguistic exploitation)

Like SPARQL, the graph pattern of the RDF_MATCH function can use string values suffixed by a
language code (e.g., @fr for a French string). Thus, our sample queries can be written like in
SPARQL (see section 4).

Requirement 4 (Ontology model extensibility)

Like SPARQL, the RDF_MATCH function has been designed for RDF data and thus, it considers
OWL ontology as a set of triples that use the OWL constructors defined in the OWL namespace.
However, contrary to SPARQL, predefined rulebases are provided to take into account semantics
of OWL constructors.

Requirements 5 and 6 (Compatibility with the traditional database architecture)

The RDF_MATCH function is directly integrated in SQL (requirement 5). To use this function, a
table has to be created to store triples. Materialized views are automatically created to optimize

2 For conciseness, we use a simplified syntax. For more details, the interested reader can consult the Oracle
documentation (http://www.oracle.com/technology/tech/semantic_technologies/index.html)

queries on this table. However the representation of triples in this table can not be customized
(requirement 6).

Requirement 7 (Ontology & data definition and manipulation)

The data manipulation language of SQL can be used to create classes and instances.

Example. Create the class User of our example and add some instances.
INSERT INTO rdf_example VALUES (‘User’, rdf:type, r dfs:Class)
INSERT INTO rdf_example
 VALUES (‘User’, rdfs:subClassOf, ‘Resource’)
INSERT INTO rdf_example
 VALUES (‘first_name’, rdf:type, rdf:Property) ...

INSERT INTO rdf_example VALUES (‘User1’, rdf:type, User)
INSERT INTO rdf_example VALUES (‘User1’, first_name , ‘Patrick’) …

Explanation. All information has to be inserted as RDF triples. Thus, many INSERT statements
are necessary to insert the class User with its properties and its instances.

As this example shows, usage of the DML of SQL can be tedious to create ontologies and
their instances.

Requirement 8 (Queries on ontologies and on ontologies and data)

Since, the RDF_MATCH function provides similar graph pattern matching capabilities as
SPARQL, it can be used to combined ontology and data querying.

Thus, the RDF_MATCH is a powerful extension of SQL to query RDF data. In the next
section we discuss the OntoQL exploitation language that extends SQL following a different
approach.

OntoQL

OntoQL (Jean, 2007; Jean et al., 2006) has been defined specifically for OBDBs. To exploit data,
OntoQL has been defined in different layers:

• data access at the logical level by compatibility with SQL;
• data access at the ontological level, CCO layer. Primitive concepts being mainly defined

with object-oriented constructors, OntoQL adapts and extends SQL99 providing powerful
relational-object operators;

• data access at the ontological level, NCCO layer. OntoQL provides a View Definition
Language for defining and querying defined concepts;

• data access at the ontological level, LO layer. Each class and each property can be
referenced by a name (in a given natural language) in an OntoQL query.

Ontologies being recorded in OBDBs, OntoQL provides an Ontology Definition,
Manipulation and Query Language (ODL, OML and OQL) to exploit them. To keep a uniform
syntax, these languages have been designed to keep a syntax near SQL99. They are based on a
core ontology model that contains the main constructors of existing ontology models. This core
ontology model is an object-oriented model composed of classes and properties named entities
and attributes to distinguish them from ontology classes and properties. This core ontology model
can be extended with new entities and new attributes using the ODL. Since this model can be
extended, names of entities and attributes are not encoded as keywords in the OntoQL grammar
but they are prefixed by the character #.

Requirement 1 (Queries at the ontological level)

Ontological queries can be expressed following a SQL-like syntax.

Example. Retrieve instances of the class Item.

SELECT uri
 FROM Item
 USING NAMESPACE ‘http://rdfs.org/sioc/ns’

Explanation. The USING clause is used to define a default namespace for the query. When the
SIOC namespace is set, each element without prefix (e.g., Item) is searched in this ontology.
This query retrieves all instances of Item . To retrieve only direct instances, one can use the
ONLY operator like in SQL99 (i.e., ONLY(Item)).

Requirement 2 (Definition of non canonical concepts)

OntoQL provides a View Definition Language to define non canonical concepts.

Example. Create the class PostDupont defined as all messages of the user Dupont .

CREATE #Class PostDupont AS VIEW UNDER Post

CREATE VIEW OF PostDupont AS
 SELECT * FROM Post AS p
 WHERE p.has_creator.last_name = ‘Dupont’

Explanation. The first statement creates the class PostDupond as a non canonical concept
(keyword VIEW), subclass of Post . The second statement defines the extension of this class by
providing an OntoQL query that computes its instances.

When non canonical classes are defined using OWL constructors (e.g., restrictions), an
inference engine can automatically compute subsumption relationships between canonical and
non canonical concepts. OntoQL (like RQL) has not this capability: canonical and non canonical
classes must be placed manually in the hierarchy.

Requirement 3 (Linguistic exploitation)

In OntoQL, each class and each property can be referenced by a name in a given natural
language. It makes it possible to write the same query in many natural languages.

Example. Return the first name and last name of users with a query written using English names
of concepts and one using French names.
 SELECT “first name”,
 “last name”
 FROM User
 USING LANGUAGE EN

 SELECT prénom,
 nom
 FROM Utilisateur
 USING LANGUAGE FR

Explanation. The USING clause of OntoQL can be used to specify the natural language in which
a query is expressed. The left query used English names. For names with a space (e.g., first
name) double quotes are used. The right query is equivalent but written with French names.

Requirement 4 (Ontology model extensibility)

The ontology model supported by OntoQL can be extended using its ODL.

Example. Add the OWL constructor AllValuesFrom

CREATE ENTITY #AllValuesFrom UNDER #Class(
 #onProperty REF(#Property),
 #allValuesFrom REF(#Class)
)

Explanation. An OWL restriction being a class, the ALLValuesFrom constructor is added as a
subentity of #Class . This entity has an attribute #allValuesFrom to specify the class in
which its instances take their values for the property defined by the attribute #onProperty .

When an extension is made by specialization, like in the previous example, new entities
inherit the behaviour of their super entities. This behaviour is defined in the operational semantics
of the core ontology model. Thus, every specialization of the entity #Class defines a new
category of classes which supports by inheritance the usual behaviour of a class. As a
consequence, each OWL restriction may be associated to a container to store its instances. These
instances may be computed using a view (all instances having all values of a property in a given
class). However, OntoQL does not provide yet the capability to express this semantics.

Requirement 5 (SQL compatibility)

If a default namespace is not specified, each element of an OntoQL query without a namespace
alias prefix is considered as an element of the logical model (a table or a column). Thus, an
OntoQL query without namespace specification is considered as a SQL query (requirement 5).
Moreover, the semantics of OntoQL (an algebra) has been defined so that each operator returns a
relation (Jean et al., 2007a). Thus, queries at the logical level and ontological level can be
combined (like Oracle).

Requirement 6 (Access to the conceptual model of data)

OntoQL provides basic functionalities to define and access the conceptual model of data.

Example. Create the conceptual model corresponding to the class User knowing that only the
properties first_name , last_name and email will be used in the target application.

CREATE EXTENT OF User (“first name”, “last name”, e mail)
 TABLE T_User (first_name, last_name, ema il)

Explanation. The CREATE EXTENT statement defines the conceptual model corresponding to a
class specifying the set of properties used to describe instances of this class. The TABLE clause is
used to choose the logical implementation of this conceptual model (i.e., tables and columns
necessary).

Currently, in OntoQL, the conceptual model of data can only be defined through a subset of
the ontology.

Requirement 7 (Ontology & data definition and manipulation)

The data manipulation language of SQL can be used to create classes and instances.

Example. Create the class User of our example and add some instances.
CREATE #Class User UNDER Resource (
 DESCRIPTOR (#name[fr] = ‘Utilisateur)
 #property (“first name” String, “last name” Strin g, …)
)

INSERT INTO User VALUES(‘User1’, ‘Patrick’, ‘Dupond ’)

Explanation. The first statement creates the class User . This class is defined as a class
(#Class), subclass of Resource . The name in French of this class is specified in the
DESCRIPTOR clause. The #property clause is used to create properties having User as
domain. The second statement supposes that we have created an extent for the class User (see
previous requirement). It uses a SQL-like INSERT statement to insert an instance.

One limitation of the data manipulation language of OntoQL is that it does not support multi-
instanciation, i.e., that an instance may belong to many classes not linked by subsumption
relationships. This limitation allows to define an efficient storage structure when instances have
many properties values (Dehainsala et al., 2007).

Requirement 8 (Queries on ontologies and on ontologies and data)

OntoQL is equipped of operators to combine ontologies and data querying. In particular, it
provides the TYPEOF operator to return the class an instance belongs to.

Example. Return all instances of Resource with the classes it belongs to.

SELECT r.uri, TYPEOF(r).#name[en]
 FROM Resource AS r

Explanation. The FROM clauses introduces the alias r on instances of the class Resource . For
each instance, its URI is projected as well as the name in English of the class it belongs to
(retrieved with the TYPEOF operator).

This brief presentation of OntoQL ends our analysis of capabilities of ontology query
languages to exploit OBDBs. We draw main conclusions in the next section.

CONCLUSIONS
In this chapter, we have presented capabilities of the main ontology query languages to exploit
databases extended with ontologies. To compare these languages, we have first defined a set of
requirements for an architecture that extends the traditional ANSI/SPARC architecture with
conceptual and ontological levels. Then, we have discussed the capabilities of two Semantic Web
query languages (SPARQL and RQL), and two database-oriented ontology query languages
(Oracle extension to SQL and OntoQL) to fulfill these requirements. The result of this study is

summarized in Table 1. In this table, the symbol • is used when the requirement is fulfilled, o
when it is partially fulfilled, and - when it is not fulfilled.

 SPARQL RQL Oracle OntoQL

Queries at the ontological level o • o •
Definition of non canonical concepts o o • o

Linguistic exploitation • - • •
Ontology model extensibility o o • o

SQL compatibility - - • •
Access to the conceptual model of data - - - o
Ontology & data definition and manipulation - o o o
Queries on ontologies and on ontologies and data • • • •

Table 1. Analysis of the main ontology query languages w.r.t. to the defined requirements

Results presented in Table 1 lead us to draw the following conclusions. The main drawback
of SPARQL and Oracle approaches to query OBDBs is that they consider all information as RDF
data. As a consequence, when querying at the ontological level, the semantics of the ontology
models has to be coded either in the query interpreter of SPARQL or by a set of deductive rules
in the Oracle approach. Moreover, they don’t provide operators to exploit this semantics (e.g., an
operator to retrieve direct instances of a class). Another consequence is that the syntax of these
two languages is adapted to query triple data. As a consequence, an ontological query has to be
decomposed in triples (e.g, (?i rdf:type User) (?i sioc:name ?n) for retrieving
names of users) which can be tedious for users.

On the contrary, the semantics of RQL and OntoQL are based on the core constructors of
ontology models. They provide a syntax near the one of object-oriented query languages. We
think that this syntax is more adapted for ontologies than a triple syntax because ontologies share
many constructors with the object-oriented data model.

However, RQL and OntoQL may benefit from efforts made by Oracle to provide semantics
technologies. Indeed, Oracle provides customizable and optimized triple storage with capability
to load quickly a huge amount of RDF data. Thus, Oracle provides the built-in functions to serve
as a scalable storage structure for RQL or OntoQL. Moreover, Oracle is now equipped with an
inference engine for RDFS/OWL constructs which will be particularly useful for RQL and
OntoQL to take into account the semantics of OWL. As a future work we plan to put this
observation in application by implementing OntoQL on top of Oracle.

REFERENCES
Bailey, J., Bry, F., Furche, T., & Schaffert, S. (2005). Web and Semantic Web Query Languages:
A Survey. In Reasoning Web, First International Summer School, Lecture Notes in Computer
Science, pages 35-133. Springer.

Brickley, D. & Guha, R. V. (2004). RDF Vocabulary Description Language 1.0: RDF Schema.
World Wide Web Consortium. http://www.w3.org/TR/rdf-schema.

Broeskstra, J. & Kampman, A. (2003). SeRQL: A Second Generation RDF Query Language. In
SWADEurope Workshop on Semantic Web Storage and Retrieval.

Carroll, J. J., Bizer, C., Hayes, P., & Stickler, P. (2005). Named Graphs, Provenance and Trust. In
Proceedings of the 14th international conference on World Wide Web (WWW’05), pages 613–
622, New York, NY, USA. ACM Press.

Cattell, R. G. G. (1993). The Object Database Standard : ODMG-93. Morgan Kaufmann.

Chong, E. I., Das, S., Eadon, G., & Srinivasan, J. (2005). An Efficient SQL based RDF Querying
Scheme. In Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB’05), pages 1216–1227.

Dean, M. & Schreiber, G. (2004). OWL Web Ontology Language Reference. World Wide Web
Consortium. http://www.w3.org/TR/owl-ref.

Dehainsala, H., Pierra, G., & Bellatreche, L. (2007). OntoDB: An Ontology-Based Database for
Data Intensive Applications. In Proceedings of the 12th International Conference on Database
Systems for Advanced Applications (DASFAA’07), volume 4443 of Lecture Notes in Computer
Science, pages 497–508. Springer.

Fankam, C., Jean, S., Bellatreche, L., & Ameur, Y. A. (2008). Extending the ANSI/SPARC
Architecture Database with Explicit Data Semantics: An Ontology-Based Approach. In Morrison,
R., Balasubramaniam, D., and Falkner, K. E., editors, Proceedings of the 2nd European
Conference on Software Architecture (ECSA'08), volume 5292 of Lecture Notes in Computer
Science, pages 318-321.Springer.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2):199-220.

Guarino, N. (1998). Formal Ontology and Information Systems. In Guarino, N., editor,
Proceedings of the 1st International Conference on Formal Ontologies in Information Systems
(FOIS'98), pages 315. IOS Press.

Haase, P., Broekstra, J., Eberhart, A., & Volz, R. (2004). A Comparison of RDF Query
Languages. In Proceedings of the 3nd International Semantic Web Conference (ISWC'04), pages
502-517.

IEC61360-4 (1999). Standard data element types with associated classification scheme for
electric components - Part 4 : IEC reference collection of standard data element types, component
classes and terms. Technical report, International Standards Organization.

Jean, S., Aït-Ameur, Y., & Pierra, G. (2006). Querying Ontology Based Database Using OntoQL
(an Ontology Query Language). In Proceedings of On the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA, and ODBASE, OTM Confederated International Conferences
(ODBASE'06), volume 4275 of Lecture Notes in Computer Science, pages 704-721. Springer.

Jean, S. (2007). OntoQL, un langage d'exploitation des bases de donnes base ontologique. PhD
thesis, LISI/ENSMA and University of Poitiers.

Jean, S., Aït-Ameur, Y., & Pierra, G. (2007a). An Object-Oriented Based Algebra for Ontologies
and their Instances. In Proceedings of the 11th East European Conference in Advances in
Databases and Information Systems (ADBIS'07), volume 4690 of Lecture Notes in Computer
Science, pages 141-156. Springer.

Jean, S., Pierra, G., & Aït-Ameur, Y. (2007b). Domain Ontologies: a Database-Oriented
Analysis, volume 1 of Lecture Notes in Business Information Processing, pages 238-254.
Springer Berlin Heidelberg.

Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.,
& Tolle, K. (2004). RQL: A Functional Query Language for RDF. In Gray, P. M. D., Kerschberg,
L., King, P. J. H., and Poulovassilis, A., editors, The Functional Approach to Data Management:
Modelling, Analyzing and Integrating Heterogeneous Data, LNCS, pages 435-465.Springer-
Verlag.

Magiridou, M., Sahtouris, S., Christophides, V., & Koubarakis, M. (2005). RUL : A Declarative
Update Language for RDF. In Proceedings of the 4th International Semantic Web Conference
(ISWC’05), pages 506–521.

Magkanaraki, A., Tannen, V., Christophides, V., & Plexousakis, D. (2004). Viewing the
Semantic Web Through RVL Lenses. Journal of Web Semantics, 1(4) :359–375.

Miller, L., Seaborne, A., & Reggiori, A. (2002). Three Implementations of SquishQL, a Simple
RDF Query Language. In Proceedings of the 1st International Semantic Web Conference
(ISWC’02), pages 423–435.

Mizoguchi-Shimogori, Y., Murayama, H., & Minamino, N. (2002). Class Query Language and its
application to ISO13584 Parts Library Standard. In Proceedings of the 9th European Concurrent
Engineering Conference (ECEC’02), pages 128–135.

Patel-Schneider, P. F. & Motik, B. (2008). OWL2 Web Ontology Language: Mapping to RDF
Graphs. W3C Working Draft 08 October 2008. http://www.w3.org/TR/owl-ref.

Pierra, G. (2008). Context Representation in Domain Ontologies and its Use for Semantic
Integration of Data. Journal Of Data Semantics (JODS), X:173-210.

Prud'hommeaux, E. & Seaborne, A. (2008). SPARQL Query Language for RDF. W3C Candidate
Recommendation 15 January 2008, from http://www.w3.org/TR/rdf-sparql-query/.

Seaborne, A. (2004). RDQL– A Query Language for RDF. W3C Member Submission 9 January
2004. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

Seaborne, A. & Manjunath, G. (2008). SPARQL/Update A language for updating RDF graphs.
ttp://jena.hpl.hp.com/~afs/SPARQL-Update.html.

Tolle, K. & Wleklinski, F. (2004). easy RDF Query Language (eRQL).
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL.

Wu, Z., Eadon, G., Das, S., Chong, E. I., Kolovski, V., Annamalai, M., & Srinivasan, J. (2008).
Implementing an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in Oracle.
In Proceedings of the 24th International Conference on Data Engineering (ICDE'08), pages
1239-1248.

Xuan, D. N., Bellatreche, L., & Pierra, G. (2006). A Versioning Management Model for
Ontology-Based Data Warehouses. In Proceedings of the 8th International Conference on Data
Warehousing and Knowledge Discovery (DaWak'06), pages 195-206.

Ziegler, P., Sturm, C., & Dittrich, K. R. (2005). Unified Querying of Ontology Languages with
the SIRUP Ontology Query API. In Datenbanksysteme in Business, Technologie und Web
(BTW'05), pages 325-344.

KEY TERMS & DEFINITIONS

Ontology: a formal and consensual dictionary of categories and properties of
entities of a domain and the relationships that hold among them.

Ontology-based Database (OBDB): a data source which contains i) a (local)
ontology, ii) possibly some references from this ontology to external (shared)
ontologies, iii) a set of data, iv) and finally a relationship between each data and
the ontological notion which explicit its meaning. An OBDB has two main
characteristics: i) both ontologies and data are represented in a unique database
and the same processing can be applied on them (Insert, Update, Querying,
Versioning, etc.); ii) any data is associated to an ontological element which
defines it meaning and vice versa (Dehainsala et al., 2007).

Ontology query language: a language that has been designed to exploit
ontologies and their instances.

BIOGRAPHY

Stephane JEAN is assistant professor at the University of Poitiers. He is a member of the

data engineering research team of the laboratory of computing (LISI) at the National

School of Engineers in Mechanics and Aeronautics (ENSMA). He conducts research in

the area of ontologies management especially in the context of databases. During his PhD

thesis he has designed the OntoQL exploitation language for databases that store

ontologies and the data they describe. This language is currently used in several projects

in the engineering area.

Yamine AIT AMEUR is full professor at the National School of Engineers in

Mechanics and Aeronautics (ENSMA). He is the director of the laboratory of computing

(LISI) at ENSMA and head of the data engineering research team. Formal methods,

ontology based data modeling and database are his main topics of interest. He has written

several research papers and supervised several PhD thesis. His research results have been

applied in various engineering areas like aeronautics, embedded systems and petroleum

industry.

Guy Pierra is professor of computer science at ENSMA, Poitiers. He funded the

Laboratory of computing (LISI) in Poitiers in 1992 as a laboratory common to ENSMA

and Poitiers University. His main interests are data engineering, software engineering,

ontology-based modeling, CAD/CAM and human-computer interaction. He published

one book and more than hundred papers on these topics. Since the late 80's, G. Pierra and

his colleagues of the LISI data engineering team have developed an ontology model, and

an ontology-based approach, providing for modeling technical knowledge and industrial

products. This approach, known as PLIB, has also been published as a series of

international standard identified as ISO 13584. The PLIB ontology model and approach

are now largely used in the engineering domain both for exchanging electronic catalogues

and for developing ontology-based database of industrial components.

