Improved approximate response time bounds for static-prioity tasks

Thi Huyen Chau Nguyen, Pascal Richard Enrico Bini
Lisi/Ensma Scuola Superiore Sant’Anna
Poitiers, France Pisa, Italy
{nguyenc,richardp@ensma.fr e.bini@sssup.it
Abstract RTA computes, for each task, theorst-case response

time — the maximum interval of time between a release

We consider sporadic tasks with static priorities and Of a task and its completion. If, for all tasks, the response
constrained deadlines to be executed upon a uniprocesiime is shorter than the deadline, then the task set is feasi-
sor platform. Pseudo-polynomial time algorithms are ble. InsteadpDA searches, for each task, any instant earlier
known for computing worst-case response times for this taskthan the deadline, large enough to accommodate the com-
model. Some applications require to evaluate efficiently up putational requirement of the task itself and all the higher
per bounds of response times. Fhis purpose, we propose Priority tasks. If such an instant exists for all tasks thies t
parametric algorithms that allow to make a tradeoff be- task setis feasible.
tween quality of results and computational effort accogdin ~ Approximation algorithms allow the design of efficient
to an input accuracy parameter. In this paper, we present feasibility tests (e.g. running in polynomial time) whike-i
a parametric polynomial-time algorithm for computing up- troducing a small error in the decision process, that is con-
per bounds of worst-case response times, that is based orrolled by an accuracy parameter. Such approaches have
an improvedFPTAs (Fully Polynomial Time Approximation ~ been developed faEbr scheduling [8, 1, 2] and for static-
Scheme). Then, we show that our bound does not achiev@riority scheduling [9, 16, 11, 17] which allow to verify the
constant error bound in comparison with the exact worst- feasibility and to derive the response-time bound of a task
case response time. However, using fésourceaugmen- at the same time:
tation technique, we obtain performanceguarantee that
allows to define a compromise between our response-time
bound and processor capacity requiremefise algorithm
average behavior is then analyzed through numerical ex-
perimentations.

o Ifthe approximate test returns “feasible”, then the con-
sidered task is guaranteed to be feasible on a unit-speed
processor and a response-time bound can be deducted
using the method presented in [16].

o If the test returns “infeasible”, the task set is guaran-
teed to be infeasible onsbower processqrof comput-
1. Introduction ing capacity { — ¢). But, no conclusion can be taken if
a unit-speed processor is considered, and no response-
time bound can be obtained.
We consider sporadic tasks with static priorities and con- o o)
strained deadlines to be executed upon a uniprocessor plat- Such efficiently computed bounds (if exist) can introduce
form. The Deadline Monotonic algorithnpi) is optimal a loss of.gcc.uracy. Itis deswa'\ble that this Iqss of accuracy
for scheduling this task modeh real-time system is said ~P€guantifiedin some manner in order to define a compro-
feasibleif no deadline miss can occur at run-time. Ba- Mise between response-time bound guarantees and resource
sically, two main categories of algorithms have been pro- "éduirements.
posed for verifyingnecessary and sufficiefgasibility con-
ditions of DM-scheduled systems: Response Time Anal- This research. The objective of this paper is to define
ysis (RTA) [3, 12] and Processor Demandénalysis (PDA) upper bounds on worst-case response time thateie
[14, 15, 6] Both approaches are known to have pseudo- ciently computableand havequantifiable deviationfrom
polynomial time complexity, and it is currently unknown the exact bounds. We provide an alternative definition of
whether the task set feasibility can be computed in time the Request Bound Functiofa characterization of work
polynomial in the representation of the task system. for static-priority tasks) which leads to a newTAs for

analysing system feasibility. Based on this approximate To the best of our knowledge, no polynomial-time algo-
test, we define a new method for deducting response-timerithm is known for computing the exact worst-case re-
upper bounds. OurPTAS and method are improvements sponse times{crt) for the considered task model. Pseudo-
of FPTASs and methods presented in [16, 11, 17]. We polynomial time algorithms are known and are based on
then analyse the performance guarantees of our bound usinthe request bound functiaof a taskr; at timet¢ (denoted
the classical approximation ratio technique and the resour RBF(7;,t)) and the cumulative processor demand (denoted
augmentation technique. Lastly, we give numerical experi- W;(¢)) of tasks at time for tasks having priorities greater
ments to compare our upper bound to other known ones andhan or equal t@ are (see [14] for details):

to capture its average performance guarantee.

def t
Organization. Section 2 presents known results for val- RBF(7;,t) = [TW Ci 1)
idating static-priority tasks executed upon a uniprocesso ! o
platform. Section 3 presents an improvement of the approx- def
: . (1) = i RBF(T;,t 2
imate test presented in [11] and a new method for comput- Wilt) Ci+ ; (7:%) (2)

ing upper bounds of task worst-case response times. Sec-
tion 4 presents results on worst-case error bounds of these Also in [14], a levels busy period is defined as the inter-

approximate values of worst-case response times. Section ¥al of time where only tasks with a priority higher or equal
describs the numerical experimentations. Lastly, we con- to; are running.

clude in Section 6. A common approach for checking the feasibility of a
static-priority task set is to compute the exact worst-case
2. Definitions response timeR;. The worst-case response time fis

formally defined as:
2.1. Task model Definition 1 Assuming that the system is not overloaded
) .)) (the utilization factor is strictly less than 1), the worsise
A sporadidaskr;, 1 < i < n, is defined by aworst-case response time of a task can be defined as follows:
execution time\WcET) C;, a relative deadlin®; and a pe-

riod T; which is the minimal interval of timéetween two R, &f min{t > 0 | W;(t) = t}
consecutive job instances of task The utilization factor
of taskr; is the fraction of time that; requires the proces- Exact algorithms for calculating the worst-case response

sor: U; def C;/T;. The utilization factor of the task set is: times of sporadictasks are known. Using successive ap-

g def s % We assume that deadlines are constrained: Proximations starting from a Iovyer bou_nd &f;, we can
: computethewecrt as thesmallest fixed point ofV/; (¢) = ¢.

D; < T;. Such an assumption is realistic in many real- :
world applications and also leads to simpler algorithm for _ Another approach to compuiecrt has been introduced

Checking feaSIbIIIty of task sets [13] The release J|tfer n [16] We prOVide further details since these prinCipIeS

of a taskr; is thelargestdelay between its release time and Will b€ reused in the remaindefe have shown that the
(first) ready time. In this paper, we study systems with no worst-case response time of a task can be computed using

release jitters to simplify notations, but jitters can beilga ~ 11Me Demand Analysis (see [14] for detail), for every fea-
introduced, as shown in [11]. sible task set (and only for them). For a feasible tasht

We assume that all tasks to be run upon a same proces'S Sufficient to check the following testing set [14]:
sor are independenand do not suspend themselvesl|
the tasks have static priorities that are set before stpttie def _) D;
application and never changed at run-time. At any time, the i = {aTj[j=1..,a=1... L?J} u{Di} @)
highest priority task is selected among ready tasks. Withou !
loss of generality, we assume that tasks are indexed in dedn [14], it is shown thatr; is feasible if and only if3t €
creasing order of their priorities:; is the highest priority ~ S;, W;(t) < t. There exist some methodes for reducing the

task andr, is the lowest one. number of these scheduling points in [15] and in [6], but
both of these methodes produce an exponential complexity
2.2. Known results on worst-case response of O(2™).
time analysis Based on the scheduling set defined in Eq. i{8]16],
we first defined the notion of thegitical point(under the as-
2.2.1 Exact analysis sumption that the task will meet its deadline at execution

time).

Definition 2 Thecritical pointfor a feasible task; is: A new approximation scheme will be presented in the
dot next section, that improves best known results (e.g., [10,
= min{t € S; | W;(t) <t} 11]) for feasibility analysis. Then, we present a new method

) for computingwrct upper bounds that improves the results
Then, we have shown that the cumulative request boundpresented in [16, 17, 11].

function at thecritical pointof a given taskr; leads to its
worst-case response time.

t*

3. Worst-Case Response-Time Bound

Theorem 1 ([16]) The worst-case response time of a task

7;, such thatW;(t*) < ¢* (i.e., the task is feasible), is ex- In this section, we introduce an approximate feasibil-
actly R, = W;(t%). ity test which will lead to the deduction of a worst-case
response-time bound:

222 A i Analysi
pproximatewcrt Analysis 1. We define a newPTASincorporating the linear func-

Two main approaches have been designed for computing tion of Bini and Baruah (Eqg. (4)) for analyzing fea-

upper bounds ofwert in polynomial-time that are both sibility of task sets. If thisFPTAS returns acritical
based on linear approximation of the request bound func- point (Definition 2), we can conclude that the given
tion. taskr; is feasible. If no such point is obtained, then
we can conclude that is infeasible on a processor of
Linear-Time Response-Time Bound. Bini and Baruah (1 — ¢) speed(is the input accuracy parameter of the

[5] have shown that the worst-case workload, that is the scheme).
maximum amount of time that the processor executes task
7; in any interval of lengtht, can be bounded by a linear
function (i.e. see [5] for details):

2. We propose ddeduction method'which derives an
upper bound of the worst-case response time and has
as input thecritical pointcomputed in (1) (under the

def assumption that the scheme returns such a point, oth-

LA(7i,t) = Uit + Ci(1 = Us) (4) erwise Eq. (5) can be used to obtain a worst-case
Using such a linear function, [5] presents an upper response-time bound.)

bound of the worst-case resportgee of a taskr;:

3.1. Approximation Scheme
i—1
R < Cit 2 Ci(l ~Ui) — ubBB (5) The request bound function is a discontinuous function
1- E;;ll U; ’ with a “step” of heightC; everyT; units of time. In order
) . to approximate the request bound function according to an
We have shown if4] that this well-known upper bound arror hound! + ¢ (accuracy paramet’,< e < 1), we use

does not have a constant error bound (i.e., there exist taskne same principle as in [9]: we consider the fifgt— 1)

sets such that the upper boundcisimes greater thamk; steps ofRBF(r;,), wherel is defined ag: def M/e] —1

wherec is an arbitrary large number). Thus, the correspond- X A AL

ing O(n) algorithm is not an approximation algorithm for agdvzr':?yetira?&pf)l(')mjtl'?:’ thereafter. From this definitio

szmhp;\};niﬁgvr\)lﬁrs;ﬁgd; ?;Z,\grsé-eCZiZﬁ;ﬁse;isoentlzsﬁﬁiqu? In [11], under the assumption that all the task parame-

that this linear bound is an upper bound on a unit-speed pro—fef‘c?;i 'n;igjé‘;‘.’ngﬁ following approximate request bound
cessor and a lower bound on a half-speed processor. Thus,u lonw ined:

a processor speedup of two is an upper bound on the price 5 t) dof {RBF(n,t) fort < (k—1)T;,

Tiy =

i >

(6)

being paid for'using an efficiently computable upper bound (t+T,— 1) otherwise.
on response time. :
Thus, up to(k — 1)7;, no approximation is performed to
Approximation Scheme Technique. Approximation evaluate the total execution requirementgfand after that
techniques have been recently used to define approximaté is approximated by a linear function with a slope equal to
feasibility tests. These tests are run in polynomial time the utilization factor of task;.
according to the task set size and an “accuracy” parameter We propose next the linear approximation based on Eqg.
1/e (i.e, they areFPTASs). Using the framework of the (4) that will lead to an improved approximate feasibility al
approximate feasibility analysis presented by Fisher andgorithm in comparison with the known results.
Baruah ([10]), we have shown how to compute approximate For this purpose, we try to find out some properties of
(upperbound3$ worst-case response times in [16, 11]. the critical points which allow to restrict the search fogsk

points to a set where the linear approximation in Eq. (4) is We prove that this function is also an upper bound of the

larger than (or equal to) the request bound function.
First of all, we prove the following property of all busy
periods:

Lemma 1 Alevels busy period cannot be completed in any
interval (mT;, mT; + C;),1 < j <, wherem is an arbi-
trary integer.

Proof: We prove the result by contradiction. Assume that Proof: Fort e

a busy period is completed by time= (mT;, mT; + C;),
then at timem1}, this busy period is not completed yet.
Moreover, at that time, a job of; is released. Hence, the

busy period must include the execution of this job. As this

job cannot be completed before timel; + C;, even if

executed without any preemption, the busy period cannot

be completed before time7; + C;;, which contradicts our
assumption. []
The following corollary follows directly from Lemma 1:

Corollary 1 If ¢ is the length of the synchronous level-
busy period thetVj,1 < j < i,3m € N,t € [mT; +
Cj, (m + 1)T;).

From the corollary above, we obtain this property of all
critical points:

Corollary 2 If t* is the critical point of the task; then
Vj,1<j<i,3dme N,t* € [mT; + Cj,(m+ 1)T}].

Proof: We prove the result by contradiction. #j,1 <
j <i,fm e N,t* € [mT; + Cj,(m + 1)T;] = 3h €
N,t* e (b}, hT; + C;). Lett? be the scheduling point
which is right before* in S; andt®” the instant where the
synchronous level-busy period is completed. In [16] is
shown thatt®? € (tP,t*]. Sincet? andt* are two adjacent
points inS;, we necessarily have > hT;. Consequently,
t*? € (hT}, hT; + C;), which contradicts Corollary 1. m

Now we can reduce the scheduling set defined in Eq. (3)
(set of scheduling points where we search for the critical

point) as follows:

Corollary 3 For a feasible task;, it is sufficient to check
the following testing set:

e .) D;
S7(0) d:f {aTj|]:1z7a:1L?J}
J
U{Di}a
Si € sON{te 5O |t e (aTy,aTy +Cy),
j:l,...7i7a20}. (7)

7; is feasible if and only it € S;, W;(t) < t.

Now we consider the linear function of Bini and Baruah
in Eqg. (4). This function can be stated as follows:
G

LA(Ti,t) d:ef (t+Tq - Cq) T

request bound function under a certain condition. of

Lemma 2 Vr;,Vt € [mT}; + Cj; (m + 1)T}], wherem is
an arbitrary integer, we have:

RBF(7j,t) = {Ti—‘ Cj < LA(T5,1).

J

[mT; + Cj; (m + 1)Tj], we have:

mTj -+ Cj <t < (TTL + 1)Tj
mTj =+ Cj < i < (m + 1)Tj
T; T - T;

AsC; < Tj;,we haven + 1 < [TLW <m+1= {Ti-‘ =
m+ 1= RBF(7;,t) = (m+ 1)C;. Moreover,

thTj-i-Cj
t+1T; —C, m1; + C; + T — Cj
711' ic; > 1 JT J 10
J j

LA(7j,t) > (m + 1)C; = RBF(1;,1).

The lemma is proved. []
From this lemma andCorollary 3 we obtain that

LA (7;,t) may be less tharBF(7;,t) at some time instants

but for all instants which count, that is to say, instahts

which are potential critical point of the task this function

is always an upper bound of the request bound function.
Consequently, it allows us to define an improved approx-

imate request bound function:

N—_—— {RBF(Ti,t) fort < (k— 1T, -

(t+1T;—C;)&: otherwise

From the definitions of/(r;,¢) andd(7;, t), it is easy to
see thaty(r;, t) can only improve the approximate function
d(r;,t), and thus thepTAS feasibility algorithm proposed
in[11].

Theorem 2 Under the assumption that all the task param-
eters are integers (hencei, 1 < i < n,C; > 1), v(7;,1)
can bea tighter upper bound oRBF(7;, ¢) in comparison
with 5(7'7;, t):

Yt > 0,6(r,t) > (7, 1).

We shall see that aFPTASCan be based on(7;,). Note
also that whiled(7;,t) can be used only if all the system
parameters are integergr;, t) can be applied for task sys-
tems in which parameters are real numbers.

To define an approximate feasibility test based on the
principle of PDA (Processor Demand Analysis [14}ye

Tasks| C; | D; | T;
T1 2 4 4
To 3 8 8

Table 1. Static-priority task set

define an approximate cumulative request bound function
as:

i—1
Wi(t) € i + Y v(m,0).

j=1

By virtue of Corollary 3, according to the error bouad
leading tok = [1/€] — 1, and applying the approximation
technique of [10], we can define the following testing set
Si - Sii

SO T la=1,...i—1,b=1,....k—1}
u{D;},
S, Y SON{te s | te (aTy,aT; + C)),

j=1,...,i, a>0}. (9)

We now establish the principle of the algorithm:

o If there exists a time instantc @ such thaﬂ//@(t) <
t, thent; is feasible (upon a unit speed processor),

e otherwise,r; is infeasible on a processor ¢f — ¢)
capacity.

A simple implementation of this approximate feasibility
test leads to & (n?/e) algorithm. This is arFPTAS since
the algorithm is polynomial according the input sizen
and the input parametérye.

We present in Table 1 a task getwhich the taskr is
not proved feasible using the test presented in [#4jich
usesd(r;, t) to approximaterBF(7;,t)) with & = 2. Us-
ing the new approximation of the Request-Bound Function
(v(72,t)), 72 is now proved feasible sind@(S) =8 (i.e.,

t
12

....................... gamma_i

delta_i

Figure 1. Approximate cumulative request
bound functions on task set of Table 1

Theorem3Vj,1 < j < i—1,¥t € S, y(r5,t) >
RBF(7j,1).

Proof: Straightforward from Lemma 2 and the new defini-
tion of S; (Eq. (7)). [|
The second theorem gives the approximation ratio:

Theorem4 Vj,1 < j < i—1,Vt € (0,D;], v(r5,t) <
(14 1)RBF(7,1).

Proof: Let us recall the linear function in Eq. (4):

A, 0) S (4T - C) 2

T;

Fort < (k — 1)1}, it is evident that the inequality holds
as~(r;,t) = RBF(7;,t). We consider now the cage>
(k —1)T;, wherey(7;,t) = LA(7;,t).

Since RBF(7;,t) is a step function andA(7;,t) is a
strictly increasing linear function, it is clear that the ra
tio LA(7;,t) / RBF(7;,t) is an increasing monotonic func-
tion in all intervals (mTj, (m + 1)I;],m € N,m >
(k — 1), i.e., LA(7j,t) / RBF(7;,t) is strictly increas-
ing except at instant which is a multiple of the period

see Figure 3.1 that presents both approximate cumulativefj where this ratio reaches a local maximum, and this

request bound functions for task).
3.2 Correctness of Approximation

We now prove the correctness of this approximate feasi-
bility test. The key point for the correctness of the approxi
mation scheme i$ < ~(7;,t)/RBF(7;,t) < (1 + €), which
shows that the deviation of our approximation from the ex-
actrBF is bounded. This result will then be used to prove
that if a task set is stated infeasible by #wrAs, then it is
infeasible under &l — ¢)-speed processor.

The first theorem states that our approximation always
exceeds or equalssF at all scheduling points.

function is left-continuous. Since the local maxima of
LA(7;,t) / RBF(7;,t) are attained at the instanfs: +
1)T; ,m > (k — 1), then for finding its global maximum
with ¢ > (k — 1)T}; , we just have to consider the instants
t =hT;withh € N,h > k.

We have
LA(Tj,th) (h + 1)Tj - Cj
RBF(’TJ‘, hTJ) B th

1 C;

= 1+

TR T
< 1+ ! <1+ !
- h — k’

The theorem is proved. |

Theorem 7 If fvte S, ﬁ\é(t) > t, then we also verify that

Using the same approach presented in [10], now we canyt ¢ (0, D;], W (t) > t.

establish the correctness of approximation.

First of all, we prove that if a task; is concluded in-
feasible by the approximate test, then it is infeasible with
certainty upon a processor Of — ¢) capacity.

Theorem 5 If 171\/;(15) > t forall t € (0,D;], thenr; is
infeasible on a processor ¢f — ¢) capacity.

Proof: We will prove that ifvt € (0, D], W() > t, then
Vi € (0,D;], Wi(t) > (1 —e)t:

Wi(t)
i1

Ci + Z V(TJV t)
j=1

From Theorem 4, for any instahe (0, D;], we have:

>

C+Z RBFTJ,t) > ¢
k-f—]. i—1
— Ci'f'ZRBF(Tj,f) >t
7j=1
kE+1
ly >
k
k
i(t —t.
Wilt) > 15
We have
k1
k+1 k+1
Note thatk < [1] —1and[l] > 1, we obtain

L>1—e
k+1~ ’

Thus for anyt € (0, D;],

Wi(t) > (1 —e€)t.

The theorem follows. []
Now, if the approximate test concludes that a tasis
feasible, then it is feasible upon a unit-speed processor.

Theorem 6 If there exists a time instarit ¢ 5’1 such that
Wl‘(t) <t, thenWi(t) <t

Proof: Sincet € S;, thent € S;. Moreover, Theorem 3
allows to conclude thatt € S;, W;(t) < W;(t). Hence,
W;(t) < t andr; is feasible. |

Proof: (Sketch) Lett; and ¢, be two adjacentpoints
in S; (e, Pt €. S, such thatt; < _t < t). Since
W(tl) > 1, W(tg) > ty and W() is an non-
decreasing step left-continuous function, we conclude tha
Yt € (t1,1t2), w; (t) > t. Then the theorem follows. ®

3.3. Approximate Worst-Case Response
Times (Deduction Method)

In the previous section, we can check that a task is feasi-
ble upon a unit-speed processor or infeasible up@dn-&)-
speed processor. If it is feasible, then we are able to com-
pute its worst-case response-time upper bound. If the fea-
sibility algorithm does not give a positive answer, then our
approach is not able to derive any upper bound (but, we can
use the one defined in [5] for instance).

In [11] is presented a deduction method which leads to
the following upper bound:

Definition 3 ([11]) Consider a task; such that there exists
a timete S; satisfyingW;,(t) < t, then an approximate
upper bound of its worst-case response time is defined by:

)<t}

< in {t € §|W(t

Ri Wi(E). (10)
We propose next a new method for deducting a response-
time upper bound of a task in the assumption that; is

concluded feasible by the approximate test.

Definition 4 Consider a task; such that there exists a time
te S; satisfyingW;(t) < ¢, then an approximate upper
bound of its worst-case response time is defined by:

9}

min {t € §Z|V/[7l(t)

Wi(t). (11)

Now we prove that such a method defines a tighter worst-
case response-time upper bound of taskn comparison
with the upper bound; obtained by the existing deduction
method.

Theorem 8 For every taskr; such that there exists a time
t € S; satisfyingi;(t) < t, we have

R; <R, <R,.

Proof: Let ¢t* be the criticalpoint corresponding to the

To conclude the correctness, we must prove that schedulworst-case response time T)f(l e., the first time instant in

ing points are sufficient.

S; such that;(t) < t). Let#* be the first time instant in;

wherec > 1, if and only ifopt < a < ¢ x opt for all inputs
. to the algorithmA (if such ac does not exist, then algorithm
' A'is said to have no approximation ratio).
The next result states that the approximate response-time
bound]f%\i does not, in fact, have an approximation ratio.

Old_BB Theorem 9 For any accuracy parameter there exist some
task systems for whichR; < R, for any integerc.

t* I

- i Proof: Letk be defined byt = [1/¢] — 1.
Approximate W_2 We prove thistheoremby demonstrating a task system
and a taskr; for which R;/R; tends toco. All tasks in

our system will haveD; = T;; hence, let us represent the

Figure 2. !Exact response time and upper parameters of a task by an ordered paiiC;, T;). Consider

bounds using old and new methods of task the following task setr; = (K,2K+\), 7 = (K, 2K+4)\)

set of Table 2 andr; = (\K, K(2K + \) + ZE3A) "where is an
arbitrarily small positive number such th§tis an integer

o | 7 I~y andK is an arbitrary integer that is strictly greater than

Tasks D | T |t t i i i N
p- g 212 i | Ri | R 1. Note that by constructiod); = T5 > (k —1)(2K + \).
1 = . .
- 311611618 116! 7 | 11| 12 Also, from Eq. (9),53 contains the point = pg. .

Using theDeadlineMonotonic Scheduling policy, the

Table 2. Static-priority task set and its feasi- task 73 can only be executed units of time within ev-
bility analysis ery subsequent interval of time of lengi + A\. As a

consequence, the exact worst-case response timg ief
Rs = K(2K + \). The approximation switches to a linear
e o P approximation atk — 1)(2K +) which is strictly less than
suchAthatI/Vi(t) <t (i.e.,t* is critical). SinceS; g/\Si, we K (2K + \). Thus we consider that> (k — 1)(2K +).
havet* is also the first time instant ifi; satisfyingiV;(¢) < Hence, in§§, we consider only the instant= Ds.

t. . . _ _
Since Theorem 6 shows thet € ;. V/[Z;(t) > Wilt), The approximate response-time analysis leads to:
we necessarily have* < {*. Since W;(t) is a non- e K
decreasing functiody; (t*) < W;(£*). Equivalently,R; < Wat) = AK+2(t+ K+ Ao Y
R;.
Sincevt € S, Wi(t) > Wi(t), thenW; (1) < Wi(t"), Solving the condition ofhecritical pointiis(t) < ¢, we
hence we obtain the right side of the inequality. []
We illustrate Theorem 8 by considering the task set pre- QK (K +))
sented in Table 2. We just analyse the feasibility of the t>KQ2K+ M+ —

taskr,. Using DeadlineMonotonic scheduling, we obtain
t* = 8and Ry = Wh(t*) = 7. We choose = 0.4 thus Sincet = Dj satisfies the inequality above, it is the critical
k=2andS; = {4,16}. Wa(4) > 4 andW(16) < 16 = point of 7.

=16 = Ry = Wa(f*)=11 andR, = Wa(f*) = 12. As Applying Definition 4 and replacing® = D5, we obtain

expected, we havB, < Rs < Ro. the approximate worst-case response time of thettask
. —~ . 2K?

4 Worst-case analysis of error bound Rz = W3(t*) = K(2K +2 4+ \) + —

4.1 Approximation Ratio analysis Thus,

—

The performance guarantee of our upper bound can be lim R ~ lim KQ2K+2+)\) + % _
analysed through igpproximation ratio Leta be the value A—0 R3 A—0 K(2K + \)
obtained by an algorithml, andopt be the exact (i.e., op-
timal) value; algorithmA has a approximation ratio of and the theorem is proved. |

4.2 Resource Augmentation Analysis 2. alower bound on the worst-case response time f
the system is implemented upon a processor of speed
Theorem 9 above reveals that the approximate response- k/(k+1).
time boundR; does not offer any quantifiable performance
guarantee, according to the conventional approximation ra
tio measure that is used in optimization theory. However, Theorem 8. We provekthe second statement.
an alternative approach towards approximate analysis — the L€t us denote = ;i <1
technique ofesource augmentationis becoming increas- By Theorem 4y, 1 < j <i—1,Vt € (0, Di, we have:
ingly popular in real-time scheduling theory. In this tech-

Proof: The first statement can be directly obtained from

. 4 S k+1
nique, the performance of the algorithm under analysis is v(r5,t) < %RBF(Tj,f)
compared with that of an optimal algorithtimat runs on a - -
slower processor.In this section, we apply this resource \ —k+1
prox : e apply ™IS Tesol > (7)< Y ——RBF(T;,1)
augmentation technique to quantify the deviation Iof i e

from optimality. i1 i1

Firstly, we assume that the processor slowdown factor is C; + ZV(T') < ﬂci + Z ERBF(T, £)
applicable to all tasks in the system (there exist such sys- = 7 - k = k 7
tems in which the worst-case execution timascgT) of i i
some tasks are always the same regardless the capacity ofC, i Z”/(T‘ H < o+ Z RBF (7, 1)
the processor). As a consequence of this assumption, we & 77— 7
can consider a task running on sutapacity processor like Jf,\
a task with thewCET augmented /s times running on a Wi(t) < W(). (14)
unit-speed processor (but all the other parameters are ex-

actly the same as when it runs on theapacity processor). .) i
response time of; on the processor of speedi.e., the first

Hence, letting us denot&?, D?, T respectively the worst- =>F" X i - :
case execution time, the relative deadline and the periad of iMme instantins; such thatV(t) <). Lett* be the first

taskr; on as-capacity processor, then we necessarily have: time instant inS; such thatiV;(¢) < ¢ (i.e.,t* is critical).

Jj=1

Let¢* be the criticapointcorresponding to the worst-case

Cs = % SinceS; C S;, we have* is also the first time instant if;
Ds =D; satisfyingW;(t) <t
T8 =T, From (14), we necessarily have < t*. SinceW; (t) =

Now we introduce some further notations of the request Y« > 1;(¢) and the fact thalV; (¢) andW$(t) are non-

S

bound and workload function of a taskon as-speed pro- decreasing functions, we have; (£*) < W7 (t*). Equiv-

cessor: alently, R; is a lower bound of the exact response time
. def [t] WE(t"). n
RBF'(1i,t) = |7 |G (12) How is the systems designer to interpret Theorem 10

i1 above? First, it is guaranteed thé\; is indeed an upper
W (1) def o5+ Z RBF*(7;,1) (13) bound OHR;; hence, it is.a safe estimate_of the exact worst
response time. And while Theorem 10 is unable to bound

)
’ the amount by whichR; exceeds the actual value &,
Clearly we have the following lemma: it does assure the designer that [s]he could have obtained a
Lemma3 Vi, 1 < i < n,VtRBF(r,f) — ReFTD worst-case response time no better thaif the system had
e Wi(’t) - - v s instead been implemented upon a procekgok + 1) times
Wi(t) = =5=. as fast. Stated differentlg processor speedup (¢ + 1) /k

Using this relationship between the request bound func-1S @n upper bound on the price being paid for using an up-
tion, the workload functioron ans-capacity processor and P€" bound on response time thatismputed in polynomial
thoseon a unit speed processor, along with exploiting the iMe according to task parameters and the consigft
properties of our approximate request bound function, we
can prove the worst-case slowdown factor of the upper5 Experiments
boundR;.

Theorem 10 The boundﬁ\i (Eq. (11)) is In this section, we describe numerical experimentations
that we performed in order to compare our upper bound to
1. an upper bound on the worst-case response timg of other known ones and to capture its average performance
and guarantee.

Average error of supB and BB by n

60%

50% -

40% - @ supB

mBB k=1
0BB_k=2
0BB_k=3
mBB_k=4

s

30%

20%

10% -

bbb

20 40

0% -
10

Figure 3. Average error of supB and BB

Percentage of feasible task stated infeasible by supB and BB

@ supB
mBB

Percentage

10 20 30 40 50

Figure 4. Feasible tasks stated infeasible by
supB and BB

Stochastic Model. We randomly generated task sets
with constrained deadlines. Unbiased utilizations were ge
erated using th&JUniFast algorithm [7]. Periodsl; are
randomly generated in the intenjal 2500] and worst-case
execution timeC; are computed a§’; = U;T;. Dead-
linesD; are randomly generated within the inter{@, 7;].

A uniform law was used to generate random numbers.
C;, D;, T; was then rounded to the closest integer. The uti-
lization factor varies from 0.5 to 0.9 (step 0.1) and for gver
value, the same number of task sets has been generated.

Experiment parameters are the task numbethe uti-
lization factorU and the accuracy parametgwhich leads

principle presented in [5]:

Ci+ X2 C(1 - Uy)
supB; = — .
1—- Ej:l Uj

Average error of BBs using old and new deduction methods by

0.50%

0.45% -
0.40%
0.35%

0.30%
mold_BB

oNew_BB

0.25% -

Error

0.20%
0.15% -
0.10%
0.05%

0.00% -

Figure 5. Average errors of old-BB and
new_-BB

In order to compare these bounds, only tasks accepted
by our approximate feasibility tests have been considered
(otherwise, no upper bound can be computed using our
method). We monitored two indicators: the average errorin
comparison with exact values of worst-case response times
(i.e., (ub; — R;)/R;, whereub, is an upper bound ang;
is the exact worst-case response time) and the rate of tasks
stated “infeasible” using the upper bound (i@h; > D)
for feasible tasks (i.e.R; < D;). Numerical results are
presented in Figure 3 and Figure 4. In the first graph, the
average errors are presented for various valués tfe re-
sults show that our method clearly improves the previous
known bound,even if k = 1 (i.e., the smallest possible
value sincek = [1/e] — 1 and0 < e < 1). The average
error is less than 1% when = 3 (i.e.,0.25 < € < 0.33).
Concerning the second graph, we see that our approach is
less pessimistic since only few feasible tasks are not ac-
cepted by our method. What is more interesting is that as
the task numbeincreases, the average errorsfpB in-
creases while the average error of our bound decreases.

Comparison with the best known approximation
bound

In Figure 6, we computed and compared the average er-

to k, the number of steps to be considered before the linearrors by k of two upper bounds: the bour@id_Algo ob-
approximation). For fixed parameters, every experiment istained from [11] and the bound¥ ew_Algo resulted from

replicated 400 times in order to achieve unbiased statistic

Comparison with linear-time bounds. We compared
our bound (denoted® B) with the best known upper bound
computed in linear time for every tasi supB;, the up-
per bound of Bini and Baruah computed using the rounding

the algorithm presented in this paper. Our bound shows a
slight improvement of about 1 % in comparison with the
best known approximation bour@@ld_Algo.

Comparison with bounds obtainedfrom existing de-
duction method. Based on the same approximation scheme

Average errors of old and new algorithms by K Percentage of improvement of new method to old method by n

1.60% 70%

1.40% \ 0%

DR
1.20% e
50%

1.00% \

—e—Old_Algo 40%

¥ 0.80% - 7
° \ —=— New_Algo

30%

—— (Old-New)/Old

0.60% -

0.40% 20%
% |
o \‘\‘\._A o
"

Improvement

0.00%

10 20 30 40 50 60 70 80 90 100
Error

Figure 6. Average error of old and new algo-
rithms by & Figure 7. Average error improvement of

new_BB to old_BB

presented in this paper, for every task stated “feasible”, Average and minimum SDF of BB
we computed and compared two upper bourttle: bound
Old_BB obtained from the existing method (Definition 120%
3) and the boundVew_BB derived using our deduction 100% { o
method (Definition 4) ol
W / —s— Average
N de . o~ O 60% 4 A= Minimum
o mindte Si‘Wi(t) < t}, ? +S(k+1)
40% A
old.BB % ﬁ/\q(f*), 20%
new.BB % Wi (£%). 0%
2 4 6 8 10 12 14 16 18 20
In Figure 5, we report the average error of these two bounds «

in comparison with the exact worst-case response times,
when the task number varies from 10 to 100 (step 10). We Figure 8. Average and minimum Slowdown
can see that with our method, the average error is decreased Factor of BB
to approximatelyone half In Figure 7, we plot this aver-
age error improvement with respect to the task number. It
ﬁi%ggrqggfee;sgzat this improvement increases as the tas'én approximately 25% improvement over the_bounﬂB

Resource augrﬁentation analysis. For every task set even withf; = 2'- The average SDF with = 4 is greater ;

. X ' ' than 97%, that is to say, the average “processor capacity
we computed (using a binary search) the exact slowdown v
. . waste” is less than 3%.

factor s so that our bound is the actual response time upon
ans-speed processor. .

In Figure 8, we monitored the average and the mini- 6 Conclusions
mum slowdown factor according to the number of steps to
be considered before the linear approximatiort can be We define aFpPTAS and a deduction method to derive
seen that the average slowdown factor is always betweenworst-case response-time upper bounds for static-pyiorit
k/(k + 1) and 1 and very close to 1, which means that the tasks with constrained deadlines. If the accuracy paramete
processor capacity that one might waste when using our ap< used to define the time spent before starting an approxi-
proach is very small. As expected, the minimum value is mate analysis is a very small number, then our experiments
exactly equal to our theoretical bournid/(k + 1)), i.e., the show that upper bounds are very close to exact worst-case
worst-case slowdown factor has been reached for every simresponse times, but still computable in polynomial time ac-
ulation run. cording to task parameters and the constgat

In Figure 9, we compared the average slowdown factor We have to quantify the loss of accuracy. We have shown
(SDF) of supB and that of our bound. It can be noticed that our upper bound does not offer non-trivial performance
that concerning the average SDF indicator, our bound showsguarantees according tioe conventional approximation ra-

Average SDF of supB and BB by n

120%

100% - — — — — —

80% -

msupB
60% 0BB_k=2
OBB_k=4

Average SDF

40% [t

20% -

oy oLl Wl Wl Wil il Wil Wil Wil el
10 20 30 40 50 60 70 8 9 100

Figure 9. Average Slowdown Factor of supB
and BB

(9]

[10]

[11]

[12]

[13]

tio. However, using the concept of resource augmentation, [14]

we obtain the following quantitative guarantee — our bound

is indeed an upper bound on the exact response time, and
the exact response time would necessarily be at least as
large as this bound if the system were instead implemented[15]

upon a processor that is at most otly(k + 1) (where
e [1/€] — 1) times as fast.

References

[1] K. Albers and F. Slomka. An event stream driven approx-

imation for the analysis of real-time systemgroc. Eu-
romicro Int. Conf. on Real-Time Systems (ECRTS'pdges
187-195, 2004.

[2] K. Albers and F. Slomka. Efficient feasibility analysisrf
real-time systems with edf schedulingroc. of Design, Au-
tomation and Test in Europe Conference (Date;@8)05.

[3] N. C. Audsley, A. Burns, M. Richardson, K. W. Tindell, and
A. J. Wellings. Applying new scheduling theory to staticpri

ority pre-emptive schedulingSoftware Engineering Jour-
nal, 8(5):284-292, Sept. 1993.

[4] S. Baruah, E. Bini, T. Nguyen, and P. Richard. Continuity

and approximability of response time bound&uromicro

Conf. on Real-Time Systems (ECRTS’'07), Work-in Progress

2007.

[5] E. Bini and S. Baruah. Efficient computation of response

time bounds under fixed-priority schedulingoc. Int. Real-
Time and Network Systems (RTNS;@007.

[6] E. Biniand G. Buttazzo. Schedulability analysis of jpelic
fixed priority systems.|EEE Transactions on Computers
53, Nov 2004.

[7] E. Bini and G. Buttazzo.
schedulability tests.Journal of Real-Time System30(1-
2):129-154, 2005.

[8] S. Chakraborty, S. Kunzli, and L. Thiele.

Systems (RTSS'Q2002.

Measuring the performance of

Approximate
schedulability analysisproc. Int. Symposium on Real-Time

[16]

[17]

N. Fisher and S. Baruah. A fully polynomial-time approxi
mation scheme for feasibility analysis in static-priomstys-
tems with arbitrary relative deadlineproc. Euromicro Int.
Conf. on Real-Time Systems (ECRTS'Q)ges 117-126,
July 2005.

N. Fisher and S. Baruah. A polynomial-time approxiroati
scheme for feasibility analysis in static-priority systewith
bounded relative deadlinefroc. Int. Conf. on Real-Time
Systems (RTNS'05)ages 233-249, 2005.

N. Fisher, T. Nguyen, J. Goossens, and P. Richard. Para-
metric polynomial-time algorithms for computing response
time bounds for static-priority tasks with release jitter8th
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA'07)
2007.

M. Joseph and P. Pandya. Finding response times ina real
time systemsThe Computer JournaR9(5):390-395, 1986.

J. Lehoczky. Fixed priority scheduling of periodickasvith
arbitrary deadlinesproc. IEEE Int. Real-Time System Sym-
posium (RTSS’90pages 201-209, 1990.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and average
case behavioproc. IEEE Int. Real-Time System Symposium
(RTSS'89)pages 166—171, 1989.

Y. Manabee and S. Aoyagi. A feasible decision algorifom
rate monotonic and deadline monotonic schedulifRgal-
Time Systems Journgages 171-181, 1998.

P. Richard and J. Goossens. Approximating responsestim
for static-priority tasks with release jittergVIP, Euromicro

Int. Conf. on Real-Time Systems (ECRTS;()06.

P. Richard, J. Goossens, and N. Fisher. Approximate fea
sibility analysis and response-time bounds of staticrfiyio
tasks with release jittergproc. Int. Real-Time and Network
Systems (RTNS’072007.

