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Abstract

Nowadays, many commercial CAD systems are built on proprietary
geometric kernels which provide an API containing a set of high
level geometric operations (boolean operations, slot, chamfering,
etc). Because of their complexity, these operations can generate
important modifications on topological cells (vertices, edges, faces,
volumes, etc.) of the objects. At the same time, many of these ker-
nels need to know precisely what has occurred to each topological
cell belonging to objects given or resulting from a previous high
level geometric operation. At the end of each operation, the geo-
metric kernel must provide a bulletin board describing cells’ evolu-
tion through a list of events (split, merge, creation, deletion).
Most commercial geometric kernels use B-Rep structures and pro-
vide methods enabling the developer of a CAD system to retrieve
a number of events that occurred on cells. These kernels have their
own scheme for detecting events, based on their own taxonomy of
situations, heuristics and evolution rules. Little is known of their
details, which are proprietary information, let alone of the underly-
ing theory, if any. Generally, for example, the detected events are
not generic for all cells’ dimensions. This lack of underlying the-
ory limits the possibility to extend the use of these kernels to new
domains of investigation.
In this paper, we propose a generic model that enables to create
a bulletin board. This bulletin board will contain the complete
list of events having occurred on cells of any dimension, and that
belong to any topological model. The genericity of this model
and the completeness in all dimensions of this list are based on
the use of four elementary mechanisms (splitelem, mergeelem,
creaelem, delelem). They are defined independently of the topo-
logical model, and allow the generation of the bulletin board, what-
ever the geometric operation. This model has been implemented
using the geometric kernel of the modeler Moka, based on general-
ized maps.

Keywords: Bulletin board, Topological entity modification, Event
follow-up mechanisms, Generalized maps

1 Introduction

Over the last fifty years or so, geometric modeling systems have
evolved significantly. Initially limited to 2D, they now include com-
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plex 3D functionalities, ranging from the simulation of physical
phenomena to the recording and complete and automatic replay of
parameterized processes of conception.

In the field of CAD (Computer Aided Design), some parametric
systems have imposed themselves on the market, and the number
of hours of development dedicated to these systems is so huge that
it is very difficult to redevelop a new complete rival system.

Therefore, most new modeling systems which appear on the mar-
ket basically use a ready -to-use geometric kernel (Parasolid, Acis,
Cascade[Brunier-Coulin et al. 2000], etc.). These kernels supply
the modeling system with an API (Application Programming Inter-
face) containing a set of high level geometric operations (boolean
operations, slot, chamfering, etc.).

Structurally, a geometric modeler is composed of two different lev-
els of abstraction (see figure 1). The first level, in direct interaction
with the user, includes the application layer which gathers the high
level geometric operations. The second level, forming the core of
the modeler, includes a geometric kernel based on a specific model
(B-Rep, CSG, etc.).

Application layer
set of constructive gestures

(slots, chamfering, smoothing...)

Geometrical kernel
(B−Rep, CSG, topological models...)

Bulletin board
generation

Decomposition into

operations
kernel elementary

Figure 1: Geometric modeler structure.

Because of their complexity, the application layer’s operations
can generate important modifications on topological cells (vertices,
edges, faces, volumes, etc.) of the objects. At the same time, many
of these operations need to know precisely what has occurred to
each topological cell belonging to objects given or resulting from a
previous high level geometric operation. Next, at the end of each
operation, the geometric kernel must provide a bulletin board de-
scribing cells’ evolution through a list of events (split, merge, cre-
ation, deletion). For example, in the field of CAD, most parametric
systems have developed home-grown solutions to resolve the per-
sistent naming problems [Marcheix and Pierra 2002] (in our work,
the persistent naming is just a case study). These solutions fre-
quently use a graph in order to save face history during the con-
ception process ([Kripac 1995], [Marcheix and Pierra 2002]). The
construction of this graph needs to know how the faces of the ge-
ometric model evolve during an operation. In figure 2, block face
f1.1 is split into two faces (f2.1 andf2.2) after the application of



thedifferenceboolean operation. The graph in figure 2b stores this
event that must be returned by the geometric kernel.

Currently, most geometric systems are developing new functional-
ities about standard construction procedures such as boolean op-
erations for CSG or Euler operators for B-Rep modeling. These
systems offer some solutions to the new needs expressed in many
fields, such as CAD, architecture or geology. However, these solu-
tions aren’t satisfactory. Indeed, all commercial geometric kernels
provide methods enabling the developer of a CAD system to re-
trieve a number of events occurred on cells. These kernels have
their own scheme for detecting events, based on their own taxon-
omy of situations, heuristics and evolution rules. Little is known of
their details, which are proprietary information, let alone of the un-
derlying theory, if any. Generally, for example, the detected events
are not generic for all cells’ dimensions. This lack of underlying
theory limits the possibility to extend the use of these kernels to
new domains of investigation which need to detect events appear-
ing on all i-cells (a cell of dimension i where i=0..n) and different
aggregates of connected i-cells. An interesting formalization work
has been proposed in 2000 in the DJINN project [C.Armstrong et al.
2000]. This report proposes a complete specification of the differ-
ent functions that must be provide by the interface of a geomet-
ric kernel. In this report, we can find the specification of several
functions dedicated to the management of events occured on cells.
This necessary formalization work emphases the necessity to pro-
vide these functions but it gives no answer on the way of generating
in a correct an generic way these events in the geometric kernel. An
underlying theory is necessary in order to guarantee the reliability
and the completeness of the generated events.

In this paper, we are interested in the different modifications that a
high level geometric operation generates on a modeler, particularly
in the case of a topology based kernel. In order to solve this prob-
lem, we propose a generic model that enables to insert the complete
list of events (we must omit any event) having occurred on cells of
any dimension, and that belong to any topological model, into a bul-
letin board. The genericity and the complete independence with the
used geometric model are based on four elementary mechanisms
(split elem, mergeelem, creaelem, delelem) allowing the gener-
ation of the bulletin board, whatever the geometric operation.

This paper is structured as follows. In section 2, we present our
solution for the generic generation of bulletin boards into the topo-
logical kernel. Section 3 describes an implementation of this so-
lution using the geometric kernel of the modeler Moka (web site:
http://www.sic.sp2mi.univ-poitiers.fr/moka) that is based on the
topological model of generalized maps [Lienhardt 1994]. This pro-
cess permits us to integrate and validate the event follow-up mech-
anisms. We conclude in Section 4.

2 List of events generation

In this paper, our objective is to generalize the event follow-up
mechanisms in order to describe a formalism robust enough to be
implemented on any type of topological model.

The events which have occurred on the cells can be represented in
the bulletin board as a list (every current geometric modeling sys-
tem - Parasolid, Cascade, and so forth - has such a structure). This
list must be complete and generic in any cell dimension. A bul-
letin board allows the tracking of topological cells’ evolution inside
a geometric model, after the application of a high level geometric
operation (see figure 2a). To do so, the bulletin board links two sets
of cells (respectively namedstarting cellsandending cells) with
an event. Each event represents an interpretation of the topological
evolution which has occurred on the starting cells (see figure 2c).
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(b) Cell graph corresponding to a constructive
gesture applied on the example of figure 2a.
Starting cells Ending cells Event

{f1.1} {f2.1, f2.2} face split

{e1.1} {e2.1, e2.2} edge split

... ... ...

{e1.2} {e2.3, e2.4} edge split

{f1.2} { } face deletion

(c) Bulletin board corresponding to a constructive
gesture applied on the example of figure 2a.

Figure 2: Events occured on cells after the application of a high
level geometric operation.

In figure 2a, the boolean operation between volumesA andB (high
level geometric operation) generates several events and the corre-
sponding bulletin board links severalstarting cellsandending cells
sets (one pair set per line). Indeed, in the bulletin board shown in
figure 2c, the face split event gathers the starting set{f1.1} and
the ending set{f2.1, f2.2} (see line 1). Moreover, the face deletion
event gathers the starting set{f1.2} and the empty ending set{}
(see line 5).

2.1 Prerequisites

In a geometric modeler, we distinguish two levels of operations
called “high level operation” and “elementary operation” (see fig-
ure 3). A high level operation (such as boolean operation) is a ge-
ometric procedure describing a complex geometric process. The
topology resulting from this type of operation is highly depen-
dent on geometry. Thus, the event list linking allstarting cells
and all ending cellscan not be determined at this level (this is
called ”unpredictable”). For example, in figure 2a, the split of
face f1.1 depends on the position of volumeB. Thus, to find
the events, after the application of the boolean operation, between
all starting cells{f1.1, e1.1, . . . , e1.2, f1.2} and all ending cells
{f2.1, f2.2, . . . , e2.3, f2.4} (see figure 2c) is unfeasable. Available
in application layer (see figure 1), a high level operation must be
processed at the geometric kernel of a modeler with a set of ele-
mentary operations.

Unlike a high level operation, an elementary operation generates
a predictable and finite list of events (figure 4 shows an elemen-
tary operation offace splitting, applied onF ). This list includes
the events of creation, deletion, merge and split of cells. In fig-
ure 4, we can only find two edge split (A1, A2), one face split (F )
and two edge creation (A3, A4) events. In order to transcribe the
events on the bulletin board, we define four mechanisms for fol-
lowing up events. Each of them is associated with the elemen-
tary operation (see figure 3) which generates the corresponding
event. Indeed, the events’ split, merge, creation and deletion of
cells respectively match the mechanisms splitelem, mergeelem,
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Figure 3: Architecture of our model to generate the list of events
which have occurred on cells.

creaelem and delelem.

2.2 Mechanisms for event follow-up

To define these mechanisms, we need to introduce the definitions
below:

• ID Cell: an infinite set of identifiers which allow the char-
acterization of every cell.

• ID used: the set of the identifiers used during a high level
operation (ID used ⊂ ID Cell).

• Dim Max: the maximal dimension of cells in the topologi-
cal model. In2D space (resp. in3D space),Dim Max = 2
(resp.Dim Max = 3).

After the application of any high level operationO, a set of events
have occurred on the cells of the topological model. The identifi-
cation of these elements consists in finding the links between the
starting cells and the ending cells ofO. We proceed as follows:

1. characterize each cellc by an identifierid (id ∈ ID Cell);

2. associate the pair(set id, dim) with id. set id represents
a set of identifiers refering to all the cells from whichc has
been taken.set id can be an empty set ifc has just been cre-
ated anddim represents the dimension ofc. In figure 2a, pair
({f1.1}, 2) must be associated with an identifierf2.2 because
facef2.2 originated from facef1.1.

The facesF , F1 andF2 in figure 4a are respectively characterized
by the identifiersid1, id4 andid5 (see figure 4b). Identifierid1 is
associated with the pair({id1}, 2) because we apply the initializa-
tion process of ancestors described below. FacesF1 andF2 derive
from F , so both pairs({id1}, 2) and ({id1}, 2) are respectively
associated with identifiersid4 andid5.

The relations calledancestor anddimension are respectively de-
fined by:

ancestor :

{

ID Cell → P(ID Cell)
id 7→ ancestor(id) = set id

and

dimension :

{

ID Cell → [0, Dim Max]
id 7→ dimension(id) = dim

(P(ID Cell) symbolizes the power set ofID Cell).

The ancestor ofc must be initialized at the beginning of a high
level operation. This process consists in giving the value of single-
ton{id} to each setset id. We formalize this initialization by:
∀id ∈ ID Cell ; id ∈ Dancestor ⇒ ancestor(id) = {id}
(Dancestor is the range of functionancestor).

Let us consider the example shown in figure 4 and let us assume that
we apply the initialization process on facesF1 andF2 at the begin-
ning of the following high level operation. Identifierid4 (resp.id5)
is associated with the set{id4} (resp.{id5}).

All these definitions allow us to define mechanisms of an event
follow-up formally. We only describe the mechanism ”split elem”
because the principle is the same for every other mechanism.

2.2.1 Mechanism ”split elem”

Splitting cell c of dimensiondim (dim 6= 0) results in two new
cellsc1 andc2 with the same dimension. Identifierid (resp. iden-
tifiers id1 and id2) which characterizes the cellc (resp. cellsc1

and c2) is associated with the set of identifiersset id (resp. two
sets of identifiersset id1 andset id2). The mechanismsplit elem
allows to defineset id1 and set id2 such asset id1 ⊆ set id,
set id2 ⊆ set id andset id1 ∪ set id2 = set id. For example, in
figure 4, we assume that we initialize theancestor of cell F before
starting theface splittingelementary operation.

A1A2 F

F1

F2

A3

A4

A1.1

A1.2A2.2

A2.1

S1 S2

S3 S4F4

F3

(a)

Cell Identifier Set of identifiers Dimension
idi (set idi)

F id1 {id1} 2
A1 id2 {id2} 1
A2 id3 {id3} 1
F1 id4 {id1} 2
F2 id5 {id1} 2
A3 id6 {} 1
A4 id7 {} 1
A1.1 id8 {id2} 1
A1.2 id9 {id2} 1
A2.1 id10 {id3} 1
A2.2 id11 {id3} 1
S1 id12 {} 0
S2 id13 {} 0
S3 id14 {} 0
S4 id15 {} 0

(b)

Figure 4: Elementary operation “face splitting”. a) Boundary rep-
resentation of split faceF . b) Information associated with some
cells of the model shown in (a).

set id1 is initialized with the singleton{id1} (id1 characterizing
F ). After splitting F , identifiersid4 and id5, which respectively
characterize facesF1 and F2, are associated with the same set
set id1 (set id4 = set id5 = set id1). BothF1 andF2 haveF as
ancestor and the sets of identifiers associated withid4 andid5 fol-
low the preconditions ({id1} ⊆ {id1} and{id1}∪{id1} = {id1}).

The mechanism ”splitelem”, described by algorithm 1, adds new
relations linking the identifiers which characterize cellsc1 andc2



Algo. 1 mechanismsplit elem

Data: id, id1, id2: three identifiers;
set id1, set id2: two sets of identifiers which

characterize the origin of cellsc1 andc2.

Result: adding the relations ”ancestor” and ”dimension” related
to cellsc1 andc2.

begin
if ∃ id, id1, id2, set id1, set id2

such as
1 dimension(id) 6= 0 and
2 id ∈ Dancestor and
3 id1 ∈ ID Cell − ID used and

id2 ∈ ID Cell − ID used and
id1 6= id2 and

4 set id1 ⊆ ancestor(id) and
set id2 ⊆ ancestor(id) and

5 ancestor(id) = set id1 ∪ set id2

then
6 ID used ← ID used ∪ {id1, id2};
7 ancestor ← ancestor ∪ {(id1, set id1),

(id2, set id2)} − {(id, ancestor(id))};
dimension ← dimension∪

{(id1, dimension(id)), (id2, dimension(id))}
−{(id, dimension(id))};

end

with their origin and their dimension (in order to update the func-
tionsancestor anddimension defined in section 2.2). This mech-
anism takes the identifierid (resp.id1 andid2) characterizing cell
c (resp.c1 andc2) and the setsset id1 andset id2, respectively
characterizing the origin of cellsc1 andc2, as parameters. Points1
to 5 present the preconditions of algorithm 1; the algorithm itself is
described in points6 and7.

1. We do not consider the mechanismsplit elem on 0-
dimensional cells. Indeed, the split of a vertex has, from a
semantic point of view, no meaning.

2. id belongs to the range of functionancestor.

3. id1 andid2 are two new identifiers not yet used.

4. The setset id1 (resp.set id2) characterizes the ancestor of
c1 (resp. c2) and is included in the set which characterizes
the ancestor ofc.

5. The union ofset id1 and set id2 corresponds to the set
ancestor(id) which gathers the ancestors ofc. Therefore,
all the ancestors ofc are added to the ancestors of bothc1

andc2. Only the implementation of the mechanism, in accor-
dance with a specific topological model, makes it possible to
determine the exact contents of setsset id1 andset id2.

6. id1 andid2 are added to setID used.

7. The values of ancestor and dimension are updated by adding
(resp. subtracting) the ancestor and the dimension of bothc1

andc2 (resp.c).

2.3 Bulletin board generation

After relating each identifierid (and thus each cellc) of the geo-
metric model to a set of identifiersset id (resp. a dimensiondim)
characterizing the ancestor (resp. dimension) ofc, we check every

cell of this model at the end of high level operations (i.e. a poste-
riori ), in order to retrieve every relation binding all identifiersid to
their ancestor set of identifiersset id and to the dimensiondim of
the cell they reference. These relations must be inserted in the bul-
letin board, in order to distinguish the events occurring both on the
starting cells and the ending cells during any high level operation.

Of course, when deleting a cell, the recovery of the relations de-
scribed just before cannot be only carried outa posteriori. Indeed,
deleting a cell implies the loss of information which were associ-
ated with this cell. To solve this issue, first we propose to check
the cells at the beginning of high level operations. The sets charac-
terizing the ancestor of each identifier are gathered into a setD1.
Therefore, at the end of the high level operation, we gather the iden-
tifiers characterizing the ancestors of every existing cell in a second
setD2 and thus, we can determine which cells have been deleted
by defining the setD (D = D1 − D2).

With the formalism defined in the previous section, checking
cells can be considered as a checking setE defined byE =
{(id, ancestor(id))|id ∈ Dancestor}. Some elements ofE are
gathered inn subsets (n may be equal to0). Each subset, called
SEk

(k ∈ [0, n]), contains elementsx of E (x = (id, set id))
which have the sameset id. Therefore, all cells with the same an-
cestor are gathered. Formally,SEk

are defined as:

SEk
= {∀xi, xj |(xi, xj) ∈ S

2

Ek
⇒ (xi, xj) ∈ E

2

and xi =
(idi, set idi) andxj = (idj , set idj) andset idi = set idj and
set idi 6= ∅}.

Figure 4b shows the information associated with the cells used
by the elementary operation offace splitting. Set E, built at
the end of the high level operation, contains pairs(id4, {id1}),
(id5, {id1}), (id6, {}), (id7, {}), (id8, {id2}), (id9, {id2}),
(id10, {id3}), (id11, {id3}), . . . , (id15, {}). With these pairs,
we can define subsetsSE0

= {(id4, {id1}), (id5, {id1})},
SE1

= {(id8, {id2}), (id9, {id2})} andSE2
= {(id10, {id3}),

(id11, {id3})}. Every element of each subset has the sameset id.

We build a new set calledS from subsetsSEk
. Each pair(Ak, Bk)

of S gathers elements contained in the previously defined subset
SEk

(Ak and Bk are two sets of identifiers defined fromSEk
).

Therefore,S is defined: S = {xk = (Ak, Bk)|k ∈ [0, n]
and ∀x = (id, set id)|x ∈ SEk

⇒ id ∈ Bk and Ak =
set id}. This set gathers all events of cell split. In figure 4,
S (built from the subsetsSE0

, SE1
and SE2

) contains elements
(A0, B0) = ({id1}, {id4, id5}), (A1, B1) = ({id2}, {id8, id9})
and (A2, B2) = ({id3}, {id10, id11}). From setD of deleted
cells, we also build that setZ defined by:Z = {∀x|x ∈ D ⇒
({x}, {}) ∈ Z}.

For every other case (create and merge events), we define setA
by: A = {∀x|x ∈ E −

⋃n

k=0
SEk

⇒ x = (id, set id) and
(set id, {id}) ∈ A}. In figure 4, setE −

⋃n

k=0
SEk

contains el-
ements(id6, {}), (id7, {}), (id12, {}), (id13, {}), (id14, {}) and
(id15, {}) (see figure 4b). Therefore,A contains({}, {id6}),
({}, {id7}), ({}, {id12}), ({}, {id13}), ({}, {id14}) and ({},
{id15}).

Eventually, every line of the bulletin board matches an element of
setBB defined by:BB = S ∪ Z ∪ A. Indeed, for each pairx =
(e1, e2) of BB, we pute1 among the starting cells ande2 among
the ending cells of the bulletin board. In figure 4, the elements of
S are located on the first line of table 1, the elements of setA are
located on the last line andZ does not contain any element.



Starting cells Ending cells Remark
{id1} {id4, id5} ({id1}, {id4, id5}) ∈ S

. . . . . . . . .
{} {id12} ({}, {id12}) ∈ A

Table 1: Bulletin board generated after applying a high level oper-
ation which contains the elementary operation shown in figure 4.

2.3.1 Interpretation of events

After inserting the elements of setBB into the bulletin board, the
next step is to identify which events have occured (creation, dele-
tion, split, merge, change) by looking at the cells located on the
same line in the bulletin board. Our criterion used for the identi-
fication of events is the cardinality of both the set of starting cells
(card(SC)) and the set of ending cells (card(EC)) inside the
bulletin board. The identification process for each event is de-
scribed like this:

• if SC is an empty set then the corresponding event is creation
(see line3 in Tab. 1).

• if EC is an empty set then the corresponding event is deletion.

• if card(SC) = 1 andcard(EC) > 1 then the corre-
sponding event is split (see line1 in Tab. 1).

• if card(EC) = 1 andcard(SC) > 1 then the corre-
sponding event is merge.

• if card(EC) = 1 andcard(SC) = 1 then the corre-
sponding event is change.

Therefore, we deduce that: (1) setS contains only pairs describing
the event “cell split” (see Tab. 1); (2) setZ exclusively contains
pairs describing the event “cell deletion”; (3) setA contains pairs
describing events of “cells creation” and “cell merge”.

In the following section, we describe an implementation of the
model presented above. We use the kernel of the modeler Moka
(based on generalized maps) in order to show a case study.

3 Case study: generalized maps

The choice of generalized maps (G-maps) model as a study case
is not fortuitous. Indeed, this model (see figure 5) enables to sub-
divide an nD space (in the example below, we limit us to the 3D
case) into n-dimensional quasi-manifolds, orientable or not, with
or without boundary [Lienhardt 1994]. Therefore, we have cho-
sen this model for its generality, although we could have used any
other B-rep model. In order to implement the previously described
solution on the G-maps model, we have defined a structure called
tag. In this section, we describe this structure as well as the various
follow-up event mechanisms.

3.1 Generalized maps model

An n-dimensional generalized map is a set of abstract elements,
called darts, and applications defined on these darts:

Definition 1 (Generalized map) Letn ≥ 0. A n-dimensional gen-
eralized map (or n-G-map) isG = (B, α0, . . . , αn) where:

1. B is a finite set of darts;

2. ∀i, 0 ≤ i ≤ n, αi is an involution1 onB;

1An involution f on S is a one mapping fromS ontoS such thatf =
f−1.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
α0 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21
α1 5 3 2 8 1 7 6 4 18 13 15 19 10 17 11 22 14 9 12 21 20 16
α2 1 2 20 19 5 6 7 8 9 10 17 18 13 14 15 16 11 12 4 3 21 22

Figure 5: (a) A 2D subdivision. (b) The corresponding2-G-map
(involutions are given explicitly in the array). Darts are represented
by dots. Two darts in relation byα0 share a dashed line (ex. darts
1 and2). Two darts in relation byα1 share a red arc (ex. darts2
and3). Two distinct darts in relation byα2 share a pair of green
lines (ex. darts3 and20); otherwise, the dart is its own image by
α2 (ex. dart2). Dart 1 corresponds to(s1, a1, f1), dart 2 = 1α0

corresponds to(s2, a1, f1), 3 = 2α1 corresponds to(s2, a2, f1),
and20 = 3α2 corresponds to(s2, a2, f2). The vertex incident to
dart 2 is〈α1, α2〉 (2) = {2, 3, 20, 21}, the edge incident to dart 3
is 〈α0, α2〉 (3) = {3, 4, 19, 20}, and the face incident to dart 9 is
〈α0, α1〉 (9) = {9, 10, 13, 14, 17, 18}.

3. ∀i, j, 0 ≤ i < i + 2 ≤ j ≤ n, αiαj is an involution.

Let G be an n-G-map, andS be the corresponding subdivison.
Intuitively, a dart of G corresponds to an (n+1)-tuple of cells
(c0, ..., cn), whereci is an i-dimensional cell that belongs to the
boundary ofci+1 [Brisson 1993] (Fig. 5).α1 associates darts cor-
responding with(c0, . . . , cn) and(c′0, . . . , c

′
n), wherecj = c′j for

j 6= i, andci 6= c′i (αi swaps the twoi-cells that are incident to the
same(i− 1) and(i + 1)-cells). When two dartsb1 andb2 are such
that b1αi = b2 (0 ≤ i ≤ n), b1 is saidi-sewn withb2. G-maps
represent cells in an implicit way:

Definition 2 (i-cell) LetG be ann-G-map,b a dart andi ∈ N =
{0, ., n}. Thei-cell incident to b is the orbit2

〈〉
N−{i} (b) = 〈α0, . . . , αi−1, αi+1, . . . , αn〉 (b)

Intuitively, an i-cell is the set of all darts which can be reached
starting fromb, by using any combination of all involutions except
αi. The set ofi-cells is a partition of the darts of the G-map, for
eachi between0 andn. Two cells are disjoined if their intersection
is empty, i.e. when no dart is shared by the cells. More precisions
about G-maps are provided in Ref. [Lienhardt 1994].

3.2 Solution brought by the “tag” structure

Tracking the modifications of topologicali-cells [Lienhardt 1994]
(0 ≤ i ≤ 3) of a G-mapG can be done by means of tracking the
modifications on the darts constituting thesei-cells. It consists in
calculating which cells contain this dart before and after a high level
operation. To do so, a data structure called “tag” is defined. It is
a pair of quadruplets of integers related to each dartb ∈ G. The

2Let {Π0, ..., Πn} be a set of permutations onB. The orbit of an
elementb relatively to this set of permutations is〈Π0, ..., Πn〉 (b) =
{Φ(b) , Φ ∈ 〈Π0, ..., Πn〉}, where〈Π0, . . . , Πn〉 denotes the group of
permutations generated by{Π0, . . . , Πn}.



two components of this pair are respectively called “currenttag”
and “ancestortag”, and are defined as:

1. current tag: it corresponds to quadruplet (cur id0, cur id1,
cur id2, cur id3) and respectively characterizes eachi-cell
ci (0 ≤ i ≤ 3) containing dartb by an identifiercur idi;

2. ancestortag: it corresponds to quadruplet (anc id0, anc id1,
anc id2, anc id3) and respectively characterizes eachi-cell,
ancestor ofci, by an identifieranc idi (i matches a dimension
of ci).

Figure 6 shows the tags related to the darts constituting an edge
before and after an elementary operation ofedge splitting. For ex-
ample, quadruplet(4, 1, 2, 3) corresponding to thecurrent tag of
dart b1 in figure 6a, means thatb1 belongs to the0-cell number
4, to the1-cell number1, to the2-cell number2 and to the3-cell
number3. This principle is similar for every other dart.

All the currenttags related to darts belonging to ani-cell ci have
the same identifiercur idi. In figure 6a (resp. figure 6c), dartsb1

andb2 (resp. dartsb3 andb4) forming1-cellA (resp.0-cellS) have
the same identifiercur id1 1 (resp. the same identifiercur id0 8).
However, ani-cell gathers a set of identifiersanc idi. Indeed,ci

contains ancestortags that do not necessarily have the same iden-
tifier anc idi. Moreover, this set can be empty when all identifiers
anc idi are set to valueID NULL (ID NULL is a particular value
which means that an identifier has no value). In figure 6c, dartsb3

andb4 have ancestortags that contain ananc id0 set toID NULL
(represented by the character “-”). The current and ancestor tag
structures allow one to associate an identifiercur idi (which char-
acterizes eachi-cell ci) with a set of identifiersset id characteriz-
ing the ancestor ofci.

(4,1,2,3)

(4,1,2,3)

(0,1,2,3)

(0,1,2,3)

(4,1,2,3)

(4,1,2,3)
(4,1,2,3)

(4,1,2,3)

(0,1,2,3)

(0,1,2,3)

(4,9,2,3)

(4,1,2,3)

(0,1,2,3)

(0,1,2,3)

(0,5,2,3)

(0,1,2,3)

(8,5,2,3)

(−,1,2,3)

(8,9,2,3)

(−,1,2,3)
b1

b2

b1
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b2
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A 1
A 1

A 2
A 2

A S S

Split of A Update

a) b) c)

α1involutiondart α0involution

Figure 6: Edge splitting. For every dart, the currenttags are sur-
rounded with full border, while the ancestortags are surrounded
with dashed border. a) Dartsb1 and b2 form edgeA before the
split. b)A is split inA1 = (b1, b3 = α0(b1)) andA2 = (b2, b4 =
α0(b2)). VertexS connectingA1 andA2 is made of bothb3 and
b4 = α1(b3). b1 andb2 save and propagate their tags to the new
darts ofA1 andA2: b3 andb4. c) Update of currenttag ofb1 and
b2, and update of both tags associated withb3 andb4.

For each dimension, the identifiers of cells are defined modulo4
because we work in a3D space. Thus, we can directly deduce the
dimension of the cell from its identifier. More precisely, eachi-
cell has got an identifiercur idi such thatcur idi mod4 = i. In
that way, we have implemented the functiondimension defined
in section 2.2. Then, we can update the currenttag structure on the
darts of figure 6c: edgeA1, created during the split, is characterized
by the number9 (9 mod4 = 1), and this value is set to identifier
cur id1 of b1 andb3. This principle is the same for edgeA2: it
receives the number5, and this value is set to identifiercur id1 of

b2 andb4. Eventually, vertexS receives the number8 and this value
is set to identifiercur id0 of b3 andb4.

The next section is dedicated to the implementation of the elemen-
tary mechanisms for following up events to Moka during the ele-
mentary operations forming the co-refinement high level operation.

3.3 Co-refinement high level operation

Until now, in order to realise a machining operations on an geo-
metric objects, we use classic boolean operations such as the union,
the difference or the intersection. The co-refinement is a common
denominator for the calculation of an intersection and allows to ob-
tain, after an extraction (this step allows to save only one volume
resulting from a 3D subdivision of the co-refinement operation)
phase, the same results as the three preceding operations.

The co-refinement operation in dimension 3 consists in generating
the spatial subdivision resulting from the intersection between two
original 3D subdivisions. Generally, applying co-refinement con-
sists in computing the intersections of faces of the original subdivi-
sions and updating the topology to obtain a valid final subdivision.

Most existing works in this field ([Perrin 2005], [Gardan et al.
2003], [Kitajima and Yamaguchi 1992], [Mantyla and Tamminen
1983], [Ma and Tang 1988]) are essentialy based on applying the
boolean operation on two volumes. They let us classify the differ-
ent parts of an object against the interior or the exterior of another
object. In most cases, these methods only allow to process surfacic
objects (ie. 2D topological objects having 3D embedding) and to
build a single volume from the initial objects.

As in the case of boolean operations, many problems can occur
when computing intersections. Indeed, the 3D co-refinement al-
gorithm we use is based on a method frequently used in the algo-
rithms associated with boolean operations on surfacic objects, but
Guiard [Guiard 2006] has extended this method for 3D grids, with
a new algorithm based on the intersections of pairs of faces, and
has implemented it with the G-maps model. The use of boolean
operations is fundamental in many modelers. Moreover, the impor-
tant number and the unpredictable behaviour of events which occur
during the co-refinement operation makes them difficult, and thus
particularly interesting, to track.

The operation of co-refinement is decomposed in the following
way: insertion of a dangling edge into a face,edge splitting, face
splitting and face identification. This set represents only a part of
the elementary operations that can be defined in a geometric kernel
and particularly in the case of a G-map kernel. However, in order
to integrate the mechanisms of events’ follow-up, the approach de-
scribed in this paper is still the same and can easily be extended to
the whole set of elementary operations. We present here the nec-
essary functions to describe every elementary operation used in the
co-refinement algorithm:

• Copying Tag(b : Dart, O : Orbit): this function propa-
gatescurrent tagandancestortag related to dartb to all darts
constituting orbitO.

• Rep Anc ID(O : Orbit, d : [0..Dim max], id : ID Cell): this
function updates the identifieranc idd of eachancestortag
related to the darts constituting orbitO with valueid (id must
pass the condition:id mod4 = d).

• Rep Cur ID(O : Orbit, d : [0..Dim max], id : ID Cell):
This function has the same role as functionRep Anc ID.
However, it uses thecurrent tagstructure.

We only describe the elementary operation ”face splitting” because
the principle is similar for every other elementary operation.



3.3.1 Face splitting

Splitting a faceF results in the insertion of an edgeA into F . The
result of this split is the generation of two new faces incident toF
and calledF1 andF2 (see figure 7). Mechanismssplit elemand
crea elemrelate to this function.
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Before
dart ancestor tag current tag

1 4 5 2 3 4 5 2 3
2 4 9 2 3 4 9 2 3
3 8 13 2 3 8 13 2 3
4 8 17 2 3 8 17 2 3
9 12 5 2 3 12 5 2 3
10 12 13 2 3 12 13 2 3
11 16 9 2 3 16 9 2 3
12 16 17 2 3 16 17 2 3

After
dart ancestor tag current tag

1 4 5 2 3 4 5 6 3
2 4 9 2 3 4 9 10 3
3 8 13 2 3 8 13 6 3
4 8 17 2 3 8 17 10 3
5 4 - 2 3 4 21 6 3
6 8 - 2 3 8 21 6 3
7 4 - 2 3 4 21 10 3
8 8 - 2 3 8 21 10 3
9 12 5 2 3 12 5 6 3
10 12 13 2 3 12 13 6 3
12 16 17 2 3 16 17 10 3

(c)

Figure 7: Face splitting. (a) Darts{1, 2, 3, 4, 9, 10, 11, 12} belong
to F before the split. (b)F is split into F1 (composed of darts
{1, 3, 5, 6, 9, 10}) andF2 (composed of darts{2, 4, 7, 8, 11, 12}).
EdgeA, incident toF1 and F2, is made of darts{5, 6, 7, 8}. (c)
The content of each tag related to one of these darts at before and
after face splitting.

This elementary operation is performed by:

SplitFace(b1, b2: Dart ) → Dart: this function splits the face
incident to dartsb1 andb2. It inserts a topological edge betweenb1

andb2 in order to obtainα2(α1(b1)) = α0(α1(b2)).

The functionName Splitted Face, described in algorithm 2,
associates the tag structures with the darts constitutingF1 andF2.
Name Splitted Face is used afterSplitFace and it takes
two darts,b1 andb2, incident to faceF , as input parameters.

We show the behaviour of algorithm 2 in figure 7. Suppose that
dartsb1 andb2 are numbered1 and4 respectively.

The following steps are performed (figure 7c summarizes the whole
processs):

1. Every dart of the inserted edgeA is processed (letb′ be one
of these darts). Each dartb′ receives a copy of the tags related

Algo. 2 FunctionName splitted face

Data: b1 andb2: two darts representing the parameters of function
SplitFace.

Result: Allocation of valid tags to the darts forming the facesF1

andF2.

begin
1 foreach b′ ∈ < α0, α2, α3 > (α1(b1)) do

Copying Tag(α1(b
′),<> (α0(b

′)));

2 Rep Anc ID(< α0, α2, α3 > (α1(b1)), 1, ID NULL);
3 Rep Cur ID(< α0, α2, α3 > (α1(b1)),

1,Get New ID(1));
4 Rep Cur ID(< α0, α1, α3 > (b1), 2,Get New ID(2));
5 Rep Cur ID(< α0, α1, α3 > (b2), 2,Get New ID(2));

end

to dart α1(b
′). In figure 7, darts1, 3, 2 and 4 respectively

propagate their tags to darts numbered5, 6, 7 and8.

2. Because A is a new edge, the edge identifier of each ances-
tor tag, anc id1, related to the darts belonging toA is ini-
tialized with the valueID NULL. In figure 7, darts{5, 6, 7, 8}
have their identifieranc id1 set toID NULL (represented by
the character ”-”).

3. For the same reason, a new value is given to identifiercur id1

for each currenttag related to the darts formingA. In figure 7,
identifiercur id1 of the currenttags of darts{5, 6, 7, 8} is set
to 21.

4. We assign a new value to identifiercur id2 for each dart
belonging toF1. In figure 7, the value6 is assigned to
identifiercur id2 for each currenttag of the darts numbered
{1, 3, 5, 6, 9, 10}.

5. The same process is done on faceF2. In figure 7, identi-
fier cur id2 of each currenttag related to the darts numbered
{2, 4, 7, 8, 11, 12} receives the value10.

Steps2 and3 correspond to the mechanismcrea elemapplied on
A. Indeed, these steps relate the identifier21 characterizingA to an
empty set of identifiers. Steps1, 4 and5 implement the mechanism
split elem(see section 2.2) applied on F. The propagation (resp. the
update) of tags performed during step1 (resp. during steps4 and
5) enables cellsF1 andF2 to inherit the ancestor of cellF : the
identifieranc id2 2 (resp. to be characterized by identifiers6 and
10).

3.4 Results

In this section, we present the results obtained after the applica-
tion of follow-up event mechanisms on the G-map model; we have
successfully experimented our method on numerous models built
using different operations, including classical boolean operations.
The following example (see figure 8) has been created with boolean
operations. Considering the high number of darts (872) involved in
this figure, we can not show the tag structure related to each dart.
Therefore, we only show some specific darts. The other darts can
easily be deduced by definitions and examples introduced in sec-
tions 2.2 and 3.3.

In particular, the contents of tags (see Tab. 2a and 2b) obtained after
application of the difference boolean operation (see figure 8) show
that:

• Edges A3 and A4, respectively represented by darts
{2.3, 2.4} and{2.9, 2.10}, have just been created. Indeed,
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Figure 8: G-map model of spanner resulting from high level oper-
ation (boolean difference). Both figures a) and b) are Moka screen-
shots which show spanner in the top view. The darts are symbolized
by half-edges, and involutionsα0 (resp.α1, α2) are symbolized by
white (resp. red, green) lines.

their identifieranc id1 is equal toID NULL.

• VerticesS1, S2, S3 andS4, respectively represented by darts
{2.2, 2.3}, {2.4, 2.5}, {2.8, 2.9} and{2.10, 2.11} (among
others), have also just been created: their identifieranc id0 is
equal toID NULL.

• Face F , constituted by darts{1.1, 1.2, . . . , 1.3, 1.4} and
characterized by the identifiercur id2 6 (see Tab. 2a), is
split. FacesF1 (cur id2 = 98) and F2 (cur id2 =
74) result from this split. Therefore, every dart being
part of F1 and F2 (resp. {2.1, 2.2, 2.3, . . . , 2.4, 2.5, 2.6}
and {2.7, 2.8, 2.9, . . . , 2.10, 2.11, 2.12}) has its identifier
anc id2 equal to 6.

• Edge A1 (resp. edgeA2), constituted by darts{1.1, 1.2}
(resp.{1.3, 1.4}) and characterized by identifiercur id1 17
(resp.25), is split in edgesA1.1 (cur id1 = 197) andA1.2

(cur id1 = 133) (resp.A2.1 andA2.2: cur id1 = 201 and
cur id1 = 145). Therefore, darts{2.1, 2.2, 2.7, 2.8} form-
ing bothA1.1 andA1.2 have their identifieranc id1 equal to
17, and darts{2.5, 2.6, 2.11, 2.12}, forming bothA2.1 and
A2.2, have their identifieranc id1 equal to25.

The bulletin board (see Tab. 3), sums ups all those events. More-
over, we can indicate:

• the split of edgesA1 andA2 (resp. of faceF ) characterized
by identifiersanc id1 17 and25 (resp. by identifieranc id2

6) ;

• the creation of vertices (resp. edges)S1, S2, S3 and S4

(resp.A3 andA4) characterized by identifierscur id0 160,
148, 176 and172 (resp. by identifierscur id1 285 and297);

• other events have occured during this high level operation (ta-

(a) Before high level operation
Dart Ancestortag Currenttag
1.1 (16, 17, 6, 3) (16, 17, 6, 3)
1.2 (4, 17, 6, 3) (4, 17, 6, 3)
1.3 (20, 25, 6, 3) (20, 25, 6, 3)
1.4 (24, 25, 6, 3) (24, 25, 6, 3)

(b) After high level operation
Dart Ancestortag Currenttag
2.1 (16, 17, 6, 3) (16, 197, 98, 35)
2.2 (−, 17, 6, 3) (160, 197, 98, 35)
2.3 (−,−, 6, 3) (160, 285, 98, 35)
2.4 (−,−, 6, 3) (148, 285, 98, 35)
2.5 (−, 25, 6, 3) (148, 201, 98, 35)
2.6 (24, 25, 6, 3) (24, 201, 98, 35)
2.7 (4, 17, 6, 3) (4, 133, 74, 35)
2.8 (−, 17, 6, 3) (176, 133, 74, 35)
2.9 (−,−, 6, 3) (176, 297, 74, 35)
2.10 (−,−, 6, 3) (172, 297, 74, 35)
2.11 (−, 25, 6, 3) (172, 145, 74, 35)
2.12 (20, 25, 6, 3) (20, 145, 74, 35)

Table 2: current tags and ancestortags matching the high level
operation shown on figure 8.

ble 3 only shows some of them). We can quote the deletion of
vertex (resp. of edge and of face) characterized by identifiers
anc id0 76 (resp. by identifiersanc id1 109 and anc id2

54) or the creation of cells (vertex and edge) characterized
by identifierscur idi 281 and160.

Our work is currently focused on the completeness of the generated
events; our method has been implemented regardless of complexity.
As explained in Sections 2.2 and 2.3, there are two global traversals
of the model (in order to associate and to retrieve tag structures from
darts at the beginning and at the end of the high-level operation).
These traversals can be optimized to process only the tag structures
which have been modified by the operation.

4 Conclusion

In this paper, we have proposed a generic model allowing a bulletin
board to be generated during a constructive operation (i.e. sup-
plied by the API of a geometric modeling system). This bulletin
board contains the complete list of events which reflects the evo-
lution of cells of any dimension in a geometric system based on a
topological model. The method uses some mechanisms for event
(creation, deletion, split, merge) follow-up. More precisely, any
high level operation is decomposed into a finite set of elementary
operations. Each of them is associated with one or many event
follow-up mechanisms. The model is generic because, on the one
hand it is exclusively based on mechanisms defined independently
of any geometric model, making different types of implementation
possible, and, on the other hand, because these mechanisms are de-
fined in a generic way for any dimension.

Our implementation is based on the model of generalized maps (G-
maps). By using a “tag” structure associated with each dart of a
G-map, this system characterizes, through “currenttags”, each cell
of the current geometric model; and links through “ancestortags”
these cells to the other cells which existed at the beginning of the
high level operation. Next, the system assigns the right tag structure
to each dart.

We have successfully experimented this principle on numerous
models built with different operations; the co-refinement high level



Starting cells Ending cells Event type
{61} {61} no modification
{} {281} edge creation
{} {160} vertex creation
. . . . . . . . .
{} {148} vertex creation
{} {160} vertex creation
{} {176} vertex creation
{} {172} vertex creation
{25} {145,201} edge split
{17} {133,197} edge split
{6} {74,98} face split
{} {285} edge creation
{} {297} edge creation
. . . . . . . . .
{76} {} vertex deletion
{109} {} edge deletion
{54} {} face deletion

Table 3: Bulletin board matching the high level operation shown
on figure 8.

operation is a good case study because it is complex and often used
in the geometric modeling domain. The last step of the bulletin
board generation process is based on the traversal of darts and the
recognition of events. Our implementation enables us to realize
generic mechanisms for event follow-up. It is a method useable
for many and various practical application domains. It also permits
the topological operations to be separated from the bulletin board
generation; therefore, while topological operations are always the
same for a given geometric operation, there can be several ways to
generate the bulletin board, with respect to the events this bulletin
board should collect.

The next step of this research is to study the possibility to test mech-
anisms which have been formally and independently defined in or-
der to do a high-level experimentation and to compare the results
obtained with the events contained in the bulletin board. Finally,
the genericity of tag structure should allow our approach to be ex-
tended to space-time (4D) modeling for animation.
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