
Minimizing the number of processors for real-time distributed systems

F. DORIN, M. RICHARD, E. GROLLEAU, P. RICHARD
ENSMA - Université de Poitiers

LISI
1 rue Clément Ader, BP 40109,

86961 Chasseneuil du Poitou Cedex, France
{francois.dorin,michael.richard,emmanuel.grolleau,pascal.richard}@lisi.ensma.fr

Abstract

In this paper we present a new search method for par-
titioning and scheduling a set of periodic tasks on a multi-
processor or distributed architecture. The schedule is fixed-
priority driven and task migration is not allowed. The aim
of this algorithm is to minimize the number of processors
used for scheduling a set of tasks. Moreover, we assume
that the number of processors obtained by our method is
optimal in respect to the holistic analysis. The paper then
compares experimental results from the presented method
to the FBB-FFD [9] partitioning algorithm in a multipro-
cessor context.

1. Introduction

Due to their potential for high performance and high reli-
ability, distributed systems are being used for an increasing
number of real-time applications. Physical architectures of
such systems are composed of several processors intercon-
nected through one or more networks like CAN1 in auto-
motive systems for example. The software layer is com-
posed of tasks that communicate by exchanging messages
via a communication device. Tasks are time-critical, mean-
ing that each task must be completed by its deadline, other-
wise serious consequences may ensue. This software layer
has to be mapped on the hardware architecture.

In this paper we focus on the minimization of the num-
ber of processors used in multiprocessor or distributed ar-
chitecture in order to require less electrical power and to
reduce system cost. For some kind of systems like satel-
lites or UAVs2, saving energy is one of the most important
point. Indeed, saving energy impacts on the weight, size
and autonomy of the system. Moreover, in automotive in-

1Controller Area Network
2Unmanned Aerial Vehicle

dustry, reducing the number of processors can reduce the
cost of the embedded system and thus impact the cost of the
vehicle.

For uniprocessor real-time systems and synchronously
released fixed-priority tasks, verifying that the tasks meet
their deadlines can be computed in a pseudo-polynomial
time [12], but it is not known if a fully polynomial time
algorithm exists. Note that no necessary and sufficient
schedulability condition is known for real-time multipro-
cessor or distributed systems. Our method is based on the
holistic analysis first presented by Tindell [28] which has
been widely used [20, 26, 18, 25]. This analysis is based
on the concept of busy period introduced by Lehoczky [12].
The holistic analysis is based on the knowledge of tasks al-
location on the processors. In order to lead such an analysis,
we need to know how to partition and how to affect prior-
ities to the tasks set. Two algorithm families need to be
considered:

• global scheduling: under global scheduling, task mi-
gration is allowed and a preempted task can be re-
sumed on a different processor without additional cost.
Examples of this kind of algorithm can be found in [3],
[2] or [6].

• partitioned scheduling: under partitioned scheduling,
tasks are allocated on processors at first and then
a uniprocessor scheduling analysis is performed on
each processor. In the literature, we can find sev-
eral methods dealing with this kind of problem: al-
gorithms based on bin-packing [9, 5, 14, 21], but
also theoretical results as schedulability tests in the
case of fixed-priority scheduling and independent tasks
[4, 10]. These algorithms do not optimally minimize
the number of processors but provide a sufficient con-
dition of schedulability. For example, in [5], the au-
thors proved that if a tasks set can be successfully par-
titioned on m processors, then their algorithm can par-
tition this tasks set on m processors where each pro-



cessor is
(
4− 2

m

)
times faster. In [4], Baruah has de-

veloped an algorithm which can successfully schedule
a set of tasks on m processors if the total utilization
does not exceed (m+1)

2 .

Nevertheless, these results cannot be applied in a depen-
dent tasks context, that is to say for a distributed system.
Allocating dependent tasks is aNP-hard problem [13], thus
there is no efficient algorithm solving the general schedula-
bility problem for multiprocessor real-time systems. In the
literature, objectives of authors works dealing with alloca-
tion and scheduling are usually either:

• To validate the application. Allocation and schedul-
ing are usually considered as two independent stages.
Most of the time, the scheduling policy is a priori
known, as in [15, 24, 17, 1, 27]. These approaches
mainly focus on the allocation process.

• Or to optimize one or several criteria such as the work-
load balancing [23], the number of required processors
[16] or the response time of tasks [19, 11].

In [22], authors propose a method that simultaneously
allocates tasks to processors and assigns priorities to tasks
and messages. This method is based on the holistic analysis
[29, 28] to verify the schedulability of tasks. In practice,
there exists feasible schedules that are not validated by a
holistic analysis. The method limits its search within the
subset of schedules that can be validated by a holistic anal-
ysis. This method is optimal in the sense that if there exist
feasible holistic schedules then our method always find one
of them.

But this method needs to know exactly the hardware ar-
chitecture, that is to say the number of processors in the sys-
tem. The contribution of this paper relaxes this latter con-
straint and considers the number of processors as an output
and not as an input parameter. Our algorithm is also opti-
mal in the sense that if our algorithm completes and finds a
solution using m processors, then there is no solution using
less than m processors which can be validated by a holistic
analysis. Our method has a very large scope; for example:

• multiprocessor systems.

• pool of multiprocessors in a distributed architecture.

• distributed system with identical processors linked
through one or several network(s).

This paper is organized as follow: Section 2 introduces
basic concepts and notations used in the rest of this paper.
In Section 3, we explain the algorithm principles and the
differences with the method presented in [22]. Section 4
provides some numerical results and a performance com-
parison with the FBB-FFD algorithm in a multiprocessor
context.

2. Task and System Models

In this section, the characteristics and assumptions of
supported hard real-time distributed systems are presented.
Tasks and processors are grouped into different sets, de-
noted pools hereafter. All processors belonging to a pool
are identical. Tasks are allocated step by step to processors
of the pool in which they belong to.

2.1. Task model

A periodic task τi = (Ci, Di, Ti, Ji) is characterized by
a worst-case execution time Ci, a relative deadline Di, a
period Ti and a release jitter Ji. The required amount of
computational capacity of a task τi is called the task utiliza-
tion and is denoted ui = Ci

Ti
. The deadline Di is arbitrary,

that is to say it can be less, equal or greater than the task
period Ti. An instance of a task is also called a job. A new
instance is released every Ti time units. Here, we only con-
sider fixed priority tasks. Thus, all occurrences of a tasks
have the same priority, and there is no more than one task
assigned to a priority level (i.e., two tasks cannot have the
same priority). We also assume that preemption is allowed
at no cost.

Let Tri denote the worst-case response time of the task
τi, that is to say an upper bound of the time needed by τi
to finish in the worst case. So, to be schedulable, the worst
case response time of a task must be lower or equal to the
deadline.

Let τ be a system of periodic tasks where τ =
{τ1, . . . , τn} and τi = (Ci, Di, Ti, Ji) for all i, 1 ≤ i ≤ n.

Let Pri denote the processor i. When a task is allocated
to a processor, it has a fixed priority denoted πi. When a
task τi has a higher priority than a task τj , we note πi > πj .
Once a task is allocated to a processor, all the occurrences
of this task are executed on this processor since tasks mi-
gration is not allowed.

2.2. Message model

Distributed tasks exchange data by sending messages on
networks (e.g., fieldbuses). To every message mi is associ-
ated a worst-case transmission delay Ci and a period Ti. A
deadline can be easily assigned to a message by considering
deadlines of tasks that receive it. For instance, the deadline
of a message is defined by the smallest quantity Dk − Ck,
where k is a receiver of the message mi. Assigning dead-
line to every message allows to faster detect that a schedule
is unfeasible without checking end-to-end deadlines.

Note that communicating tasks that are allocated to the
same processor exchange data via the shared memory of the
site. Thus, no message is needed for that purpose. In this



Pr1 Pr2 Pr3

Pr6

Pr9

Pr8Pr7

Pr5Pr4

CAN 1

CAN 2

Figure 1. A real-time distributed sys-
tems with 3 pools of processors:
{Pr1, . . . , P r5}, {Pr6}, {Pr7, . . . , P r9}

case, communication is modeled by a precedence constraint
between communicating tasks.

We consider that networks are composed of priority
buses. Thus, messages can be modeled as tasks scheduled
on a virtual non-preemptive processor: the network. Thus,
the worst case response time for a message is defined like
for a task, except for a blocking term which is added due to
the non-preemptive policy. The blocking term corresponds
to the longest message currently on the bus. The worst-case
response time of a message depends on its length and of the
kind of the network.

To summarize, we thus consider a preemptive schedule
for tasks and a non-preemptive for messages.

2.3 Hardware architecture

We consider distributed systems composed of sets of
processors (called pool) and several fieldbuses.

Definition 1 A pool of processors Pli is defined by:

• a set of mi identical processors, denoted Prk, 1 ≤
k ≤ mi. These processors are all connected to the
same network. Some of them can be gateways to other
networks.

• a set of tasks associated to the pool, denoted θi, to be
allocated to the processors of the pool.

Next, we present our algorithm that minimize the num-
ber of processors in every pool. To simplify the presenta-
tion, we consider that the system consists of one pool.

3 3 2 2 3 2 3 3 1 1 3 1

2 3 2 3 1 3 1 3

1 2

*

Figure 2. Example of a search tree

3. Task partitioning and scheduling

We developed a partitioning and scheduling algorithm
based on the works presented in [22]. A Branch and Bound
method stores feasible solutions into a search tree. Every
node in the tree is a partial allocation and priority assign-
ment of tasks. Every node corresponds to simultaneously
allocating and assigning a priority to one task. Separat-
ing a node consists in exhausting all subsequent scheduling
decisions. When a leaf is reached in the search tree (i.e.,
all scheduling decisions have been taken), then a holistic
analysis allows to conclude if the corresponding solution is
feasible or not. In order to limit the combinatorial explo-
sion while enumerating scheduling decisions, evaluations
are performed to prune nodes that do not lead to feasible
schedules.

Two kinds of vertices are defined in [8]:

• circle node: one task is allocated to the current proces-
sor to the next priority level.

• square node: one task is allocated to the highest pri-
ority on the next processor, that becomes the current
processor.

Priorities are assigned to tasks from the highest priority to
the lowest priority. Thus the priority of a task enumerated in
a square node is the highest priority on this new processor.

Figure 2 is a search tree example. The path from the
root to the leaf marked with a star represents a schedule
composed of two processors. On the first processor, task
τ1 is first enumerated so it has the highest priority. Task τ3
comes in second position and has the lowest priority on this
processor. Because the node used for task τ2 is a square
node, τ2 is allocated to a new processor which becomes the
current processor.

Our algorithm tries to use all available processors in a
pool and will not return a solution using less than m pro-
cessors unless the number of tasks n verifies n < m. We
extend this algorithm in order to use the minimum number
of processors instead of using all the processors.



3 3 2 2 3 2 3 3 1 1 3 1 2 2 1 1 2 1

2 3 2 3 1 3 1 3 1 2 1 2

1 2 3

3 2 3 1 2 1 3 2 3 2 3 1 3 1 2 1 2 1

2 3 1 3 1 2 2 3 2 3 1 3 1 3 1 2 1 2

1 2 3 1 2 3

1 processor 2 processors

Figure 3. Two possible search trees

Choice of the search tree. Since the existing method uses
all the available processors in the current pool, we need to
extend the search tree. Considering a set of n tasks in a
pool, two approaches can be considered:

1. a search tree composed of n subtrees. Each subtree
enumerates all the solutions corresponding to a pool
composed of i processors, i ∈ [1..n], by using the
building method presented in [22]. An example of
such a search tree is shown on the first part of the Fig-
ure 3. Basically, such an approach consists in execut-
ing the algorithm presented in [22] several times with
a different number of processors.

2. a new search tree structure. We can notice that in the
previous search tree, a same partial solution can be
evaluated several times. More precisely, the partial
solution modeling the allocation of the task τ1 at the
highest priority and τ2 at a lower priority on the same
processor is represented twice in the previous search
tree: first path in the first and second subtree. We pro-
pose a new search tree structure avoiding the redun-
dancy of the same partial solutions. We can see such a
search tree at the bottom of the Figure 3 for a system
composed of 3 tasks allocated on 2 processors. Both
search trees have the same number of leaves and rep-
resent the same set of possible schedules. The only
difference is the number of nodes. In our example, the
top tree contains 42 nodes and the bottom tree con-
tains only 33 nodes. For efficiency reasons, we choose
to use the bottom tree as search tree.

At each stage of the search method, the following actions
are done:

1. enumeration of all the possible solutions: during this

stage a task is allocated to a processor and assigned to
a priority level.

2. the current solution is evaluated from a schedulability
point of view and from a performance criterion point of
view (i.e., minimizing the number of processors used
by the current solution).

These actions are described in the next paragraphs.

3.1. Enumerating solutions (branching)

During the search, at each level of the tree we have to
choose which task is the next task to insert and if the task
must be allocated on the current processor or on a new pro-
cessor (i.e., choosing which kind of node in the search tree).
This section details a set of rules used to enumerate solu-
tions. More precisely, these rules can be categorized ac-
cording to the following categories:

• building rules: necessary to avoid solution redundan-
cies.

• cutting rules: necessary to respect the task system con-
straints like precedence constraints.

• branching rules: used to speed-up the search.

In ??, it is proved that there are n!
m!C

m−1
n−1 leaves for a tree

which enumerate all solutions without redoudancies for a
system of n tasks and m processors. So, for our new search
tree structure, there is

mmax∑
m=mmin

n!
m!
Cm−1
n−1 (1)

leaves.

Building rules. The search tree corresponding to a given
pool composed of n tasks is defined by the following rules
avoiding redundancies in building solutions.

1. the level 0 contains a unique node which is the root of
the tree.

2. the level 1 is composed of n−mmin+1 square nodes.

3. a path, which begins at level 0 and finishes at level
i, 1 ≤ i < n, can be extended at the level i+ 1 by any
circle node or any square node among n if the rules 4,5
and 6 are respected.

4. a task τk can only appear once in a path.

5. a square node k cannot be used to extend a path which
already contains a square node l such as l > k. This
ensures that there will be no redundancy.

6. No path can be extended by a square node if it already
contains mmax square nodes.



Cutting rules. Let ≺ denote a precedence constraint, that
is to says τk ≺ τl means that the execution of τl cannot be-
gin until τk is finished. With the following rules we check if
task system constraints are satisfied. If not, the correspond-
ing solution is not enumerated (i.e., the corresponding path
is pruned and a backtrack is performed).

1. if τk ≺ τl and if τk and τl are allocated on the same
processor, then it does not exist a path which begins by
a square or circle node l and finishes by a circle node k
and contains only circle nodes. This rule ensures that
the precedence constraint is enforced.

2. A sub path beginning by a square node k and com-
posed of l circle nodes cannot be extended by a cir-
cle node r if the load of the tasks composing the sub
path, denoted by Us, plus the load of τr is such as
Us + ur > 1. If Us + ur > 1 and r > k, then a square
node r is built. This rule avoids paths having one or
more processors with an utilization factor higher than
1 to be built.

3. Let τk be the task to insert. Let the number of unal-
located tasks τr such that r ≥ k be denoted by nbk.
Let nbPr denote the number of unused processors. If
nbk > nbPr then the square node is not built.

4. Let U denote the load of unallocated tasks. Let nbPr
denote the number of unused processors. If U > nbPr
then the square node is not built.

5. Let τk be the task to insert. If the current processor is
the last and if it exists at least one predecessor of τk
which is not already allocated, then the circle node k
is not built. This insures that on the last processor the
priority are coherent with the precedence constraints.

Branching strategies. Several branching rules have been
implemented

• First of all, we sort tasks by non-decreasing load. Let
S denote the set of unallocated tasks. At the level i,
the set S contains n− i items. When we allocate a task
τk and go to the next level, the set S

′
used for the next

level is S
′

= S − {τk}.

• We tried to allocate the maximum number of tasks on
the current processor first. After we tried to allocate all
the tasks on the current processor, we tried to allocate
them on a new processor. Thus, this method tries to
maximize the load of each processor before using a
new one.

• a depth-first search strategy is performed in order to
avoid a combinatorial explosion in space. Such a
strategy ensures that the required memory to run the

method is polynomially bounded in the size of the
problem (see [22] for details). To speed up the method,
we also perform depth-first searches in several paths of
the search tree. Paths are explored one by one accord-
ing to a wrapping around policy. Notice that the only
data shared by the different search process is the num-
ber of processors used in the last found valid solution,
allowing to implement dynamic rules. Furthermore,
such an approach can be more beneficial if a parallel
computer is used to run the method.

3.2. Evaluation and pruning rules (bound-
ing)

For each inserted node, we need to check the validity of
the current partial solution. More precisely, we verify the
schedulability, that is to say that all tasks meet their dead-
line.

Valid schedule. For every leaf of the search tree, a holis-
tic analysis [28] is led. The holistic analysis computes the
worst-case response time of tasks and messages taking into
account dependences between tasks and messages through
a release jitter. The worst-case response times of tasks and
messages can be computed by solving the following system
of recurrent equations :

Tr
(0)
i = Ci

J
(0)
i = 0

Tr
(k)
i = WCRT (τi, k − 1)
J

(k)
i = min

k∈Pred(τi)
(Trk)

(2)

where WCRT is a function which evaluates the worst-case
response-time of a task τi and Pred(τi) is a function return-
ing the set of predecessors of τi. The fixed-point is reached
when :

Trki = Trk−1
i (3)

For allocated tasks, we use the previous computation in or-
der to evaluate their final worst case response time. Note
that in the case of multiprocessor architectures and inde-
pendent tasks, this computation is only done for the task
allocated at the current stage. Indeed, since tasks are inde-
pendent, the jitter factor is always null and a lower priority
task cannot increase the worst case response time of higher
priority tasks.

For non-allocated tasks, we use the same principle to
compute lower bounds (LB) of worst-case response times
(Tri), and thus to evaluate lower bounds of release jitters.
Let G(k) = (V,E) be the communication graph of the cur-
rent node in the search tree, then we solve the following



system of recurrent equations:

∀i ∈ V

 LB
(
Tr

(k)
i

)
= Eval

(
LB

(
J

(k−1)
i

))
LB

(
J

(k)
i

)
= Propag

(
LB

(
Tr

(k)
j

))
The fixed-point is the smallest positive integer p such that:

LB(Tri) = LB
(
Tr

(p−1)
i

)
= LB

(
Tr

(p)
i

)
, ∀i ∈ V

The Eval function computes worst-case response times
of tasks and messages assuming that release jitters are fixed.
Then, the function Propag updates release jitters according
to the results obtained byEval functions. Lastly, if all tasks
and messages have been allocated and assigned a priority
then our evaluation process is exactly an holistic analysis.

If the evaluation process leads to a non-schedulable so-
lution (i.e., ∃i ∈ 1..n|Tri > Di, or LB(Tri) > Di),
evaluation process is stopped and the current vertex in the
search tree is pruned. Then, a backtrack is done.

Performance criterion evaluation. This set of rules is
specific to our method allowing to minimize the number of
processor used. Indeed, with performance rules we ensure
that no solution using a number of processors higher than
the number of processors used by the last found valid com-
plete solution will be enumerated.

1. When a solution is found, then it is stored (it replaces
the previous one if there is one before), and the max-
imum number of processors is updated with the num-
ber of processors used by the last found solution minus
one.

2. When the first level is explored, let i denote the current
task. The maximum number of processors is:

• unchanged if i ≤ n−mmax + 1.

• equal to min (mmax,mmax0 − i+ 1).

where mmax0 is the maximum number of processor at
the beginning of the algorithm.

To be used, performance rules must refer at an upper
bound of the used processors. Moreover, our search pro-
cess must know when no better solution can be found any-
more. So, during the search process, the upper bound and
the lower bound of the number of processors are stored, re-
spectively denoted mmax and mmin. The bounds values
evolve during the search process and have the following
meaning:

• The lower bound represents the minimum number of
processors require to schedule the task system, that is
to say, there is no valid schedule using less than mmin

processors. Typically, this value is initialized with the
following value:

mmin =

⌈∑
i∈τ

ui

⌉
(4)

When the search process find that no valid schedule
exists using k processors (all possible solution using
k processors were enumerated with no success), this
bound is updated with the new value: mmin = k + 1.

• The upper bound corresponds to the number of pro-
cessors used in the last valid solution found, that is to
say for which we know the system is schedulable. In
others words, we can affirm there are solutions using a
number of processors higher thanmmax. At the begin-
ning, this bound is set to the number n of tasks of the
system to schedule. If a schedulable solution using k
processor is found during the search, the upper bound
is updated with the new value: mmax = k − 1.

At each lower or upper bound update two situations can
occur:

1. mmax ≥ mmin: the search process go on with the new
updated values of bounds.

2. mmax < mmin: the search process completes. In-
deed, no other valid schedule using mmin processors
or less can be found. So we obtain a solution using
mmin processors, and this one is optimal in respect to
the holistic analysis.

4. Experimentations

In this section, we present experimental results and a
comparison performance with the FBB-FDD algorithm [9].
Thus, we limit ourselves to independent tasks and multipro-
cessor architectures, since FBB-FFD is dedicated to such
real-time systems.

Conditions of experimentations. Our experiments are
based on the following configurations: we generate inde-
pendent tasks sets using UUniFast algorithm [7] for a total
load of 15.

Each configuration is composed of 50 tests and differs
from the others only by the number of tasks. To be more
accurate, we experiment configurations with 20, 30, 40, 60
and 100 tasks.

Due to the exponential time complexity of our method,
the search process requires large amount of time to finish.
We stop the search after 5 minutes.



b b b

b

b
b

15

16

17

18

19

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

nu
m

be
r

of
pr

oc
es

so
rs

average load per task

100 60 40

30

25 20

Figure 4. Number of processors in function of
average load per task

Results. Figure 4 shows the evolution of the number of
processors needed to schedule a task system in function of
the average load per task. Numbers close to each point rep-
resent the number of tasks of the configuration.

When average load per task is low, our algorithm finds
a solution using 16 processors, for a task system which re-
quires at least 15 processors since the total utilization of this
task system is 15.

When average load per task increases, the number of
processors is increasing too, since the system is more con-
strained when the utilization factor is high. Indeed, with
a tasks set with a high utilization factor per task we have
less solutions to evaluate. But, the percentage of non-
schedulable solution is higher compared to a tasks set with
average utilization factor per task.

Figure 5 shows the number of completed computation
for each configuration in function of tasks average load. For
a low average load per task, no computation has been com-
pleted before the time limit (5 minutes). Conversely, for
all configurations with a high average load per task, all the
computations complete. In the same way as previously, we
explain this result by the fact that there are many more so-
lutions to enumerate and evaluate in a case of low average
load per task than in a case of high average load per task. A
high constrained system allows us to prune current solution
and backtrack very early in the search process because we
are able to determine early if the current solution will lead
to a better schedulable solution or not.

Due to the exponential complexity, our algorithm can
take a long time to complete its execution. Two cases must
be studied :

nu
m

be
r

of
co

nfi
gu

ra
ti
on

average load per task

10

20

30

40

50

0.15 0.25 0.38 0.5 0.6 0.75

Computation
interrupted

Computation
completed

Figure 5. Number of complete computation in
function of average load per task

1. Since we stop the search process after 5 minutes of
computation, we define a criterion to evaluate the ac-
curacy of the solution when the computation is inter-
rupted. Let denote an upper bound of the distance
to the optimal by ∆. In theory, ∆ is the difference
between the number of used processors by the least
schedulable solution provided by our algorithm before
we stop it and the number of processors used by the
optimal solution. But, in practice, the number of pro-
cessors used by the optimal solution is unknown since
no optimal solution is known in this context. So, we
define the optimal number of processors as the number
for which we know there is no solution using less pro-
cessors (i.e., a lower bound). More precisely, consider-
ing a set of n tasks in a pool with a global workload U ,
the optimal number of processors defined previously
will be:

Nopt = dU/ne (5)

As a consequence, ∆ is an upper bound of the distance
to the optimal.

2. the search process complete: in this case, we obtain an
optimal solution in respect to holistic analysis. More
precisely, we can affirm that no schedulable solutions
using less processor can exist. The ∆ value will be
null.

As shown in Figure 6 the ∆ increases with the average
load per task. We can explain this by the fact that, as showed
on Figure 4, that the number of processors increases with
the average load. We obtain a null ∆ value for high average
load because all the tests are completed.

Finally, Figure 7 presents the required time to find a so-
lution. Once again we must distinguish two different cases:



b b b

b

b

b

1

2

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

de
lt
a

average load per task

Figure 6. Evolution of the distance to the op-
timal

b

b

b

b

b b

1
2
3
4
5
6
7
8
9
10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ti
m

e
(s

ec
on

ds
)

average load per task

Figure 7. Evolution of computation time

1. the search process is stopped: the time considered in
this case is the required computation time to find the
last schedulable solution.

2. the search process terminates: the time considered
here is the elapsed computation time to find the last
schedulable solution (like in the previous case) plus
the elapsed time to enumerate every solution using one
processor less allowing us to affirm that we have ob-
tained an optimal solution.

As we can see, our algorithm provides a solution in a
very short time, especially if we take into account that the
resolved problem is NP-Hard in the strong sense.

All these experimental results show us that we can find
a valid allocation and schedule using a number of proces-
sors nearly to the optimal number in a very short time. For
low average load per task, a solution using 16 processors is
quickly found. Moreover, when our algorithm completes,
most of the computation time needed for that is spent to
prove the optimality of the current solution, that is to say to
evaluate all the remaining solutions. Notice that for middle

average load per task, computation time increases. In this
context, the search tree contains more possible schedule to
explore and the computation time devoted to the schedula-
bility test is greater too.

Comparison with FBB-FFD. We present here the results
of the performance comparison between our method and
the FBB-FFD algorithm. The FFB-FFD algorithm has been
developed by Fisher, Baruah and Baker in [9]. This par-
titioning algorithm is a variant of a bin-packing heuristic
known as first-fit-decreasing. Below, we briefly present this
method.

Let τ denote a task system and Π a pool composed of m
unit-capacity processors π1, . . . , πm. Let assume that tasks
are ordered by decreasing deadlines and assume that tasks
τ1, . . . , τi−1 have already been allocated among the m pro-
cessors. Let τi be the next task to be assigned. τi will be
assigned to the first processor πk that satisfies some condi-
tions (cf. ??). If there is no πk which can satisfy condi-
tions, then the algorithm fails and is unable to conclude that
the task system is schedulable. Otherwise, it returns a valid
partition(e.g., ensuring that tasks will meet their deadlines
on each processor).

We monitored the following indicators: how many pro-
cessors are needed by the algorithm to return a valid sched-
ule. Instead of returning a failure when a task cannot be
allocated to a processor, we add one processor. When all
the tasks are allocated, we return the number of used pro-
cessors.

Results of the performance comparison between our al-
gorithm and FBB-FFD are shown in Figure 8. As we can
see, our algorithm provides better solutions than FBB-FFD.
Benefit is low for high average load but increases for lower
average load. This figure shows that our algorithm provides
a good improvement of the solution even if the time limit is
reached.

5. Conclusion

In this paper, we provide an algorithm to finding an opti-
mal solution in respect to the holistic analysis. As we have
seen, the obtained solution is optimal only when our algo-
rithm completes. Introducing a time limit allows to use our
Branch and Bound algorithm as an heuristic. It produces a
valid schedule using a number of processors very close to
the optimal number.

The solution found is a valid schedule in the sense that
it respects all the constraints: deadlines, precedences, com-
munications, shared resources.

Moreover, our algorithm needs a short amount of time to
provide a good solution.

We can also hope that adding some constraints (like com-
munications, precedence constraints, shared resources) will



b b b

b

b

b

ut

ut

ut ut ut

ut

16

17

18

19

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

nu
m

be
r

of
pr

oc
es

so
rs

average load per task

utFBB-FFD
bour algorithm

Figure 8. Comparaison with FBB-FFD

reduce the time needed by our algorithm to complete. In-
deed, these new constraints can help us to detect early a
non-schedulable solution.

In the future, we will try to minimize the necessary mod-
ification to an existing schedule when a transformation is
applied (add a task, change the execution time or the period
of a task, etc...).

References

[1] P. Altenbernd and H. Hansson. The slack method: A new
method for static allocation of hard real-time tasks. Journal
of Real-Time Systems, 13(2):103–130, Septembre 97.

[2] T. Baker. An analysis of deadline-monotonic schedulability
on a multiprocessor.

[3] T. Baker. An analysis of edf schedulability on a multipro-
cessor. Parallel and Distributed Systems, IEEE Transactions
on, 16(8):760–768, Aug. 2005.

[4] S. Baruah. Optimal utilization bounds for the fixed-priority
scheduling of periodic task systems on identical multipro-
cessors. Computers, IEEE Transactions on, 53(6):781–784,
June 2004.

[5] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of sporadic task systems. Real-Time Systems
Symposium, 2005. RTSS 2005. 26th IEEE International,
pages 9 pp.–, 5-8 Dec. 2005.

[6] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedu-
lability analysis of edf on multiprocessor platforms. Real-
Time Systems, 2005. (ECRTS 2005). Proceedings. 17th Eu-
romicro Conference on, pages 209–218, 6-8 July 2005.

[7] E. Bini and G. C. Buttazzo. Biasing effects in schedulability
measures. ecrts, 00:196–203, 2004.

[8] P. Bratley, M. Florian, and P. Robillard. Scheduling with
earliest start and due date constraints on multiple machines.
Naval Research Logistic Quaterly, 22(1):165–173, 1975.

[9] N. Fisher, S. Baruah, and T. Baker. The partitioned schedul-
ing of sporadic tasks according to static-priorities. Real-
Time Systems, 2006. 18th Euromicro Conference on, pages
10 pp.–, 5-7 July 2006.

[10] J. Goossens, S. Funk, and S. Baruah. Priority-driven
scheduling of periodic task systems on multiprocessors.
Technical Report TR01-024, 14 2001.

[11] J. Jonsson and J. Vasell. Evaluation and comparison of task
allocation and scheduling methods for distributed real-time
systems. In Proceedings of the IEEE Workshop on Real-
Time Applications, pages 226–229. Montreal, Canada, 21-
25 October 1996.

[12] J. P. Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. Real-Time Systems Sympo-
sium, 1990. Proceedings., 11th, pages 201–209, 5-7 Dec
1990.

[13] J. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time tasks. Performance
Evaluation, 4:237–250, 1982.

[14] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son. New strate-
gies for assigning real-time tasks to multiprocessor systems.
IEEE Transactions on Computers, 44(12):1429–1442, 1995.

[15] M. W. Mutka and J.-P. Li. A tool for allocating periodic real-
time tasks to a set of processors. Journal Systems Software,
29:135–148, 1995.

[16] Y. OH and S. H. Son. Allocating fixed-priority periodic
tasks on multiprocessor systems. Real-Time System Jour-
nal, 9(3):207–239, Novembre 1995.

[17] J. Orozco, R. Cayssials, J. Santos, and E. Ferro. Precedence
constraints in hard real-time distributed systems. In Pro-
ceedings of the 3rd International Conference on Engineer-
ing of Complex Computer Systems (ICECCS), pages 33–38,
1997.

[18] R. Pellizzoni and G. Lipari. Holistic analysis of asyn-
chronous real-time transactions with earliest deadline
scheduling. J. Comput. Syst. Sci., 73(2):186–206, 2007.

[19] D.-T. Peng, K. G. Shin, and T. F. Abdelzaher. Assignment
and scheduling communicating periodic tasks in distributed
real-time systems. IEEE Transactions on Software Engi-
neering, 23(12), 1997.

[20] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analy-
sis of mixed time/event-triggered distributed embedded sys-
tems, 2002.

[21] K. Ramamritham, J. Stankovic, and P.-F. Shiah. Efficient
scheduling algorithms for real-time multiprocessor systems.
Parallel and Distributed Systems, IEEE Transactions on,
1(2):184–194, Apr 1990.

[22] M. Richard, P. Richard, and F. Cottet. Allocating and
scheduling tasks in multiple fieldbus real-time systems.
IEEE, 1:137–144, September 2003.

[23] S. Saez, J. Vila, and A. Crespo. Using exact feasibility tests
for allocating real-time tasks in multiprocessor systems. In
Proceedings of the 10th Euromicro Workshop on Real Time
Systems. Berlin, Germany, 17-19 June 1998.

[24] J. Santos, E. Ferro, J. Orozco, and R. Cayssials. A heuris-
tic approach to the multitask-multiprocessor assignment
problem using the empty-slots method and rate monotonic
scheduling. Journal of Real-Time Systems, 13(2):167–199,
1997.



[25] M. Sjodin and H. Hansson. Improved response-time analy-
sis calculations. Real-Time Systems Symposium, 1998. Pro-
ceedings., The 19th IEEE, pages 399–408, 2-4 Dec 1998.

[26] M. Spuri. Holistic analysis for deadline scheduled real-time
distributed systems. Technical report, INRIA, 1996.

[27] K. Tindell, A. Burns, and A. Wellings. Allocating hard real-
time tasks (an np-hard problem made easy). Real-Time Sys-
tems, 4(2):145–165, 1992.

[28] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocess. Micropro-
gram., 40(2-3):117–134, 1994.

[29] K. W. Tindell. Fixed Priority Scheduling of Hard Real-Time
Systems. PhD thesis, Univeristy of York, 1994.


