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ABSTRACT 
Current databases and their associated languages allow a user to exploit data according to their 
logical model. Usually, there is a gap between this logical model and the actual concepts 
represented. As a consequence, exploiting, exchanging and integrating data stored in 
databases are difficult. To overcome these problems, several approaches have proposed 
to extend current databases with ontologies. We called Ontology-Based Databases 
(OBDB) such databases. However, current database languages such as SQL have not 
been designed to exploit ontologies. Thus, a new generation of languages we called 
ontology query languages has emerged. The goal of this chapter is to provide an up to 
date survey on ontology query languages. We survey languages coming from the 
Semantic Web community as well as those coming from the database community. 
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INTRODUCTION 
Data warehouses are designed to aggregate data and allow decision makers to obtain accurate, 
complete and up to date information. In current data warehouses, queries are issued to the logical 
model of data, making direct use of the table and column information that describes the 
persistence structure. Usually, there is a gap between this logical model and the actual business 
concepts used by decision makers. As a consequence, users of data warehouses have to use 
existing documentation (e.g, data dictionaries) - if any and if not out of date – to discover the 
meaning of tables and columns. This makes using and querying a data warehouse problematic for 
all users that have not designed it. 

Defined by Gruber as “an explicit specification of a conceptualization”, ontologies have been 
proposed to explicit the semantics of data. They allow to describe, in a consensual way, the 
relevant concepts of a given application domain. Thus, the idea to describe a data warehouse with 
ontologies in order to make explicit the semantics of data stored has emerged (Xuan et al., 2006). 
This idea is concretized by introducing an ontological layer in a data warehouse. This layer can 
be used by decision makers to express queries using business concepts they are used to 
manipulate. However, existing query languages such as SQL or OQL have not been designed to 



exploit ontologies. For this purpose, a new generation of query languages, called ontology query 
languages, has emerged. 

The goal of this chapter is to provide an up to date survey on the capabilities of existing 
ontology query languages to manage databases extended with ontologies we call ontology-based 
databases (OBDBs). Previous surveys on ontology query languages (Bailey et al. 2005; Haase et 
al. 2004) have focused on the capabilities of Semantic Web query languages to manage RDF-
Schema ontologies and data whatever be the used storage system. In this chapter, we propose to 
complete these previous surveys by taking a database-oriented point of view. Thus, this chapter 
discusses two representatives of Semantic Web query languages, namely SPARQL 
(Prud'hommeaux and Seaborne, 2008) and RQL (Karvounarakis et al., 2004) as well as two 
representatives of database-oriented ontology query languages namely, Oracle extension to SQL 
(Chong et al., 2005; Wu et al., 2008) and OntoQL (Jean, 2007; Jean et al., 2006) . 

This chapter is organized as follows. In section 2, we present our point of view on domain 
ontologies and their classification. We conclude this section by describing our proposed extension 
of the traditional ANSI/SPARC database architecture with ontologies. Requirements for an 
exploitation language of this proposed architecture are then defined in section 3. These 
requirements are used to compare some existing Semantic Web Query Languages and database-
oriented ontology query languages in section 4 and 5. Finally, section 6 concludes this 
comparison and introduces future work.  

 
DOMAIN ONTOLOGIES AND THEIR APPLICATION TO DATABASE 
In this section, we present the database-oriented point of view on ontologies we take (Jean et al., 
2007b; Fankam et al., 2008) to compare existing ontology query languages. 
 
Definition and Classification of Domain Ontologies 
Several definitions have been proposed for an ontology (Gruber, 1993; Guarino, 1998). In our 
work a domain ontology is “a formal and consensual dictionary of categories and properties of 
entities of a domain and the relationships that hold among them”. This definition emphasizes 
three criteria that distinguish ontologies from other models used in Computer Science. An 
ontology is:  

1. formal : it is based on a  logical axioms and may be processed by computers; so checking 
consistency and performing automatic reasoning are made possible; 

2. consensual in a community, i.e. several members have agreed upon the concepts 
represented in the ontology; 

3. has the capability to be referenced. A universally unique identifier can be used to define 
the semantic of a piece of data, whatever are the modeling schema of the ontology and 
the data model. 

 
All ontologies are not similar. We distinguish the three following categories : 
• Conceptual Canonical Ontologies (CCOs) provide concepts definitions without 

redundancy. In CCOs (for example, (IEC61360-4, 1999)), information is represented in 
terms of classes and properties that have unique identifiers. 

• Non Conceptual Canonical Ontologies (NCCOs) contain not only primitives concepts 
(canonical) but also defined concepts, i.e. those concepts for which the ontology provides 



a complete axiomatic definition by means of necessary and sufficient conditions 
expressed in terms of other - primitive or defined - concepts.  

• Linguistic Ontologies (LOs) define terms appearing in the universe of discourse of a 
given domain. Relationships between terms are captured in a semi-formal way by 
linguistic relationships (e.g, synonymy or hyponymy). An example of LO is Wordnet. 

 
These three categories of ontologies can be combined into a layered model, called the Onion 

Model, shown in Figure 1. At the heart of this model is a CCO. It provides with a formal basis to 
model and to exchange efficiently the knowledge of a domain. From primitive concepts of the 
CCO, a NCCO can be designed. This NCCO provides constructors to relate different 
conceptualizations made on this domain. Finally, a LO may provide a natural language 
representation of NCCO or CCO concepts, possibly in the various natural languages where these 
concepts are meaningful. 

 

Figure 1. The onion model of domain Ontology 
 
When they are designed according to the onion model, ontologies have always a canonical 

layer, they may have a non canonical layer and they always have a minimum of linguistic aspects 
and in particular, terms that denote the represented concept. In this chapter, we focus on the 
exploitation of such ontologies in databases. 

 
Extension of the ANSI/SPARC Architecture with Ontologies 
The major objectives of a database are to ensure an efficient management of data and to provide 
access to data independently of their physical representation. The ANSI/SPARC architecture has 
been proposed to fulfil these objectives. It distinguishes two main access levels: 

• the physical level which defines how data are stored and managed using a file 
management system; 

• the logical level which defines how data are structured using the database data model 
(e.g., the relational or object model). 

 
When designing a database according to this architecture, a large amount of data semantics 

may be lost during the transformation from the conceptual model (CM) to a logical model. 

 
CCO 

: operators to derive  
NCCO concepts from 
CCO concepts 

Class Expression:  
Description Logic  

Other  
… 

Property Expression:  
Derivation Function  

NCCO 
LO Property  

Expression:  
 
F-Logic  : operators to derive  

LO concepts from CCO  
or NCCO concepts 



Moreover, the meaning of the CM is not formally documented, and thus it cannot be stored in the 
database. To solve these difficulties, references to an ontology appear as a relevant solution. 
Thus, we propose to extend this architecture with the ontological level. This level defines 
explicitly data semantics. Moreover, the CM will be modelled by referring to the ontology 
concept to which they correspond. This extended architecture is shown in Figure 2. 

 

Figure 2. Proposed extension of ANSI/SPARC Architecture 
 

Figure 2(A) presents the traditional database architecture. A conceptual model is represented 
in a modeling language like Entity-Relationship. Then, it is often used to generate automatically 
the logical model of data. This logical model is represented at the physical level by a set of files. 
In Figure 2(B) we propose to extend this architecture with the following elements. 

• Ontological level. It is composed of one (or several if the scope of the system 
encompasses the domain of several existing ontologies) ontology defining the concepts of 
the universe of discourse in terms of well-defined classes and properties.  

• Subsumption links. They link the ontological and conceptual levels, thus defining the set 
of ontology concepts used to fulfil applications requirements. The meaning of these links, 
represented in the CM by the absolute identifier of an ontology concept, is that the CM 
concept is equal or is a special case of the referenced ontology concept (i.e., 
subsumption).  

 
The goal of this chapter is to study capabilities of existing ontology query languages to exploit 

the OBDB architecture proposed in this section. This language should (1) be homogeneous, i.e. it 
should provide an access to the different levels of this architecture meaningful for the end-user 
and (2) it should exploit the specificities of these different levels. We detail these requirements in 
the next section. 

 
REQUIREMENTS FOR AN EXPLOITATION LANGUAGE OF OBDB 
To illustrate our proposed requirements for an exploitation language of the OBDB architecture 
presented in the previous section, we use the ontology presented as a graph on Figure 3. This 
example is an extract of the SIOC ontology (http:// sioc-project.org/). This ontology describes the 
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domain of on-line communities. A forum (Forum ) is hosted by a site (Site ) administered by a 
moderator (has_moderator ). Users (User ) can subscribe to forums (subscriber_of ) and 
create messages (Post ) on these forums (has_container ). Several answers may be provided 
for a given message (has_reply ). 

 

 

Figure 3. Running example 
 

Requirements Resulting from the Onion Model 
One of the most important characteristics of the ANSI/SPARC architecture is to separate the 
physical and logical representation of data. Defining, manipulating and querying data at the 
logical level independently of their physical representation are possible. Our architecture adds 
one more independency, representing both the conceptual and the ontological description of the 
represented data. Thus, exploitation of data independently of their logical schema is possible. 

 
Requirement 1: (Queries at the ontological level) The language should allow to 
express queries at the ontological level independently of the logical representation 
(schema) of data. 

 
Example.  Retrieve all (direct and/or indirect) instances of the class Item . 

 
Another fundamental characteristic of the ANSI/SPARC architecture is to define an external 

level. This level defines external schemas (views) that reflect users perception of the application 
domain (e.g., woman in place of person whose gender is female). These views can be used to 
define queries. The query engine rewrites them according to the logical model of data. In our 
architecture, the NCCO layer of an ontology provide views at the onlogical level. It allows each 
user to represent its own perception of the application domain by defining non canonical concepts 
expressed in terms of other - canonical or non canonical - concepts. Thus, the language should 
support the exploitation of such concepts. 
 
Requirement 2: (Definition of non canonical concepts) The language should support the 
definition of non canonical concepts. Queries may be expressed using these concepts, the query 



engine interpreting them in terms of canonical concepts. 
 
Example. Create the class PostDupont defined as all messages of the user Dupont . 

 
The last layer of the Onion Model is composed of the LO part. When an ontology is designed 

according to the Onion Model, its LO part associates to each concept, one or several terms and 
textual definitions. These linguistic definitions allow human users to understand the ontology and 
to reference ontology concepts using their names. These linguistic definitions are often given in 
different natural languages. To make it easy for members of different countries to use the same 
ontologies, the language may support the definition and exploitation of multilingual LO. 

 
Requirement 3: (Linguistic exploitation) The language should support the definition and 
exploitation of linguistic definitions of concepts that may be defined in different natural 
languages. 
 
Example. Return the first name and last name of users with a query written using English names 
of concepts and one using French names. 

 
 The Onion Model is based on the complementarity of ontology models. Indeed, many 

ontology models have been proposed such as RDF-Schema (Brickley and Guha, 2004), OWL 
(Dean and Schreiber, 2004) or PLIB (Pierra, 2008). All these ontology models have constructors 
to define a CCO composed of classes, properties, datatypes, and instances. In addition to these 
core constructors, each ontology model provides specific constructors to define an ontology. For 
example, PLIB provide constructors to define precisely and contextually primitive concepts while 
OWL provides conceptual equivalence constructors to define a NCCO. All these constructors are 
useful to define an ontology according to the Onion Model. Thus, the language should be able to 
integrate constructors coming from different ontology models. This feature would also help  to 
support evolution of existing ontology models (for example, the support of OWL2 (Patel-
Schneider and Motik, 2008)).  

 
Requirement 4: (Ontology model extensibility) The ontology model supported by the 
language should be extendable to support its evolution and to manage ontologies defined with an 
other ontology model. 

 
Example. Add the OWL constructor AllValuesFrom  (a class composed of all instances 
whose values of a given property are all instances of a given class) to the ontology model 
supported by the language. 
 
Requirements Resulting from Preserving Compatibility with the 
ANSI/SPARC Architecture 
Our proposed architecture extends the ANSI/SPARC architecture, and thus, it also includes the 
usual logical level. Since many applications have been built using the SQL language to 
manipulate data at this level, the language should support manipulation of data not only at the 
ontological level (see previous section) but also at the logical level. Thus, the language will keep 
upward compatibility for existing applications and will permit to manipulate data at the different 
levels of our proposed architecture. 



 
Requirement 5: (SQL compatibility) The language should permit the manipulation of data at 
the logical level preserving SQL compatibility. 
. 
Example. Assuming that instances of the class User  are stored in the table T_User (uri, 
first_name, last_name, email) , retrieve all users using a SQL query. 

 
Designing a layered architecture has the drawback to increase the complexity of data 

processing in upper levels. The introduced complexity has in general consequences on efficiency 
of query processing. In such architecture, one way to optimize processing at a given level is to 
use the lower level (e.g., create an index to optimize logical queries). In the proposed architecture, 
the ontological level has been added on top of the conceptual level. Thus, to optimize query 
processing at this level, the DBMS shall provide an access to the lower level, i.e. the conceptual 
level. 

 
Requirement 6: (Access to the conceptual model of data) The language should allow to 
define, manipulate and query the conceptual model of data from the ontological level. 

 
Example. Create the conceptual model of data corresponding to the class User  knowing that only 
the properties first_name , last_name  and email  will be used in the target application. 

 
Requirements on the Expressive Power of the Language 
In traditional databases, the data definition language (DDL) is used to create tables and the data 
manipulation language (DML) to insert rows with their properties values. The DML has the 
advantage to be a powerful declarative language being combined with the query language. In the 
proposed architecture both ontologies and data are stored. A data definition and manipulation 
languages is required to define and manipulate them. 

 
Requirement 7: (Ontology & data definition and manipulation) The language should offer a 
definition and manipulation language for ontologies and data. 

 
Example. Create the class User  of our example and add some instances. 

 
Ontologies are a conceptualization of a domain aiming at covering a wide and diverse range of 

technical and business requirements. As a consequence, ontologies usually define a lot of 
concepts. For example, the IEC ontology (IEC61360-4, 1999) on the domain of electronic 
components contains approximately 100 classes and more than 1000 properties. Moreover, users 
of an ontology are rarely its designer. Thus, users should have a mean to discover ontologies with 
the language. 

In addition, since an ontology defines generally a lot of concepts, a hierarchy of classes may 
have many levels. When a query is expressed on a class at a given level, the result may contain 
instances of this class and of its subclasses. Thus, these instances can be associated to different 
ontological description that the user may want to retrieve. This example shows the need to be able 
to query both ontologies and data. Notice that this capability would also be useful to extract a part 
of an ontology with its instances. In traditional languages, this operation requires the composition 



of two queries. Thus, this capability would be useful in distributed architecture where the network 
trips have to be minimized. 

 
Requirement 8: (Queries on ontologies and on ontologies and data) The language should 
offer querying capabilities on ontologies and both on ontologies and data. 

 
Example. Return all instances of Resource . For each instance, retrieve also the classes it 
belongs to. 

 
In this section, we have defined a requirements specification for an exploitation language of 

the OBDB architecture defined in section 3. A language fulfilling these requirements would allow 
to fully exploit this architecture. Using these requirements, we are now able to compare existing 
ontology query languages. 

 
ANALYSIS OF SEMANTIC WEB ONTOLOGY QUERY LANGUAGES 
A lot of ontology query languages have been proposed in the context of the Semantic Web. In a 
recent survey (Bailey et al., 2005), these languages are classified in seven categories (SPARQL 
family, RQL family, languages inspired from XPath, XSLT or XQuery, languages in controlled 
English, languages with reactives rules, deductive languages and other languages).  In this 
section, we present a representative language of the two first categories that fit the most with the 
requirements we have defined. 

 
SPARQL 
The first category of language is named “SPARQL familiy”. It is composed of the languages 
SPARQL (Prud’hommeaux and Seaborne, 2008), RDQL (Seaborne, 2004), SquishQL (Miller et 
al., 2002) and TriQL (Caroll et al., 2005). These languages consider all information (both 
ontologies and instances data) as a set of RDF triples (subject, predicate, object) . 
As a representative we have chosen SPARQL which is a W3C Recommendation. 

SPARQL is a graph-matching query language. A query consists of a pattern (a set of triples 
with variables and filters) defined in the WHERE clause. This pattern is matched against a data 
source, and the values obtained from this matching are processed in the SELECT clause to give 
the answer. We describe more precisely this language by discussing its capability w.r.t. the 
defined requirements. 

 
Requirement 1 (Queries at the ontological level) 

 
Example. The following SPARQL query1 can be used to rretrieve the instances of the class 
Item. 

SELECT ?i 
WHERE {?i rdf:type sioc:Item} 
 

Explanation. The triple in the FROM clause introduces the variable ?i  (a variable is prefixed by 
?) to iterate over instances of the class Item. This variable is specified in the SELECT clause 
to return its values. 

                                                 
1 For readability and conciseness, we omit specifications of namespaces and use names instead of URI. 



 
However, the result of the previous query depends on the triples represented in the OBDB. On 

the one hand, if for a class C, a triple (i, rdf:type, C) is represented for each direct or 
indirect instance of C, then the previous query returns also all the instances of the class Post  
subclass of Item . On the other hand, if a triple (i, rdf:type, C) is represented only for 
each direct instance of C, then the query returns only direct instances of C unless the query 
interpreter computes the transitive closure of the subsumption relationship. Thus, the SPARQL 
fulfill partially this requirement. Ontological queries can be expressed but their results depend on 
the represented triples or of their interpretation. 

 
Requirement 2 (Definition of non canonical concepts) 

 
SPARQL does not provide a data definition language. Thus, it can not be used to define non 
canonical concepts. However, if these concepts have been defined in the data source, SPARQL 
provides a CONSTRUCT query form that can be used to compute automatically their instances. 

 
Example. Compute instances of the class PostDupont  

CONSTRUCT ?p rdf:type sioc:PostDupont 
WHERE {?p rdf:type sioc:Post . ?p sioc:has_creator “Dupont”} 

 
Explanation. The WHERE clause retrieves instances (?p) of the class Post  created by the user 
Dupont . The CONSTRUCT clause replaces the traditional SELECT clause. It is constructed as a 
WHERE clause (a set of triples with variables and filters). The result is a new RDF graph 
constructed by replacing variables in the CONSTRUCT clause by values satisfying the WHERE 
clause. Thus, each post created by Dupont  is associated to the class PostDupont  in the 
resulting graph. 
 

Thus, SPARQL fulfill partially requirement 2. It can not be used to define non canonical 
concepts but permits to compute their instances (extension). Notice that the CONSTRUCT query 
form produces a new RDF graph. As a consequence and contrary to views of databases, 
extensions of non canonical concepts have to be recomputed whenever extensions of 
corresponding canonical concepts are modified (in our example, each time a message is added or 
deleted by Dupont ). 

 
Requirement 3 (Linguistic exploitation) 
 
SPARQL is equipped with operators to manipulate string defined in different natural languages.  
 
Example. Return the first name and last name of users with a query written using English names 
of concepts and one using French names. 
SELECT ?fn ?ln                            
WHERE {?u rdf:type ?c .  

   ?c rdfs:label “User”@en . 
   ?u sioc:first_name ?fn . 
   ?u sioc:last_name ?ln} 

 

SELECT ?fn ?ln                            
WHERE {?u rdf:type ?c .  
?c rdfs:label “Utilisateur”@fr . 

     ?u sioc:first_name ?fn . 
     ?u sioc:last_name ?ln}  

 



 
Explanation. The query written using English (resp. French) names is on the left (resp. right) part.  
The WHERE clause of this query retrieves instances (?u) of a class (?c ) whose name in English 
(suffix @en) is User . The query written in French is equivalent to this one. The suffix @fr  allow 
to use the French name of the class User (“Utilisateur” ). 
 
Thus, SPARQL fulfil requirement 3. It provides also other functions to manipulate multilingual 
ontologies. For example, the lang  function return the natural language of a given string. 
 
Requirement 4 (Ontology model extensibility) 
 
SPARQL does not provide a definition language for ontology and thus we can not define the 
OWL AllValuesFrom  constructor (sample example). However, since SPARQL has been 
designed for RDF, it considers an OWL ontology as a set of triples that use the OWL constructors 
defined in the OWL namespace. Thus, it can be used to query OWL ontologies but the semantics 
of OWL constructors has to be coded in the query interpreter.  
 
Requirements 5 and 6 (Compatibility with the traditional database architecture) 
 
Even if a SPARQL query has a form similar to an SQL query (clauses SELECT-FROM-WHERE), 
it is adapted to RDF (triples) querying and thus it is different from SQL (requirement 5). In 
addition, data schema is considered fixed (subject, predicate, object) and thus SPARQL does not 
provide any operator to modify it (requirement 6). 

 
Requirement 7 (Ontology & data definition and manipulation) 

 
Currently, SPARQL provides only a query language; it is not equipped with a definition and 
manipulation language (requirement 7). Thus, definition and manipulation of data are considered 
external functionalities provided by the data source. The need of a standard mechanism to update 
data sources has been addressed in (Seaborne and Manjunath, 2008) with the proposition of 
SPARQL/Update. But, this language is not yet integrated in the recommendation of the W3C. 
 
Requirement 8 (Queries on ontologies and on ontologies and data) 
  
Since, SPARQL considers all information as RDF data, it can be easily used to combined 
ontology and data querying. 

 
Example. Return all instances of Resource  with the classes it belongs to. 

SELECT ?i ?c 
 WHERE {?i rdf:type sioc:Resource . ?i rdf:type ?c}  

 
Explanation. The first triple of the WHERE clause retrieves instances (?i ) of the class 
Resource . The second triples retrieves classes (?c )  these instances belong to. 
 

Notice that in this example, like in all SPARQL queries, results depend on the triples 
represented in the data source and/or the interpretation of these triples by the query interpreter. 



 
RQL 
The second category of Semantic Web languages is called “RQL family”. It is mainly composed 
of the languages RQL (Karvounarakis et al., 2004), SeRQL (Broeskstra and Kampman, 2003) 
and eRQL (Tolle and Wleklinski, 2004). We have chosen to discuss the RQL language which is 
the most complete. 

RQL has been designed following a functional approach similar to the object-oriented 
language OQL (Cattell, 1993). Thus, simple queries consist of function calls (e.g, 
SubClassOf(Resource)  to retrieve all subclasses of Resource ). More elaborate queries 
can be defined using a traditional SELECT-FROM-WHERE syntax. The FROM clause introduces 
path expressions (with variables) built from a set of predefined basic path expressions and 
operators (e.g., C{X}  is a basic path expression that introduces a variable X on all instances of the 
class C). The WHERE clause is used to define conditions on variables introduced in the FROM 
clause. Finally, the SELECT clause defines the variable projected in the result (like in SPARQL).  

RQL is also composed of a manipulation language named RUL (Magiridou et al., 2005) and a 
view language named RVL (Magkanaraki et al., 2004). We present these different languages by 
discussing capabilities of RQL to fulfil the proposed requirements. 

 
Requirement 1 (Queries at the ontological level) 

 
The data model of RQL is based on RDF-Schema. To distinguish clearly the data, ontology and 
ontology model levels, the data model of RQL has some restrictions compared to RDF-Schema 
(e.g., a class can not be subsumed by an ontology model constructor). Yet, this model contains 
the main constructors of RDF-Schema (class, property and subsumption) and thus, queries at the 
ontological level are possible. 
 
Example. Retrieve all instances of the class Item  
SELECT I 

FROM sioc:Item{I} 
 
Explanation. The FROM clause introduces the variable I  on all (direct and indirect) instances of 
the class Item . The SELECT clause projects URI of these instances. To retrieve only direct 
instances, the class Item  must be prefixed with ^  (i.e., ̂ Item ) 
 
Requirement 2 (Definition of non canonical concepts) 
 
The view language associated to RQL (RVL) can be used to represent non canonical concepts 
such as OWL restrictions. 
 
Example. Create the class PostDupont defined as all messages of the user Dupont . 
CREATE NAMESPACE myview=&http://www.lisi.ensma.fr/e x-view.rdf# 
  VIEW rdfs:Class(“PostDupont”) 
       Property(P, PostDupont, range(P)) 
       FROM Property{P} 
       WHERE domain(P) >= sioc:Post 
  VIEW PostDupont(P), title(P, T), has_creator(P, C )   



FROM sioc:Post{P}.sioc:title{T}, {P}sioc:has_creato r{C} 
 WHERE C = “Dupont” 
 
Explanation. In RVL, views (non canonical concepts) are separated from classes (canonical 
concepts). Thus, a new namespace is created for views (http://www.lisi.ensma.fr/ex-
view.rdf ). The first VIEW clause is used to create the view PostDupont  with all properties 
defined on the class Post . This is done using a RQL query that searches all properties defined on 
Post  or on a superclass of Post  (domain(P) >= sioc:Post) . The second VIEW clause 
is used to compute instances of the view PostDupont  by searching all messages (P) with their 
title (T) that have been created by Dupont  (C). Notice that, for conciseness, we have only 
retrieved values of the title  property. To define the complete view, other properties values 
must be searched. 
 
Thus, RQL fulfil requirement 2. However, notice that the distinction between canonical and non 
canonical concepts forbids the definition of subsumption relationships between these two kind of 
concepts. Thus, it is necessary to reproduces manually this behaviour (by importing properties 
and their values in the NCCO). 
 
Requirement 3 (Linguistic exploitation) 
 
RDF-Schema allows to associate names defined in different natural languages to classes and 
properties. It permits also to define string values in different natural languages. RQL does not 
exploit these features. 
 
Requirement 4 (Ontology model extensibility) 
 
The ontology model supported by RQL is composed of the constructors Class  and Property . 
This ontology model can be extended by specialization of these two constructors. But, a 
constructor can not be added if it does not inherit from Class  or Property . For example, this 
limitation prevents to add the Document  constructor of PLIB (to describe a concept by a 
document) or the Ontology  constructor of OWL (to regroup all concepts defined in an 
ontology). Moreover, if these capabilities are defined on the data model of RQL, the language 
does not provide any operator to use them. Thus, we can not use RQL to define the OWL 
AllValuesFrom  constructor. 
 
Requirements 5 and 6 (Compatibility with the traditional database architecture) 
 
The syntax of RQL is close to the one of object-oriented languages. However, it keeps no 
compatibility with SQL (requirement 5). In addition, RQL considers all instances as a URI 
independently of the classes it belongs to and of its properties values. Thus, it can not be used to 
manipulate the data schema (requirement 6). 

 
Requirement 7 (Ontology & data definition and manipulation) 

 



As we have seen in requirement 4, RQL does not provide a syntax to define the ontology model 
used. But RVL provides constructors to create new classes and properties and RUL can be used 
to insert new instances. 

 
Example. Create the class User  of our example and add some instances. 
VIEW Class(“User”)<Resource> 
     Property(“first_name”, User, xsd:string) 
     Property(“susbscriber_of”, User, Forum) 
 
INSERT User(&http://www.lisi.ensma.fr/Dupont) 
INSERT first_name (&http://www.lisi.ensma.fr/Dupont , “patrick”) 
 
Explanation. The constructor Class  takes only one parameter: the URI of the class to define (for 
readability we use only the name User ). This class is defined as a subclass of Resource  
(operator <>). Its properties are defined with the Property  constructor. It takes three 
parameters: URI, domain and range of the property to define. The language RUL is then used to 
insert one instance of the class User . The operation INSERT is first used to define the URI of 
the instance and then to define its properties values (we define only value of the property 
first_name ). 

As this example shows, the RVL language is not a complete data definition language. It can 
only be used to create classes with a URI and properties with a URI, their domain and range. 
Other characteristics of classes and properties (e.g., names in different natural languages) can not 
be specified. On the other hand, RUL provides a complete set of operations (INSERT-MODIFY-
DELETE) to manipulate data. 
 
Requirement 8 (Queries on ontologies and on ontologies and data) 
 
RQL is equipped with powerful path expressions that make it possible to query both ontologies 
and data. 
 
Example. Return all instances of Resource  with the classes it belongs to. 

SELECT U $C 
  FROM $C{U} 
 WHERE C <= sioc:Resource 
     
Explanation. The basic path expression $C{U} of the FROM clause introduces a variable U that 
denotes direct instances of a class $C (variables for classes are prefixed by $ in RQL). The 
WHERE clause adds a condition to retrieve only direct instances of Resource  or of a subclass 
of Resource . Finally, the SELECT clause projects the URI of instances and classes. 
 

In this section, we have discussed capabilities of Semantic Web query languages w.r.t. the 
defined requirements. In next section, we study other languages that have been designed to keep 
some degree of compatibility with traditional databases. 
 
ANALYSIS OF DATABASE-ORIENTED ONTOLOGY QUERY LANGUAGES 



Several languages have been defined specifically for exploiting ontologies stored in databases 
such as Oracle extension to SQL (Chong et al., 2005; Wu et al., 2008), OntoQL (Jean et al., 
2006), SOQA-QL (Ziegler et al., 2005) or CQL (Mizoguchi-Shimogori et al., 2002). In this 
section we discuss the most recent and active approaches i.e., Oracle extension to SQL and the 
OntoQL exploitation language. 
 
Oracle Extension to SQL 
The main objective of Oracle (Chong et al., 2005; Wu et al., 2008) was to provide efficient RDF 
data querying capabilities that integrate smoothly with SQL queries. The proposed solution is a 
SQL table function to query RDF data.  

The table function named RDF_MATCH takes four parameters. The first parameter is a graph 
pattern to be matched. This graph pattern is defined with a syntax similar to the clause WHERE of 
SPARQL (basically a set of triples with variables). The second parameter specifies the RDF 
graph to be queried.  The third parameter specifies the rulebase (if any) that must be used to infer 
new RDF data. A rulebase is composed of a set of rules. Each rule consists of a left hand side 
graph pattern for the antecedents, filter conditions, and a right hand side graph pattern for the 
consequents. Notice that RDF-Schema inference rules (e.g, transitive closure of the subsumption 
relationship) is created by the system (named rdfs ) and available to users. Finally, the last 
parameter specifies user-defined namespaces aliases. The RDF_MATCH function returns a table 
having a column for each variable used in the graph pattern. Thus, this function can be seamlessly 
combined with SQL queries. 

A strong effort has been made to optimize the RDF_MATCH function. Indeed, this function is 
rewritten has a SQL query so that it can be optimized with the rest of the query. Moreover, 
indexes and materialized views are used to execute efficiently queries. Scalability of the proposed 
approach has been demonstrated on 80 million RDF triples. 
 
Requirement 1 (Queries at the ontological level) 
 
The RDF_MATCH function can be used to express ontological queries decomposed in a triples 
pattern. 
 
Example. Retrieve instances of the class Item. 

SELECT t.i 
  FROM TABLE(RDF_MATCH(‘(?i rdf:type Item)’, NULL, NULL, NULL)) 
 

Explanation. The table function RDF_MATCH is used in the clause FROM of the query. It only 
takes a simple graph pattern as parameter to search instances of the class Item  (?i ). This 
function returns a table with a column named i  for the variable ?i . This variable can be 
projected in the SELECT clause. 
 

Like SPARQL, result of the previous query depends on the triple represented in the RDF data 
source. For the RDF_MATCH function, it depends also of the rulebase specified. Indeed, if we 
specify the rdfs  rulebase in the previous example, all (direct and indirect) instances of Item  
will be returned (the transitive closure of the subsumption relationship is computed by a rule).  
 
Requirement 2 (Definition of non canonical concepts) 



 
The data manipulation language of SQL can be used to define the non canonical class 
PostDupont   A rule can be used to compute automatically its extension (set of instances). 
 
Example2. Create the class PostDupont defined as all messages of the user Dupont . 
 
INSERT INTO rdf_example    
       VALUES (‘PostDupont’, rdf:type, rdfs:Class) 

 
SELECT i FROM TABLE( 
    RDF_MATCH(‘(?i rdf:type PostDupont)’, NULL, rb_ example, NULL) 
 
The rulebase rb_example  contains the following rule: 
 
(‘(?p rdf:type Post)(?p has_creator ?c)’, 
 ‘?c = Dupont’, 
 ‘(?p rdf:type PostDupont)’) 
 
Explanation. In this example, we suppose that a table named rdf_example  has been created to 
store RDF data. An Insert  statement is used to insert the class PostDupont . Instances of 
PostDupont  can be retrieved through a SQL query that uses the RDF_MATCH function. This 
function infers all instances of PostDupont  thanks to a rule. The meaning of this rule is the 
following. If a message ?p  has been created by ?c (antecedent defined in the first parameter)  
which is Dupont (filter defined in the second parameter), then ?p is inferred to be an instance 
of PostDupont (consequent defined in the third parameter) . 
 
Requirement 3 (Linguistic exploitation) 
 
Like SPARQL, the graph pattern of the RDF_MATCH function can use string values suffixed by a 
language code (e.g., @fr  for a French string). Thus, our sample queries can be written like in 
SPARQL (see section 4). 
 
Requirement 4 (Ontology model extensibility) 
 
Like SPARQL, the RDF_MATCH function has been designed for RDF data and thus, it considers 
OWL ontology as a set of triples that use the OWL constructors defined in the OWL namespace.  
However, contrary to SPARQL, predefined rulebases are provided to take into account semantics 
of OWL constructors. 
 
Requirements 5 and 6 (Compatibility with the traditional database architecture) 
 
The RDF_MATCH function is directly integrated in SQL (requirement 5).  To use this function, a 
table has to be created to store triples. Materialized views are automatically created to optimize 

                                                 
2 For conciseness, we use a simplified syntax. For more details, the interested reader can consult the Oracle 
documentation (http://www.oracle.com/technology/tech/semantic_technologies/index.html) 



queries on this table. However the representation of triples in this table can not be customized 
(requirement 6). 
 
Requirement 7 (Ontology & data definition and manipulation) 
 
The data manipulation language of SQL can be used to create classes and instances. 
 
Example. Create the class User  of our example and add some instances. 
INSERT INTO rdf_example VALUES (‘User’, rdf:type, r dfs:Class) 
INSERT INTO rdf_example  
       VALUES (‘User’, rdfs:subClassOf, ‘Resource’)  
INSERT INTO rdf_example  
       VALUES (‘first_name’, rdf:type, rdf:Property ) ... 
 
INSERT INTO rdf_example VALUES (‘User1’, rdf:type, User) 
INSERT INTO rdf_example VALUES (‘User1’, first_name , ‘Patrick’) … 
 
Explanation. All information has to be inserted as RDF triples. Thus, many INSERT statements 
are necessary to insert the class User  with its properties and its instances. 
 

As this example shows, usage of the DML of SQL can be tedious to create ontologies and 
their instances. 

 
Requirement 8 (Queries on ontologies and on ontologies and data) 
 
Since, the RDF_MATCH function provides similar graph pattern matching capabilities as 
SPARQL, it can be used to combined ontology and data querying. 
 

Thus, the RDF_MATCH is a powerful extension of SQL to query RDF data. In the next 
section we discuss the OntoQL exploitation language that  extends SQL following a different 
approach. 
 
OntoQL 
 
OntoQL (Jean, 2007; Jean et al., 2006) has been defined specifically for OBDBs. To exploit data, 
OntoQL has been defined in different layers: 

• data access at the logical level by compatibility with SQL;  
• data access at the ontological level, CCO layer. Primitive concepts being mainly defined 

with object-oriented constructors, OntoQL adapts and extends SQL99 providing powerful 
relational-object operators; 

• data access at the ontological level, NCCO layer. OntoQL provides a View Definition 
Language for defining and querying defined concepts; 

• data access at the ontological level, LO layer. Each class and each property can be 
referenced by a name (in a given natural language) in an OntoQL query. 

 



Ontologies being recorded in OBDBs, OntoQL provides an Ontology Definition, 
Manipulation and Query Language (ODL, OML and OQL) to exploit them. To keep a uniform 
syntax, these languages have been designed to keep a syntax near SQL99. They are based on a 
core ontology model that contains the main constructors of existing ontology models. This core 
ontology model is an object-oriented model composed of classes and properties named entities 
and attributes to distinguish them from ontology classes and properties. This core ontology model 
can be extended with new entities and new attributes using the ODL. Since this model can be 
extended, names of entities and attributes are not encoded as keywords in the OntoQL grammar 
but they are prefixed by the character #.  
 
Requirement 1 (Queries at the ontological level) 
 
Ontological queries can be expressed following a SQL-like syntax. 
 
Example. Retrieve instances of the class Item. 

SELECT uri 
  FROM Item 
 USING NAMESPACE ‘http://rdfs.org/sioc/ns’ 

 
Explanation. The USING clause is used to define a default namespace for the query.  When the 
SIOC namespace is set, each element without prefix (e.g., Item ) is searched in this ontology. 
This query retrieves all instances of Item . To retrieve only direct instances, one can use the 
ONLY operator like in SQL99 (i.e., ONLY(Item) ). 
 
Requirement 2 (Definition of non canonical concepts) 
 
OntoQL provides a View Definition Language to define non canonical concepts.  
 
Example. Create the class PostDupont defined as all messages of the user Dupont . 

CREATE #Class PostDupont AS VIEW UNDER Post 
 
CREATE VIEW OF PostDupont AS 
  SELECT * FROM Post AS p  
   WHERE p.has_creator.last_name = ‘Dupont’ 

 
Explanation. The first statement creates the class PostDupond  as a non canonical concept 
(keyword VIEW), subclass of Post . The second statement defines the extension of this class by 
providing an OntoQL query that computes its instances. 
 

When non canonical classes are defined using OWL constructors (e.g., restrictions), an 
inference engine can automatically compute subsumption relationships between canonical and 
non canonical concepts. OntoQL (like RQL) has not this capability: canonical and non canonical 
classes must be placed manually in the hierarchy. 
 
Requirement 3 (Linguistic exploitation) 
 



In OntoQL, each class and each property can be referenced by a name in a given natural 
language. It makes it possible to write the same query in many natural languages. 
 
Example. Return the first name and last name of users with a query written using English names 
of concepts and one using French names. 
  SELECT “first name”, 
         “last name” 
    FROM User 
  USING LANGUAGE EN                             

    SELECT prénom, 
           nom 
      FROM Utilisateur 
     USING LANGUAGE FR                            

 
Explanation. The USING clause of OntoQL can be used  to specify the natural language in which 
a query is expressed. The left query used English names. For names with a space (e.g., first 
name) double quotes are used. The right query is equivalent but written with French names. 
 
 
Requirement 4 (Ontology model extensibility) 
 
The ontology model supported by OntoQL can be extended using its ODL. 
 
Example. Add the OWL constructor AllValuesFrom 

 
CREATE ENTITY #AllValuesFrom UNDER #Class( 
   #onProperty REF(#Property), 
   #allValuesFrom REF(#Class) 
) 
 
Explanation. An OWL restriction being a class, the ALLValuesFrom  constructor is added as a 
subentity of #Class . This entity has an attribute #allValuesFrom  to specify the class in 
which its instances take their values for the property defined by the attribute #onProperty . 
 

When an extension is made by specialization, like in the previous example, new entities 
inherit the behaviour of their super entities. This behaviour is defined in the operational semantics 
of the core ontology model. Thus, every specialization of the entity #Class  defines a new 
category of classes which supports by inheritance the usual behaviour of a class.  As a 
consequence, each OWL restriction may be associated to a container to store its instances. These 
instances may be computed using a view (all instances having all values of a property in a given 
class). However, OntoQL does not provide yet the capability to express this semantics.  
 
Requirement 5 (SQL compatibility) 
 
If a default namespace is not specified, each element of an OntoQL query without a namespace 
alias prefix is considered as an element of the logical model (a table or a column). Thus, an 
OntoQL query without namespace specification is considered as a SQL query (requirement 5). 
Moreover, the semantics of OntoQL (an algebra) has been defined so that each operator returns a 
relation (Jean et al., 2007a). Thus, queries at the logical level and ontological level can be 
combined (like Oracle). 



 
Requirement 6 (Access to the conceptual model of data) 
 
OntoQL provides basic functionalities to define and access the conceptual model of data. 
 
Example. Create the conceptual model corresponding to the class User  knowing that only the 
properties first_name , last_name  and email  will be used in the target application. 
 
CREATE EXTENT OF User (“first name”, “last name”, e mail) 
           TABLE T_User (first_name, last_name, ema il) 
 
Explanation. The CREATE EXTENT statement defines the conceptual model corresponding to a 
class specifying the set of properties used to describe instances of this class. The TABLE clause is 
used to choose the logical implementation of this conceptual model (i.e., tables and columns 
necessary).  
 

Currently, in OntoQL, the conceptual model of data can only be defined through a subset of 
the ontology.  
 
Requirement 7 (Ontology & data definition and manipulation) 
 
The data manipulation language of SQL can be used to create classes and instances. 
 
Example. Create the class User  of our example and add some instances. 
CREATE #Class User UNDER Resource ( 
  DESCRIPTOR (#name[fr] = ‘Utilisateur) 
  #property (“first name” String, “last name” Strin g, …) 
) 
 
INSERT INTO User VALUES(‘User1’, ‘Patrick’, ‘Dupond ’) 
 
Explanation. The first statement creates the class User . This class is defined as a class 
(#Class ), subclass of Resource . The name in French of this class is specified in the 
DESCRIPTOR clause. The #property  clause is used to create properties having User  as 
domain. The second statement supposes that we have created an extent for the class User  (see 
previous requirement). It uses a SQL-like INSERT statement to insert an instance. 
 

One limitation of the data manipulation language of OntoQL is that it does not support multi-
instanciation, i.e., that an instance may belong to many classes not linked by subsumption 
relationships. This limitation allows to define an efficient storage structure when instances have 
many properties values (Dehainsala et al., 2007). 
 
Requirement 8 (Queries on ontologies and on ontologies and data) 
 
OntoQL is equipped of operators to combine ontologies and data querying. In particular, it 
provides the TYPEOF operator to return the class an instance belongs to. 



 
Example. Return all instances of Resource  with the classes it belongs to. 

SELECT r.uri, TYPEOF(r).#name[en] 
  FROM Resource AS r 
     
Explanation. The FROM clauses introduces the alias r  on instances of the class Resource . For 
each instance, its URI is projected as well as the name in English of the class it belongs to 
(retrieved with the TYPEOF operator). 
 

This brief presentation of OntoQL ends our analysis of capabilities of ontology query 
languages to exploit OBDBs. We draw main conclusions in the next section. 
 
CONCLUSIONS 
In this chapter, we have presented capabilities of the main ontology query languages to exploit 
databases extended with ontologies. To compare these languages, we have first defined a set of 
requirements for an architecture that extends the traditional ANSI/SPARC architecture with 
conceptual and ontological levels.  Then, we have discussed the capabilities of two Semantic Web 
query languages (SPARQL and RQL), and two database-oriented ontology query languages 
(Oracle extension to SQL and OntoQL) to fulfill these requirements. The result of this study is 

summarized in Table 1. In this table, the symbol • is used when the requirement is fulfilled, o 
when it is partially fulfilled, and - when it is not fulfilled.  
 
 SPARQL RQL Oracle OntoQL 

Queries at the ontological level  o • o • 
Definition of non canonical concepts o o • o 

Linguistic exploitation • -  • • 
Ontology model extensibility o o • o 

SQL compatibility - -  • • 
Access to the conceptual model of data -  -  -  o 
Ontology & data definition and manipulation -  o o o 
Queries on ontologies and on ontologies and data • • • • 

Table 1. Analysis of the main ontology query languages w.r.t. to the defined requirements 
 

Results presented in Table 1 lead us to draw the following conclusions.  The main drawback 
of SPARQL and Oracle approaches to query OBDBs is that they consider all information as RDF 
data. As a consequence, when querying at the ontological level, the semantics of the ontology 
models has to be coded either in the query interpreter of SPARQL or by a set of deductive rules 
in the Oracle approach. Moreover, they don’t provide operators to exploit this semantics (e.g., an 
operator to retrieve direct instances of a class). Another consequence is that the syntax of these 
two languages is adapted to query triple data. As a consequence, an ontological query has to be 
decomposed in triples (e.g, (?i rdf:type User) (?i sioc:name ?n) for retrieving 
names of users)  which can be tedious for users. 



On the contrary, the semantics of RQL and OntoQL are based on the core constructors of 
ontology models. They provide a syntax near the one of object-oriented query languages. We 
think that this syntax is more adapted for ontologies than a triple syntax because ontologies share 
many constructors with the object-oriented data model. 

However, RQL and OntoQL may benefit from efforts made by Oracle to provide semantics 
technologies. Indeed, Oracle provides customizable and optimized triple storage with capability 
to load quickly a huge amount of RDF data. Thus, Oracle provides the built-in functions to serve 
as a scalable storage structure for RQL or OntoQL. Moreover, Oracle is now equipped with an 
inference engine for RDFS/OWL constructs which will be particularly useful for RQL and 
OntoQL to take into account the semantics of OWL. As a future work we plan to put this 
observation in application by implementing OntoQL on top of Oracle.  
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KEY TERMS & DEFINITIONS   
 
Ontology: a formal and consensual dictionary of categories and properties of 
entities of a domain and the relationships that hold among them. 
 
Ontology-based Database (OBDB): a data source which contains i) a (local) 
ontology, ii) possibly some references from this ontology to external (shared) 
ontologies, iii) a set of data, iv) and finally a relationship between each data and 
the ontological notion which explicit its meaning. An OBDB has two main 
characteristics: i) both ontologies and data are represented in a unique database 
and the same processing can be applied on them (Insert, Update, Querying, 
Versioning, etc.); ii) any data is associated to an ontological element which 
defines it meaning and vice versa (Dehainsala et al., 2007). 
 
Ontology query language: a language that has been designed to exploit 
ontologies and their instances. 
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