Feasibility Analysis of Non-Concrete Real-Time Transactns With EDF
Assignment priority

Ahmed Rahni, Emmanuel Grolleau and Michael Richard
LISI/ENSMA
Téléport 2, 1 Av. Clément Ader
BP 40109, 86961 Futuroscope Chasseneuil Cedex
{rahnia,grolleau,richardfp@ensma.fr

Abstract systems modeled as the well known independent periodic task
of Liu and Layland [11]. The schedulability conditions obtd

We present a density based feasibility analysis of taskswith this model are based on the concept of busy period. $lza|
with offset (non-concrete transactions) scheduled by pre-interval of time during which the processor never goes idlee
emptive EDF, on a uniprocessor system. Our method ex_ﬁrst deadline miss (if any) must occur in the longest busyagger

tends the analysis technique proposed for sporadic tasks, i that is initiated by the simultaneous activation of all thekis of

[4, 2], that a_lllows a global schedulability analysis O_f aSYS tor certain kinds of application where the simultaneous$/atibn
tem. We W'”_Show that_' fgr .non-concrete transac_t'ons’ the of some tasks, may not be possible, like tasks with offse}, [18
naive extension ana_tIyS|s is mtra_ctable due tp an important mitiframe (MF) and generalized multiframe (GMF) tasks, 2
number of busy periods to consider. To avoid this problem As an example, we present the model of the serial transaction
we propose a pseudo-polynomial analysis technique that{19], where a data acquisition process is activated by aereat
gives a necessary and sufficient condition of schedulabil-event, the acquisition tasks are usually short, becausedily

ity. This technique is based on the demand bound function.have to bufferize the packets until the whole frame is builtjle

the system. Unfortunately, theses conditions are too pestt

Finally, We provide an efficient implementation, for the-pre
sented analysis method, that speeds up the algorithm.

Keywords: Feasibility analysis, Real-Time transactions, EDF,
tasks with offsets

1 Introduction

The temporal validation process, in the context of real time
systems, is required to guarantee a priori that all the teatjgon-
straints are met (all the tasks complete before their deaslli The
scheduling algorithm allocates the processor to one ofdhewr-
rent real-time tasks of a system, the generated executipresee
is called a schedule. A schedule is feasible if all the taskstm
their deadlines. A task systefis feasible with the algorithmt
if A generates a feasible schedule forWe call a schedulability
test an algorithm that, given a task set and a schedulingitiigo
returns a negative answer if the scheduling algorithm caeigae
a non feasible schedule.

A scheduling algorithmA is optimal for a class of scheduling
algorithm if for any scheduling algorithm® in the same class as
A, if a task system is feasible witB, then it is feasible withA.
Since the EDF scheduling is optimal [7], in uniprocessortexin
for independent task system, then the feasibility test ufder
can be reduced to the schedulability test with EDF.

In the literature, several feasibility tests are proposmdtlie

the treatment task is longer since it has to deal with theffaithe.
The figure 1 presents a temperature acquisition task (witkxan
ecution time of 2 units and deadline of 5 time units) actidaa
the arrival of an external event, this task is followed by aspr
sure acquisition task (with an execution requiring of 2 tinmés
and deadline 5 time units) activated 5 time units (offse®@rathe
arrival of the temperature frame. The two acquisition tasksfol-
lowed by a treatment task that is activated 10 time units #fiee
arrival of the first event.

temperature T pressure f treatment
event
arrival,

Figure 1. Example of a serial transaction.

Itis clear that this task set is feasible because the thskes tae
never activated at the same time. Nevertheless, if all thkstare
activated simultaneously (feasibility condition of L&Lhén the
task set is not feasible, because of the important overagtmof
the processor requirement that can be really imposed byagiks.t
We note that the instant at which the external event arrvemt
known, therefore the activation time of the first acquisitiask of
the transaction is not known. Thus the transaction is nogrede.

The tasks with offset model (transactions) has been prapose
by Tindell [18], in order to take into account offset relatiobe-

tween the tasks of a system. Transactions are non-conchete (rion [5, 6]. A systemS is a set ofV sporadic tasksr(, 72, ..., 7).
transaction activation times are not known a priori). Thasfe Each task; is defined by three parameters, a worst-case execution
bility problem of transactions has been extensively sulidliethe time C;, a minimal time intervall’; separating two successive ac-
context of fixed priority [8, 13] and with dynamic priority J9AIl tivations of 7; (called jobs or instances) and each instance;of
the existing feasibility test, for transactions, are basedhe re- must be executed within a deadlid&, relative to its activation
sponse time analysis (RTA) [1]. This analysis consists imco time. Note that in this model the first activation date of &tas
puting the worst-case response time (WCRT) of each taskein th unknown: tasks are said non-concrete. The task set is Seltedu
system. If the WCRT of each task is lower or equal than its dead under a preemptive EDF scheduler, that is, if some tasksadyr

line then it is feasible. Generally, the RTA analysis is lobea to execute, the scheduler will run the task with the earlilestd-
the study of the critical instant (instant that leads to tloestrcase line, relative to the current time. A sporadic tasks set &silele
response time of a task) and the busy period. Tindell [18}gxio if the corresponding synchronous task set is feasible [4]. the
that the critical instant (start of the busy period also) tdsk un- tasks are simultaneously activated@t= 0 and their activations

der analysis, is a particular instant when it is activatetthatsame are strictly periodic. Thus when analysing the schedutgbiif
time as one task of higher priority, after being delayed byaxim a sporadic task system, we will refer as the underlying pério

imum jitter value, in each transaction. Thus several diffitisce- task system. The analysis technique is based on the progsso
narios are possible, for a transaction set, by combiningédblks mand function [5, 6], which is the amount of time demanded by
of all the transactions. So, the main problem of the exact RFA the tasks in the intervadi1, ¢2) that the processor must execute to
to check the possible scenarios (candidate critical insyalead- ensure that no task misses its deadline. This function isekfi
ing to an exponential complexity. Only a sufficient feasipitest as : df (ti,t2) = Z;V:I n;i(ti,t2) * C;, Wheren; is the num-

with a pseudo-polynomial complexity has been proposed th bo ber of jobs of task-; with activation time greater than or equal to
the fixed priority context [13, 16] and the dynamic priorityntext t1 and deadline less then or equalito A necessary condition
[9]. for feasibility is: the amount of time demanded by the tagkirse

In this paper, we propose a necessary and sufficient test ofany interval must never be larger than the length of the vater
the global feasibility of transactions set scheduled by ERiEh V0 < t1 < to : df(t1,t2) < ta —t1.

a pseudo-polynomial complexity. We use the demand function It has been also showed that, for feasibility analysis, i

that has been previously used in feasibility analysis otiteal- ficient to check the values aff (t1,) for all the instantg; that
time systems scheduled under EDF priorities [4, 2]. Thidyana correspond to the activation time of some job. In the same way
sis technique returns an answer concerning the globalbiégsi it js sufficient to check only instants that correspond to the ab-

of a system without focusing on every task. It consists ivpro go|ute deadline of some job [10, 5]. The time period to sty i
ing that for a given interval, the processor demand of a system, 7 — jom {T\,T2,..Tn}.

with both activated and deadline dates withjris always lower
than or equal to the interval length We note that this technique
has a complexity lower than the one of RTA technique. We will
show that the naive extension of this technique for transastis
intractable due to the number of considered scenarios ({ersy
ods). We propose an analysis technique based on the maximu
demand function (demand bound functi@hy;(¢)) that computes
the maximum cumulative demand of a transacfigrwithin any
interval time of length; this method provides the same result as
the naive extension method with a pseudo-polynomial rure tim
complexity. Finally, we provide an efficient implementatjdhat
allows to speed up the proposed analysis methods, by usimgth ~ Theorem 1 [15]. A synchronous task sét is feasible with EDF
riodicity of both the demand and demand bound functions. e a on a single processor if and only i#L* < L, df(0,L*) < L*
representing statically the processor demand of tramsecin ta- whereL* is an absolute deadline and L is the first idle time in the
bles, and using it to deduce the processor demand of a tt&rsac schedule (the length of the first synchronous busy period).
for any given busy period of length

Section 2 presents the feasibility analysis of sporadikstai

It has been proven, in [4], that the first deadline miss, if @y
found in the longest busy period starting fram= 0 . A busy pe-
riod is an interval of time where the processor is never idleus,
it suffices to check all deadlines frobn(begin of the busy period)

ni]o the first idle time (length of the busy period). The worstea
usy period starts at timg = 0 when all the tasks are activated
simultaneously. Theorem 1 provides the process of fedgibéist
of synchronous tasks.

section 3, we present the transaction model, we give a defirot The previous result is based on the busy period initiatedhby t
the demand function, then we propose a different feagtalital- simultaneous activation of all the tasks of a system. Forsta-
ysis method, for transactions. An efficient implementatioth a tions, creating the busy period by the simultaneous adbivadf
study of the complexity are presented in section 4. all the tasks of all the transactions causes an overestimafithe

processor demand (tasks of the same transaction can neaer be
tivated at the same time) as it has been showed on an example in
the introduction section. In this situation, the definitafithe busy
period, of L&L task model, leads to a pessimistic feasipitist.

In this section we present the fundamental results comgrni To avoid this pessimism, in the next section, we show thatitee
uniprocessor feasibility analysis, for sporadic taskesyst sched- orem 1 can be applied in the case of transactions then weagevel
uled under EDF priorities, based on the processor dematet cri the feasibility analysis, using the same technique.

2 Feasibility analysis of sporadic tasks

r
i T y
D, R D, R Dy R
Ty Tin T3 T
Event A
T — T —— T
Extern 37—' T 16
il :
g12 ? Cn
013

Figure 2. Example of transaction.

3 Feasibility analysis of real-time transaction
3.1 Computational model

A tasks systent is composed of a set ¢8| transactiond’;,
with 1 <4 < |S] (where|S| is the number of elements in the set
S).

S {T1,T2,.,Ts}
Fi {Ti177'i27~~~77—i\1‘i\7Ti}
Tij < Cij,0ij, Dij, Jij >

Each transactioh; (see Figure 2) consists of a setbf| tasksrs;
activated at the same peridd, with 0 < j < |I’;|. Without loss
of generality, we suppose that the tasks are ordered in theyse
increasing offset. A task;; is defined by : a worst-case execution
time (WCET)C,;, an offsetO;; related to the activation date of
the transactiofl’;, a relative deadlin®;; (related to the offset), a
maximum jitter.J;; (the activation time of a task;; may occur at
any time between, + O;; andto + O;; + Jij, wheret, is the
activation date of the transacti@n).

The Figure 2 presents an example of a transadtiarcomposed
of three tasks with period; = 16. Note that each transaction is
non-concrete (in fact it's sporadic).

3.2 Feasibility analysis technique

In the context of dynamic priorities scheduling (EDF), for a
classical independent tasks, the critical instant for k im$ound
in a busy period that is started by the simultaneous acbivatf
all tasks except perhaps the one under analysis [17]. A datedi
critical instant can occur at the beginning of the busy pkriar
at an instant such that the deadline of the analyzed instaoee
incides with the deadline of a task instance of the systemis Th
result has been extended, by Palencia and Harbour [9],d0s4r
actions. They showed that for computing the exact WCRT of an
analyzed task, one needs to test all the possible busy gggathe
as in fixed priorities), that makes the exact analysis itatae (ex-
ponential complexity). Then, they proposed a sufficienpfegi-
mated) analysis with a pseudo-polynomial time complexity.

In this section, we present the analysis technique basekeon t
demand bound function [4]. This technique allows an exasdt te
of the global schedulability of a system with EDF. Effectjy¢his
method, for a given system scheduled by EDF, returns a boolea

answer (feasible or not) concerning its feasibility, buimf@rma-
tion on the worst case response time of tasks. So, by usisg thi
analysis for transactions scheduled by EDF, we provide aotex
schedulability test, in a pseudo-polynomial time compiiexi

Baruah et al [3] show that for applying the theorem 1 on a task
model, the task independence assumptions [3] must be edtisfi
In transactions the runtime behavior of each task is indegen
of the behavior of other tasks in the system and the tasksigre t
gered by an external event (arrival date is not a priori knowhe
transactions are non-concrete and all temporal specditatire
made relative to the arrival date of the external event. Tthes
transaction model satisfies theses assumptions, thengfoian
use the theorem 1 in order to analysis the schedulabilityamist
actions scheduled by EDF. But the problem is to identify thgyb
period, among all the possible scenarios, in which the idégi
test must be applied. Before addressing this problem, wes sho
how the processor demand can be computed for a given scenario

The feasibility analysis by demand criteria consist in aapt
the demand (interference) of activated tasks that must sh&d
in an interval of length (wheret = 0 at the beginning of the busy
period). We give a definition of demand function, in the caht#
transactions, for a given busy period starting at the simalous
activation of a candidate task. in each transactiof;.

Definition 1 (Demand Function). Ldf; be a transaction, a busy
period is starting by the activation of a task. of I';, and a pos-
itive integer numbet. The demand functiodf;.(t) denotes the
cumulative execution requirement by jobs of all tagkf I'; that
have activation times within any time interval of duratigp + ¢
and deadlines within time interval of duration t.

Note that we have obtained the following formulas, thatwalc
late the processor demand, are derived the same way as ivee der
tion of the formulas of interference in [9], the differencethat
we use only one variable for both activation and deadline dates,
for the demand function, while in [9], two variables are ugddr
activation dates and for deadline dates.

In order to compute the worst processor demand of a system
in a busy period of any length we must to find the worst de-
mand (interference) of each task of each transactiol;. For
each possible busy period, we natg the candidate task if';
initiating the studied busy period. We focus on the activapat-
tern of r;; (Figure 3); ®;;. denote the phasing betweer}, and
the beginning time of the busy period initiated by the atibraof
the candidate task.; i.e the first instance of a task; (activated
within the the busy period) will be activated &i;. time units af-
ter the beginning of the busy period, and subsequent actisat
will occur periodically everyl;. Note thatD < &;;. < T;.

(I)ijc = (07] - (Ozc + Jw)) mod Ti (1)

In the sequel, a notatian; ;. will be related to the task;; in a
scenario where;. is activated at the critical instant.

Since a task;; can interfere with multiple instances during a
busy period of length. The instances of;; activated in the busy
period oft times can be categorized into two sets.

e Setl: Instances activated before or at the beginning of the
busy period and that can be delayed by a release jitter so that
they coincide with the beginning of the busy period.

L=8 J;=12 D;=14
t
T 7
l<—‘——> l
T I—Z‘ L T‘,l‘ T _l LWL I T T Ill T T T T T T
HA i =0 ijc q?yg i jc
. T,

Figure 3. Pattern of activations and deadlines
in busy period.

e Set2: Instances activated after the beginning of the busy pe
riod.

Based on these two sets and the phasing times, we will be able

to calculate the worst-case processor demand of tasksdietpn
to transactiol”; during a busy period of length and deadlineve
will call df;;.(t) the demand function of a task; in a busy period
which beginning coincides with the activationaf. For this, we
must consider only the instances of setl and set2 with aidead|
before or at.

The worst processor demand ©f within a time intervalt is
divided into two part.dfffj1 the demand caused by the instances
of Setl with deadline in, anddffji’52 the demand caused by the
instances of Set2 with a deadline beferalso. Let us noteu;;.
the number of instances of; belonging to Setl. in the example
of Figure 3 there are;;. = 2 instance that are activated before
the beginning of the busy period and delayed enough by jitter
be released in the busy period.

Nije = \‘

Fromn,;. activations in Setl, we must consider, in the demand
function, only the instance activations with deadlinesobef . In
Figure 3, only the first instance activatio@iﬁ)) of setl has a
deadlined?jC that occur befor¢g = 8. Thus the number of ac-
tivations from instant, that have their deadline at or befarés
obtained by:

Jij + ‘I)iij

= @

nijels +1 — Dij — @ije
1
S

therefore, the demand functi f“ﬁl computing the processor

demand of instances belonging in setl is defined as:

(t) = (min (ni]’c, \‘ijTi Tt Dy~ ¢’¢ij + 1)) Cij
0

©)

drsett
fzyc Tz

Where(z)o is max {z, 0}.

Note that the precedent equations may return a negative atu
cause the relative deadline may be greater than the pertad. |
obviously that, fort < dY;. + (nije — 1)T3, dfs52(¢) is null be-
cause only the deadlines, of instances of setl, occur iinteis/al
time. And fort > d?]-c + (ni]-c — 1)Ti, dfffcﬂ(t) = nijcC’i]-.

dfije(t) = df5 () + df522 (t) 4)

dfijc(t) is the processor demand caused-hyin a busy period
of lengtht, when its beginning coincides with the activation of the
task ;.. Thus the total demandyf;.(¢), caused by a transaction
T;, is given by:

dfic(t) = (dfi5"!

Vi

+df5?) (5)
Now, we have all the ingredients for checking the feasipoit

a system, for a given busy period. For This, one has to chealk if

deadlines, in the busy period, of each task in the systemgts m

using the following test formula:

VL < LY dfie(L*) < L'

v

(6)

WhereL denotes the length of the busy periatl.is obtained
by finding, iteratively, the fix point, using the demand pres@ as
in the context of fixed priority (without regarding the jolugad-

line).
L™ —),
J + { T —D Ci; (7)

The main problem of feasibility analysis of tasks with offse
is that we dont know which task, of each transactiohi; must be
considered to create the worst-case busy period. Thus, aise n
solution, we must check the feasibility of a system in allgiole
busy periods by carrying out all the possible combinatidithe
tasks in each transaction. We ndte:< ¢, cz, ..., ¢jg; > a com-
bination of index of the candidate task, in each transactiofl;
initiating a given busy period® is the set of all possible combi-
nationsC (with ¢ € 1..|S| andc; € 1..|T;]). The exact analysis
consists in checking the following test:

T;

Lo+ = 3 (

Vi,Vj

\‘Jij + Pijc

< o (1) <
vt < L, glgg; dfic, (t) <t (8)

Obviously, the large number of combinatiog !¢/, |T';| busy
periods) makes the analysis of every combination intréetalye
can solve this problem, by using the demand bound processor ¢
teria that computes an upper bound of the processor demaad fo

With the same principle, we calculate the demand caused by gystem for any interval time This technique provides the same

the instances belonging to Set2. We know tfaf. is the time
at which the first instance of them occurs; the others willuocc
at periodic intervals after the initial one. We give the ftioc

dfse2 (t):

dfisj?2) = (min (F 7Tq.)ijc

result as the one checking all the possible busy period (Eneo
2).

We definedb f;(t) the demand bound function : it is the upper
bound of the processor demand caused by a transaCtiam a
busy period of duration. It is the maximum of all possible de-
mand that could have been caused by considering each ctdida
taskr;., in T';, as the one originating the busy period.

Definition 2 (Demand Bound Function.) L&Y, be a transaction.
The demand bound functieib f; (¢) denotes the maximum cumu-
lative execution requirement by jobs of the all task’othat have
both arrival times and deadlines within any time intervatlofa-
tion ¢t. Formally:

dbfl(t): max dfic(t)

Tic€T; ©

In order to test the feasibility of a system, one has to check
that all the absolute deadlines in the longest busy periedraet,
i.e checking for each deadline (time intervabf each task in the
system that thelb f is lower than or equal to. Thus the test pro-
cess has a pseudo-polynomial dependency on the numbeksf tas
which makes the method applicable even for relatively lage
tems.

Theorem 2 A transaction system is feasible if and only if
>wr, dbfi(t) < tfor all positive numbet.

Proof:

The proof consists in showing algebraically the equivaddne-
tween the left part of the inequality 8 and the one of theorem 2
For a time interval of duration, we notedf;., (¢) the processor
demand, withirt, of I'; when ., initiate the busy period. As-
sumet) =< dfic, (), dfzc, (t), .., dfne s, (t) > denotes the set of
interferences of the all transactions of the system for argbusy
period initiated by a candidate task., in each transactiod;.
Note© = {0 :Vi € 1..|5], ¢; € 1..|I's|} the set of all possible
scenarios (busy periods). The value of processor dematidan
(equation 8) of a system, in the exact test is given by:

IS|

max Z dfic, (t)

i=1

dbf(t) =

dfic, (t) is thei’th element of. i.e the interference of théth
transaction I(;) for the given combinatiod. Since each proces-
sor demandif;., (¢) of a transactiol’; is independent of all other
transactionl’; # TI';, then the elements of the all setsare in-

dependents. Thus we can swap the summation and maximization

operations. The formula of demand bound function of theesgst

becomes:
(reneaex dfic. (t))

In each combinatiol the i’th element corresponds to the in-
terference of";. Thus this element is always in the set of interfer-

|S]

-2

db(t)

ences{dfic, : c; € 1..|T;|}. For a given; we have
Igleaé(dfi0¢(t) = th}a)‘(o dfic, (t)

The processor demand becomes:

IS|

= Z:ZI (max dfic,(t))

By definition of the demand bound function (equation 9), we
can rewrite the formula as following:

db(t)

r,T=11
C,=1J,=6 D, =13 ri

il il il I.ll z-’2 1-3
C,=2J,=0D,=8 i

Ci3:1 Ji3:0 D13:10 |

Figure 4. Example of transaction with jitters.

S|

Z dbfi(t

So, the exact test of equation 8 is equivalent to the follgwin
test (theorem 2)
)) <t

After the result of theorem 2, we conclude that the maximiza-
tion of the processor demand function on each transactioes d
not only give a sufficient condition but a necessary and sefftc
schedulability test i.e if the system is not feasible bydhé func-
tion then we are sure that the system is not feasible. Thidtres
is interesting compared to [9] where the author focus on RiTA o
transactions scheduled by EDF. In the case of RTA, a sufficien
condition is given.

Applying the result of theorem 1 of baruah [5], the procedire
checking whether a systefis infeasible, consists in determining
if there exists an absolute deadlif&, in the upper busy period of
length L, such that the total demand bound,[ih, is greater than
the durationL*.

dbf(t)

WLy (Lo e (10)

O

AL < L: >L"7?

> dbfi(L

r;es

(11

The length of the upper busy period is computed iteratively
using the maximum interference in the context of fixed ptyori
(the deadline is not taken in account)

=Y wi(L™)
VT,

Wi (t) denotes the maximum cumulative demand caused by all
the job’s (activated irt) tasks of a transactiohi;, in any interval

(e e NI

T;
For our example of Figure 4, we calculate the demand
of the transactiorl’;, in a time intervalt 23, when each
task 1, 752, OF 743 initiate the busy period. Then the maximum

L+ (12)

Jij + Pije

Wi(t) = max T

VTic

dh,=YC;

J

o,

-

~

ﬁ

|

128 45 8 7 88 W1z

0 0
dy, dy

vy N
IR R EEE)
0 _ Mx
dpy =dy

Figure 5. demand function of transaction for
a given busy period.

among the demands is considered as a bound on the demBnd of

1%11423—5—13
11

dfislefl (23) (min (1: {

(min (5521, |

Thusdfii: = df$ett + df$4? = 2. With the same way we cal-
culate the demand caused by (dfi21 = 2), and the one caused
by 73 (dfiss = 2). The demand caused by the transaction is
dfii =2+ 2+ 2 = 6 (Figure 5).

WhenT;2 initiates the busy period we havg. = 7, and when
7;3 initiates it we havelf;s = 5. From these values of demands
caused by'; the bound demand is the maximuify = 7.

J+1))0*1:1

set2

dfill

23-5

11

23—-5—-13

(23) =84+ 1)), x1=1

This method has a pseudo-polynomial time complexity, the de
mand bound computation, of a transactiBnhas a complexity:
O(|T;|?) because for each candidate tagk that initiates the busy
period, we must calculate the demand caused by eachtadket
us noteX the number of deadlines to check, in the longest busy
period, then the complexity of the method$X |T';|*) (assume
T3 = [S])-

4 Faster feasibility analysis

We see, that when testing the feasibility of a system, we
calculate repetitively (according to the number of deairo
check), for each transactidn, thedbf;;.(t) for each pair of tasks
(7ie, Ti5)- Thus an important amount of computation effort can be
avoided by finding a repetitive pattern @ f;. Therefore, in this
section, we propose a new and efficient implementation gkgor
that reduces significantly the time needed by the feagilalialy-
sis method. This technique is based on the same idea asdransa
tions with fixed priorities [12, 13]. The idea is to find a pefio
and static pattern of demand bound function of transac(gtosed
in tables) and to use it in order to compute efficiently &g (¢)
for anyt in the different steps of the feasibility test. This method
significantly speeds up the feasibility test as showed irctimext
of fixed priorities [13, 12].

4.1 The periodicity of the demand func-
tion

We know that the task activation dates are periodic, thidieap
that deadline dates are also. In a given busy period initiayethe
activation ofr;., the first deadline of a task; to meet, that we
note d?jc is the deadline of the first instance of Setl if it is not
empty, else it is the deadline of the first instance of Set2 firlst
deadline ofr;;'s jobs (activated in the busy period) to meet in the

busy period is given by:

dijc = ®ije + Dij — nijeTs (14)
We can express the demand caused;pyluring a busy period
t < dY.+kxT; as(k+1)*Cy;. We see that during each interval

ijc
of lengthT; afterd?;. the demand (not cumulative) caused;y,
Max the

ijc

is alwaysC;; (one activation eaclf; times). We notel;;.:
maximum among the first deadlines of all task$ of

Max
dic

0

= 0. 1

max {djc} (15)

Using this report, we deduce that the processor demand of a
transaction is periodic aftel’’**, and the processor demand(no
cumulative) caused by a transactibn during each time interval
of length T; (after d¥/°*) equal to) .. Ci; (no cumulative);

©j

Figure 5 show that fot > d°” the demand is repetitive (with

period =T3) , this allows us to obtain a static representatiodfaf
function during any time > d 4=,

In order to represent statically tl# f; (¢) function, that is the
maximum of possible demands, Bf, we need to represent stati-
cally all the demanddf;. for each task;., of IT';, during the same
time interval (large interval for which théb f;. are not repetitive).
For an easy deduction af; during an arbitrary interval (Theo-
rem 3) we represent the demand functions for each task catedid
Tic during the interval timel?, ., + T;.

Max
dic

}

(16)

o _ 0 _
dmaz = max {dijc} = max {
4.2 Static representation

For each critical instant candidate,, we define a set of points
P, where each poink;.[k] has anc (representing deadline time)
and ay (representing the cumulative processor demand caused by
job’s tasks of"; with activations and deadlines befatg coor-
dinates, describing how the cumulative processor demamskda
with deadline time when the activation ef. begins the busy pe-
riod. The points inP;. correspond to the convex cornersdff. (¢)
illustrated by dots in Figure 6 . We nof&.. the ordered and non
redundant set of couple deadline dategoccurred before or at
d%,.. + T:) and the the corresponding demafidcaused only by
the instances of the same deadlih®f all tasks ofl";.

Qie = {dbje + k* Ty < dopow + T, V4, ¥k =0,1..} (17)

M ———-

0

R N . Y

'
|13466?39|D|||213|4|5

T I
5 17 18 19 20 21 33 23 24 25 26 27 28 29 0 I 3T 33 34 3/ I I 38

d8, = Max{d=}

Figure 6. pattern of the demand functions of a transaction for all the busy periods.

The following equations define the arr&y.:

Pi[l]z = Qic(1).d
Pic[1].y = Qic(1).c

(18)
Piclk + 1.2 = Qic(k+1).d

Pi[k + 1.y = Pic[kl.y + Qic(k 4+ 1).c

For our example of Figure 6, the. table that stores the coor-
dinate of the convex point of each curve correspondingftoare

given as:
P =< (7,1),(12,2),(16,4), (18, 5), (23,6), (27,8) >
Py =< (8,2),(10,3),(1,4),(19,6), (21,7), (26, 8) >
P;3 =< (10,1), (14, 3), (16 4),(21 5),(25 7),(27,8)

Once the informations on adlf;.-functions are stored ;.-
tables, in order to store the information about the boundad&m
dbf; function, we define the table of pointB;, as the union of all
P;.-s

(19)

In order to determine the points i corresponding to the con-
vex corners ofdbf;(t) (Figure 7), describing the demand bound
function, we define a subsumes relation: A padifita] subsumes
a pointP; [b] (denotedP; [a] > P;[b]) if the presence of;[a] im-
plies thatP;[b] is not a convex corner. Graphically, the d&tis
illustrated by the dots in Figure 7.

Pi[a] = Pi[b] if and only if

(P;la]l.x < Pilbl.x A Pi[al.y > P;[bl.y) (20)

Using the subsume relation, we will remove fraf all sub-
sumed points (that will not be used to representdhg function

i.e the convex corner of curve that represedfits;):
Remove Pi[b] from P; if Ja #b: Pia] = P;[b] (21)

For our transaction of Figure 6. We keepfn= pi1 Upi2Up;s
only the points representing the maximuiy; .

P; =< (7.1),(8.2),(10.3), (15.4), (18.5), (19.6), (21.7),
(26.8) >

At this step, thedbf; is stored inP; (convex corners oflbf;
function illustrated by the dots in Figure 7). The followitizeo-
rem tells how we can deduce the bound demarid; dbr any time
t, usingP;.

Theorem/3 During an interval timet = t + m = Ti, where
Az <t < dyna, + T, the demand bound caused by a transac-
tionT; is: dbfz(t) = dbfz(t) + m * ZVT“ C”

proof:

We can prove this deduction easily, by algebraic equivaenc
Lett = d%,, +m * T; + t*, wheret* < T;, be a duration
of a busy period. We notébf;(a,b) = dbfi(b) — dbf;(a) the
demand caused only during the interval that starts at daie a
busy period, and finishes at ddteSince, after a time > d%,,..,
the demand caused by a transaction is periodic with pé&Fjahd
during each time interval of duratidfi an amount Ovaw Cij
time requirement is caused (Figure 6), then the demand dause
betweend’, ., + kT; anddS, ., + kT; + t* is equivalent to the on
caused betweedf, ., andd®,,, + t*.

dbfi(dpmaz + kTi, dmas + kTi + 1) = dbfi(dpaz, dyas +17)

Thus
dbfl(t) = dbfl(bl maz +m*202]+
VTij
dbfi(d?naam d?nax + t*)
dbfi(t) = dbfi(das) +mx Y O+
V‘ru
dbfi(daz +1°) — dbfi(dmas)
dofi(t) = mx Y Cij+dbfidye. +1)
VTij
dvfi(t) = mxY. Ci+dbfi(t)

VTij

dbf(T)) =3,
2t dbf(t T dbfi(T) =Y C,
= dbfi(o) L AT =2.Cy
ot
o |
.
L
W
L
g
I
.|
i
|I2‘3‘;€:6ITSI9I|IE|I||I2|‘3|‘4|‘5117131920212223242526272329303132333435363733
d" —Max{d }
_d“

Figure 7. Demand bound function of transaction.

with
t =de +t* and d°,, <t < d’n + T

O

Using P;, the maximum demand caused by a transackign
during a interval time < d2,.., + T3, is obtained by a fast lookup
function, as follow:

dbfi(t) = Pi[n].y

(22)
n =max {m : P;jm].x <t}

In order to validate a systers, the set) of deadline dates to
check is reduced to the dates at which dlbg; ; changes value,

Thus we need to check that the demand bound caused by a system |n the case, WherDij

is always lower or equal than the deadline belonging to

U v

VI, €8

(23)

Vi ={d = Pi[kl.z /| k=1.|P[} U
{ d= P»L[k‘].l' 4+ m * Ti /Pz[k]l' > d?naac AN m= 1"}

number of tasks and = S (C;/T;) the utilization factor of

the system.

The feasibility analysis of transactions is divided intootw
phases. First, the static representation of the demanditfouc-
tion, of each transactioRy;, during a time intervat < d<,,. + Ti;
This operation for one transactioh“z, has a complexity

2 7d0
O ((1+ Shonepfioun) " log ((1+ Sasstin) 1))
The second phase determlnes the fea5|b|I|ty of the systemg u
the lookup tables obtained during the first phase. Searehvadue

in a tableP; needs a time i® <log ((1 + “7> T |))

We note X the number of deadlines, that we have to
check. Thus the overall complexity of the second phase is

0 (Xt ({1 + B thsn) 1)),

< T; the complexity is reduced
to O (|[|*.log (|T:[)) for the static representation, and for
the feasibility analysis it iSO (X log|T';|). Thus the overall

complexity is inO (1] . log (|T':|) + X log |Ts|)

For transactions scheduled under EDF, a response time-analy
sis (RTA) has been proposed by Palencia and Harbour [9]. The
sufficient analysis proposed consists in computing a boand f
a response time for each task in a system, using the maximum
(approximate) interference function. Giving a task undelgsis
Tua, LEt X be the number of deadlines, of the tasks of a system, in

For the same example of Figure 4,we compute the bound de-an upper busy period. is the number of iterations for computing

mand ofI';, for ¢ = 32. We use the tablé’; for calculate the
demand bound for any < d%,,. + T; = 27.

Wehavet = 21 + 1% T; = 21 + 11 (m = 1 andd’,,, =
16 < 21 < dYa, + Ti = 27. Thusdbfi(32) = dbf:(21) +
1 x va Cij = 7+ 4 = 11 (Figure 7). From the tabl®;, we
deduce thatlbf;(21) = Pi[7].y = 7.

4.3 Time complexity

In the context of sporadic tasks scheduled under dynamic

(EDF) priority, [4, 2] proved that folU < 1 the length of the
busy period is bounded bf = (—U maxi, {T; — D; }) and
the time complexity of the feasibility analysisds(N.¢), with N

a response time (finding a fixed point) of an instance.gffor a
given critical instant, and the number of instances ef,, acti-
vated in a busy period according to the critical instant @eTed.
The maximum interference calculation, of a transactionindLan
interval timet, has a complexity)(|T;|?). The RTA consists in
computing the response time of the all instances, activiatdioe
busy period, of the task under analysis, for each criticstiant in
all possible busy periods. Thus the complexity of the RTAoalg
rithm, for 7,4 is O(X * Y * Z % |S| x |T;|*). The analysis is per-
formed for all the tasks of a system@(X =Y * Z % |S|* * |T;|*).
We note that the interference function used in RTA [91;(¢, d),
is based on two different parametetsor selecting the instances
of tasks activated before or atindd for the ones with a absolute
deadline occurring before or dt(wheret < d).

5. Conclusion and perspectives

In this paper, we have presented a new feasibility analysis,

for tasks with offset (transactions) scheduled under EO&ripr

ties. The analysis technique is based on the processor deman

criteria and allows testing the global feasibility of a stwith

a pseudo-polynomial complexity. We have also reduced the co

plexity (execution time) of the algorithm, by proposing dicéent

implementation technique, that consist in pre-calcutptind stor-
ing statically the processor demand bound function and tiserit
to deduce the demand caused by a system for anyttirtés im-

portant to note that this pseudo-polynomial method, thapwme
pose in this article, gives a necessary and sufficient séaleitity

test for a system of tasks with offset with EDF. In our knovged
the other pseudo-polynomial tests, in the context of fixedyor
namic priorities, are RTA-based but provide only sufficiémin
exact) schedulability test.

We see that our global analysis technique, based on the
processor demand has a significantly lower complexity tien t
one of the response time analysis proposed by palencia [8. T
reason of the difference in complexity is that our test ddesn

provide the response time of the tasks, but only checks thall

deadlines are met. We don't know yet if the results providgd b

the two methods are similar i.e if a system is decided feadiil

one method, is it also by the other method? The subject of our

future work is to answer to this question.

The authors are grateful to the reviewers for their help &aty
improving the paper.

References

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellisg
Fixed priority preemptive scheduling: An historical pezsp
tive. Real-Time Systems Bages 129-154, 1995.

[2] S. Baruah.The Uniprocessor Scheduling of Sporadic Real-
Time Tasks.Phd thesis, Department of Computer Science.

The University of Texas at Austin., 1993.

[3] S.Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized

multiframe tasksThe International Journal of Time-Critical
Computing Systemg17):5-22, 1999.

[4] S. Baruah, A. Mok, and L. Rosier. The preemptive schedul-

ing of sporadic real-time tasks on one procesBarceedings
of the 11th Real-Time Systems Symposjages 182-190,
1990.

[5] S. Baruah, L. Rosier, and R. Howell. Algorithms and com-
plexity concerning the preemptive scheduling of periodic

real-time tasks on one processdihe Journal of Real-Time
Systems,21990.

[6] G. Buttazzo. Hard Real-Time Computing Systems: Pre-

dictable Scheduling Algorithms and Application&luwer
Academic Publisher, Boston, 1997.
[7] M. Dertouzos.

pages 807—-813, October 1974.

[8] J. P. Gutierrez and M. G. Harbour. Schedulability anialys

for tasks with static and dynamic offsetBroc IEEE Real-
time System Symposium (RT,.$89), December 1998.

Control robotics: the procedural control
of physical processorsProceedings of the IFIP Congress

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. P. Gutierrez and M. G. Harbour. Offset-based response
time analysis of distributed systems scheduled under edf.
Euromicro conference on real-time systems. Porto, Poftuga

June 20083.
J. Leung and M. Merril. A note on preemptive scheduling

of periodic real-time tasksInformation Processing Letters

3(11) 1980.
C. Liu and J. Layland. Scheduling algorithms for multi-

programming in real-time environnemerdournal of ACM

1(20):46-61, October 1973.
J. Maki-Turja and M. Nolin. Fast and tight responsedsn

for tasks with offsets. 17th EUROMICRO Conference on
Real-Time Systems IEEE Palma de Mallorca Spdaialy

2005.
J. Maki-Turja and M. Nolin. Efficient implementation of

tight response-times for tasks with offsetReal-Time Sys-

tems Journal, Springer Netherlandks February 2008.
A. Mok and D.Chen. A multiframe model for real-time

tasks.Proceeding of the 17th Real-Time Systems Symposium,

Washingtonpages 22—-29, December 1996.
R. Pellizzoni and G. Lipari. Feasibility analysis obtdime

periodic tasks with offset®keal-Time System30(1-2):105—

128, 2005.
A. Rahni, E. Grolleau, and M. Richard. New worst-

case response time analysis technique for real-time ttansa
tions. ISoLa Workshop On Leveraging Applications of For-
mal Methods, Verification and Validation Isola2007 Poisier

France December 12-14 2007.
M. Spuri. Analysis of deadline scheduled real-timeteyss.

RR-2772, INRIA, Francel 996.
K. Tindell. Adding time-offsets to schedulability dgais.

Technical Report YCS 221, Dept of Computer Science, Uni-

versity of York, Englandlanuary 1994.
K. Traore, E. Grolleau, and F. Cottet. Shedulabilityalyn

sis of serial transactionsReal-Time and Network Systems
RTNS’06 Poitiers Francgpages 141-149, May 30-31 2006.

