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Abstract plex 3D functionalities, ranging from the simulation of physical
phenomena to the recording and complete and automatic replay of

Nowadays, many commercial CAD systems are built on proprietary parameterized processes of conception.

geometric kernels which provide an API containing a set of high ' . . .
level geometric operations (boolean operations, slot, chamfering, !Sn é?eenJ;eL?aSé %A%s(gdomzlrjri[aIC(IaiegnDtﬁzl?;];,rlfeotmaengirhaemﬁljrrfber
etc). Because of their complexity, these operations can generateo¥h0urs of develc? ment dedicated to these s sten%s is so huge that
important modifications on topological cells (vertices, edges, faces, it is very difficult topredevelo 2 new com Iete%ival system 9
volumes, etc.) of the objects. At the same time, many of these ker- y P P y )

nels need to know precisely what has occurred to each topological Therefore, most new modeling systems which appear on the mar-
cell belonging to objects given or resulting from a previous high ket basically use a ready -to-use geometric kerRatgsolid Acis

level geometric operation. At the end of each operation, the geo- CascadgBrunier-Coulin et al. 2000], etc.). These kernels supply
metric kernel must provide a bulletin board describing cells’ evolu- the modeling system with an API (Application Programming Inter-
tion through a list of events (split, merge, creation, deletion). face) containing a set of high level geometric operations (boolean
Most commercial geometric kernels use B-Rep structures and pro-operations, slot, chamfering, etc.).

vide methods enabling the developer of a CAD system to retrieve ) ) )

a number of events that occurred on cells. These kernels have theirStructurally, a geometric modeler is composed of two different lev-
situations, heuristics and evolution rules. Little is known of their With the user, includes the application layer which gathers the high
details, which are proprietary information, let alone of the underly- 'evel geometric operations. The second level, forming the core of
ing theory, if any. Generally, for example, the detected events are the modeler, includes a geometric kernel based on a specific model
not generic for all cells’ dimensions. This lack of underlying the- (B-Rep, CSG, etc.).

ory limits the possibility to extend the use of these kernels to new
domains of investigation.

In this paper, we propose a generic model that enables to create
a bulletin board. This bulletin board will contain the complete
list of events having occurred on cells of any dimension, and that
belong to any topological model. The genericity of this model
and the completeness in all dimensions of this list are based on Buletin board
the use of four elementary mechanisms (splém, mergeelem, generation
creaelem, delelem). They are defined independently of the topo-
logical model, and allow the generation of the bulletin board, what-
ever the geometric operation. This model has been implemented
using the geometric kernel of the modeler Moka, based on general-
ized maps.

Application layer
set of constructive gestures
(slots, chamfering, smoothing...)

Decomposition into
kernel elementary
operations

Geometrical kernel
(B-Rep, CSG, topological models...)

Keywords: Bulletin board, Topological entity modification, Event . )
follow-up mechanisms, Generalized maps Figure 1: Geometric modeler structure.

Because of their complexity, the application layer's operations
can generate important modifications on topological cells (vertices,
edges, faces, volumes, etc.) of the objects. At the same time, many
of these operations need to know precisely what has occurred to
each topological cell belonging to objects given or resulting from a
previous high level geometric operation. Next, at the end of each
operation, the geometric kernel must provide a bulletin board de-
scribing cells’ evolution through a list of events (split, merge, cre-
ation, deletion). For example, in the field of CAD, most parametric
systems have developed home-grown solutions to resolve the per-
sistent naming problems [Marcheix and Pierra 2002] (in our work,
the persistent naming is just a case study). These solutions fre-
quently use a graph in order to save face history during the con-
ception process ([Kripac 1995], [Marcheix and Pierra 2002]). The
construction of this graph needs to know how the faces of the ge-
ometric model evolve during an operation. In figure 2, block face
f1.1 is split into two faces f2.1 and f2.2) after the application of

1 Introduction

Over the last fifty years or so, geometric modeling systems have
evolved significantly. Initially limited to 2D, they now include com-
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thedifferenceboolean operation. The graph in figure 2b stores this
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event that must be returned by the geometric kernel. S
Sae fra &1, 9
Currently, most geometric systems are developing new functional- A B C

ities about standard construction procedures such as boolean op-
erations for CSG or Euler operators for B-Rep modeling. These
systems offer some solutions to the new needs expressed in many
fields, such as CAD, architecture or geology. However, these solu-
tions aren’t satisfactory. Indeed, all commercial geometric kernels
provide methods enabling the developer of a CAD system to re-
trieve a number of events occurred on cells. These kernels have
their own scheme for detecting events, based on their own taxon-
omy of situations, heuristics and evolution rules. Little is known of
their details, which are proprietary information, let alone of the un-
derlying theory, if any. Generally, for example, the detected events

(a) Boolean operation of difference.

<3

(b) Cell graph corresponding to a constructive
gesture applied on the example of figure 2a.

are not generic for all cells’ dimensions. This lack of underlying Starting cells | Ending cells Event
theory limits the possibility to extend the use of these kernels to {fi1} {f2.1, f2.2} face split
new domains of investigation which need to detect events appear- {e11} {ea1,€2.2} edge split
ing on all i-cells (a cell of dimension i where i=0..n) and different
aggregates of connected i-cells. An interesting formalization work {12} {e2.3,e24) | edge spit
has been proposed in 2000 in the DJINN project [C.Armstrong et al. (Fr2} 3 face deletion

2000]. This report proposes a complete specification of the differ-
ent functions that must be provide by the interface of a geomet-
ric kernel. In this report, we can find the specification of several
functions dedicated to the management of events occured on Ce”SFigure 2: Events occured on cells after the application of a high
This necessary formalization work emphases the necessity to pro-jg e geometric operation.

vide these functions but it gives no answer on the way of generating
in a correct an generic way these events in the geometric kernel. An
underlying theory is necessary in order to guarantee the reliability
and the completeness of the generated events.

(c) Bulletin board corresponding to a constructive
gesture applied on the example of figure 2a.

In figure 2a, the boolean operation between volumesid B (high

level geometric operation) generates several events and the corre-
In this paper, we are interested in the different modifications that a sponding bulletin board links sevessthrting cellsandending cells
high level geometric operation generates on a modeler, particularly sets (one pair set per line). Indeed, in the bulletin board shown in
in the case of a topology based kernel. In order to solve this prob- figure 2c, the face split event gathers the starting{get. } and
lem, we propose a generic model that enables to insert the completghe ending sef f2.1, f2.2} (see line 1). Moreover, the face deletion
list of events (we must omit any event) having occurred on cells of event gathers the starting sgf, .} and the empty ending séf

any dimension, and that belong to any topological model, into a bul- (see line 5).

letin board. The genericity and the complete independence with the

useq geometric model are based on four eleme_ntary mechanisms, 1 Prerequisites

(split.elem, mergeelem, creaelem, delelem) allowing the gener-

ation of the bulletin board, whatever the geometric operation. In a geometric modeler, we distinguish two levels of operations

This paper is structured as follows. In section 2, we present our called “high level operation” and “elementary operation” (see fig-
solution for the generic generation of bulletin boards into the topo- Ure 3). A high level operation (such as boolean operation) is a ge-
logical kernel. Section 3 describes an implementation of this so- 0metric procedure describing a complex geometric process. The
lution using the geometric kernel of the modeler Moka (web site: topology resulting from this type of operation is highly depen-
http://www.sic.sp2mi.univ-poitiers.frimoka) that is based on the dent on geometry. Thus, the event list linking slarting cells
topological model of generalized maps [Lienhardt 1994]. This pro- and all ending cellscan not be determined at this level (this is

cess permits us to integrate and validate the event follow-up mech-called "unpredictable”). For example, in figure 2a, the split of
anisms. We conclude in Section 4. face fi.1 depends on the position of volum®. Thus, to find

the events, after the application of the boolean operation, between
all starting cells{f1.1,e1.1,...,e1.2, f1.2} and all ending cells
{f21, f2.2,...,€e2.3, f2.a} (see figure 2c) is unfeasable. Available

in application layer (see figure 1), a high level operation must be
In this paper, our objective is to generalize the event follow-up processed at the geometric kernel of a modeler with a set of ele-
mechanisms in order to describe a formalism robust enough to bementary operations.

implemented on any type of topological model.

2 List of events generation

Unlike a high level operation, an elementary operation generates
The events which have occurred on the cells can be represented ira predictable and finite list of events (figure 4 shows an elemen-
the bulletin board as a list (every current geometric modeling sys- tary operation oface splitting applied onF’). This list includes
tem - Parasolid, Cascade, and so forth - has such a structure). Thighe events of creation, deletion, merge and split of cells. In fig-
list must be complete and generic in any cell dimension. A bul- ure 4, we can only find two edge splifi(, A2), one face split ")
letin board allows the tracking of topological cells’ evolution inside and two edge creatiordi, A4) events. In order to transcribe the
a geometric model, after the application of a high level geometric events on the bulletin board, we define four mechanisms for fol-
operation (see figure 2a). To do so, the bulletin board links two sets lowing up events. Each of them is associated with the elemen-
of cells (respectively namestarting cellsand ending cell$ with tary operation (see figure 3) which generates the corresponding
an event. Each event represents an interpretation of the topologicalevent. Indeed, the events’ split, merge, creation and deletion of
evolution which has occurred on the starting cells (see figure 2c). cells respectively match the mechanisms sgligm, mergeslem,
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Figure 3: Architecture of our model to generate the list of events
which have occurred on cells.

creaelem and deklem.

2.2 Mechanisms for event follow-up

To define these mechanisms, we need to introduce the definitions

below:

e ID_Cell: an infinite set of identifiers which allow the char-
acterization of every cell.

e ID_used: the set of the identifiers used during a high level
operation {D_used C ID_Cell).

e Dim_Max: the maximal dimension of cells in the topologi-
cal model. In2D space (resp. iBD space)Dim_Max = 2
(resp.Dim_Mazx = 3).

After the application of any high level operatioh a set of events
have occurred on the cells of the topological model. The identifi-

cation of these elements consists in finding the links between the

starting cells and the ending cells@f We proceed as follows:
1. characterize each celby an identifierid (id € 1D _Cell);

2. associate the paiset-id, dim) with id. set_id represents
a set of identifiers refering to all the cells from whicthas
been takenset_id can be an empty setdifhas just been cre-
ated andiim represents the dimension @fln figure 2a, pair
({f1.1}, 2) must be associated with an identifigr, because
face f» o originated from facef; 1.

The facesF', F1 and F3 in figure 4a are respectively characterized
by the identifiersid,, ids andids (see figure 4b). Identifieid; is
associated with the paf{id: }, 2) because we apply the initializa-
tion process of ancestors described below. Fdgesnd F» derive
from F, so both pairg{id.},2) and ({id1},2) are respectively
associated with identifierigly andids.

The relations calledncestor anddimension are respectively de-
fined by:
ID_Cell — B(ID_Cell)
td — ancestor(id) = set_id
ID_Cell — [0, Dim_Max]
id — dimension(id) = dim
(B(ID_Cell) symbolizes the power set 6D_Cell).

ancestor : { and

dimension :

The ancestor of must be initialized at the beginning of a high
level operation. This process consists in giving the value of single-
ton {id} to each setet_id. We formalize this initialization by:

Vid € ID_Cell;id € Dancestor = ancestor(id) = {id}
(Dancestor is the range of functionncestor).

Let us consider the example shown in figure 4 and let us assume that
we apply the initialization process on facEsand F» at the begin-

ning of the following high level operation. Identifiéds (resp.ids)

is associated with the s¢td.} (resp.{ids}).

All these definitions allow us to define mechanisms of an event
follow-up formally. We only describe the mechanissplitelent
because the principle is the same for every other mechanism.

2.2.1 Mechanism "split _elem”

Splitting cell ¢ of dimensiondim (dim # 0) results in two new
cellsc; andce with the same dimension. Identifiéd (resp. iden-
tifiers id; andidsz) which characterizes the cell (resp. cellscy
and cz) is associated with the set of identifiesst_id (resp. two
sets of identifierset_id; andset_ids). The mechanismsplitelem
allows to defineset_id; and set_id> such asset_idi C set_id,
set_idy C set_id andset_id; U set_ida = set_id. For example, in
figure 4, we assume that we initialize tiecestor of cell F’ before
starting theface splittingelementary operation

A, F Ay
(@)
Cell | Identifier | Set of identifiers| Dimension
idz‘ (set_idi)
F idy {idi} 2
A ida {idy} 1
A, ids {ids} 1
" idy {id,} 2
F2 id5 {Zd1 } 2
Az idg {3 1
Ay idy {} 1
Al ids {ids} 1
ALQ ng {ZdQ} 1
Az id1o {idg} 1
A2A2 id1 1 {’Ldg} 1
S1 id12 {} 0
52 id13 {} 0
S3 id14 } 0
Sy id1s } 0
(b)

Figure 4: Elementary operation “face splitting”. a) Boundary rep-
resentation of split facé". b) Information associated with some
cells of the model shown in (a).

set_id; is initialized with the singleto{id, } (id: characterizing
F). After splitting F', identifiersids andids, which respectively
characterize face$’ and I3, are associated with the same set
set_idy (set_ids = set_ids = set_id1). Both Fy andF»> havel” as
ancestor and the sets of identifiers associated adittandids fol-
low the preconditions{(id: } C {id:} and{id, }U{id,} = {id:1}).

The mechanism "splielem”, described by algorithm 1, adds new
relations linking the identifiers which characterize cellsand c,
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Algo. 1 mechanisnspl it el em
Data:

=id,id1, id2: three identifiers;
= set_id1, set_ido: two sets of identifiers which
characterize the origin of cells andcs.

Result adding the relationsdncestor” and "dimension” related
to cellsc; andes.

begin

If 3 id, id1, idz, set_idl, Set_idz
such as

dimension(id) # 0 and

Zd S Dancestor and

id1 € ID_Cell — ID_used and
ida € ID_Cell — ID_used and
idy ;é ids and

set_id1 C ancestor(id) and
set_ids C ancestor(id) and
ancestor(id) = set_idy U set_idz

then
ID_used « ID_used U {idy,id2};
ancestor «— ancestor U {(idy, set_idy),
(ida, set_ida)} — {(id, ancestor(id))};
dimension «— dimensionU
{(id1, dimension(id)), (idz, dimension(id))}
—{(id, dimension(id))};

end

with their origin and their dimension (in order to update the func-
tionsancestor anddimension defined in section 2.2). This mech-
anism takes the identifigr] (resp.id; andid.) characterizing cell

¢ (resp.c1 andcz) and the setset_id, andset_idz, respectively
characterizing the origin of cells andcz, as parameters. Points

to 5 present the preconditions of algorithm 1; the algorithm itself is
described in point§ and7.

1. We do not consider the mechanissplitelem on 0-
dimensional cells. Indeed, the split of a vertex has, from a
semantic point of view, no meaning.

2. id belongs to the range of functiamcestor.
3. id; andid are two new identifiers not yet used.

4. The setset_idy (resp.set_ids) characterizes the ancestor of
c1 (resp. ¢2) and is included in the set which characterizes
the ancestor of.

5. The union ofset_id; and set_ide corresponds to the set
ancestor(id) which gathers the ancestors af Therefore,
all the ancestors of are added to the ancestors of bath
andcz. Only the implementation of the mechanism, in accor-
dance with a specific topological model, makes it possible to
determine the exact contents of sei$_id; andset_ids.

6. idy, andid, are added to sdtD_used.

cell of this model at the end of high level operations.(a poste-
riori), in order to retrieve every relation binding all identifiédsto

their ancestor set of identifiesgt_id and to the dimensiodim of

the cell they reference. These relations must be inserted in the bul-
letin board, in order to distinguish the events occurring both on the
starting cells and the ending cells during any high level operation.

Of course, when deleting a cell, the recovery of the relations de-
scribed just before cannot be only carried aygosteriori Indeed,
deleting a cell implies the loss of information which were associ-
ated with this cell. To solve this issue, first we propose to check
the cells at the beginning of high level operations. The sets charac-
terizing the ancestor of each identifier are gathered into @set
Therefore, at the end of the high level operation, we gather the iden-
tifiers characterizing the ancestors of every existing cell in a second
set D, and thus, we can determine which cells have been deleted
by defining the seD (D = D1 — D).

With the formalism defined in the previous section, checking
cells can be considered as a checking Betlefined by F
{(id, ancestor(id))|id € Dancestor}. Some elements of are
gathered i subsets+ may be equal t®). Each subset, called
Sg, (k € [0,n]), contains elements of £ (z = (id, set_id))
which have the sameet_id. Therefore, all cells with the same an-
cestor are gathered. Formallj, are defined as:

SEk = {in,xj\(xi,xj) € Szk = (xi,xj) S EZ andz; =
(ids, set_id;) andz; = (id;, set_id;) and set_id; = set_id; and
set_id; # 0}.

Figure 4b shows the information associated with the cells used
by the elementary operation déce splitting Set E, built at

the end of the high level operation, contains pdiids, {id:}),
(ids, {id1}), (ids,{}), (idv,{}), (ids,{ida}), (ido, {id2}),
(idio, {ids}), (idi1,{ids}), ..., (id1s,{}). With these pairs,
we can define subsetSg, {(ida, {id1}), (ids, {id1})},

Se, = {(ids, {id2}), (idy, {id2})} and Sp, = {(idro, {ids}),
(idi1, {ids})}. Every element of each subset has the samed.

We build a new set callefl from subsets$Sg, . Each pair( Ay, Bi)

of S gathers elements contained in the previously defined subset
Sk, (A and By are two sets of identifiers defined frof, ).
Therefore, S is defined: S {z (Ax, Br)|k € [0,n]

and Vz = (id,set_id)|x € Sg, = id € B, and A, =
setiid}. This set gathers all events of cell split. In figure 4,
S (built from the subset$g,, Sk, and Sg,) contains elements
(A()?BO) = ({Zd1}7 {id47id5})' (AlvBl) = ({Zd2}7 {ng,ldg})

and (Az, B2) = ({ids}, {id1o, id11}). From setD of deleted
cells, we also build that set defined by: Z = {Vz|z € D =

({z},{}) € Z}.

For every other case (create and merge events), we definé set
by: A = {Vz|z € E - U;_,58, = = = (id, setsd) and

(set_id, {id}) € A}. Infigure 4, set£ — | J;_, Sk, contains el-
ements(ids, {}), (idv, {}), (idiz, {}), (idus, {}), (ida,{}) and
(id1s,{}) (see figure 4b). Therefored contains({}, {ids}),

7. The values of ancestor and dimension are updated by adding({}, {id-}), ({}, {idi2}), ({}, {id13}), ({}, {id14}) and ({},

(resp. subtracting) the ancestor and the dimension of &oth
andc; (resp.c).

2.3 Bulletin board generation

After relating each identifieid (and thus each cell) of the geo-
metric model to a set of identifies:t_id (resp. a dimensiotdim)
characterizing the ancestor (resp. dimension),afe check every

{id15}).

Eventually, every line of the bulletin board matches an element of
setBB defined by:BB = S U Z U A. Indeed, for each pait =
(e1,e2) of BB, we pute; among the starting cells ard among

the ending cells of the bulletin board. In figure 4, the elements of
S are located on the first line of table 1, the elements ofdate
located on the last line and does not contain any element.



Starting cells | Ending cells Remark
{Zdl} {id47id5} ({’Ld1}, {id4,id5}) €S
0 {idha) (. {idi2T €A

Table 1: Bulletin board generated after applying a high level oper-
ation which contains the elementary operation shown in figure 4.

2.3.1 Interpretation of events

After inserting the elements of sé&B into the bulletin board, the
next step is to identify which events have occured (creation, dele-
tion, split, merge, change) by looking at the cells located on the
same line in the bulletin board. Our criterion used for the identi-
fication of events is the cardinality of both the set of starting cells
(car d( .SC)) and the set of ending cellsér d( EC) ) inside the
bulletin board. The identification process for each event is de-
scribed like this:

if SC'is an empty set then the corresponding event is creation
(seeline3 in Tab. 1).

if EC'is an empty setthen the corresponding event is deletion.

if card(SC) = 1 andcard( EC) > 1 then the corre-
sponding event is split (see linein Tab. 1).

if card( EC) = 1andcard(.SC) > 1 then the corre-
sponding event is merge.

if card( £C) = 1 andcard(.SC) = 1 then the corre-
sponding event is change.

Therefore, we deduce that: (1) setontains only pairs describing
the event “cell split” (see Tab. 1); (2) s&t exclusively contains

pairs describing the event “cell deletion”; (3) sétcontains pairs

describing events of “cells creation” and “cell merge”.

In the following section, we describe an implementation of the
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Figure 5: (a) A 2D subdivision. (b) The correspondirlgG-map
(involutions are given explicitly in the array). Darts are represented
by dots. Two darts in relation by, share a dashed line (ex. darts
1 and2). Two darts in relation byy; share a red arc (ex. dart3
and 3). Two distinct darts in relation by, share a pair of green
lines (ex. darts3 and 20); otherwise, the dart is its own image by
az (ex. dart2). Dart 1 corresponds tds1, a1, f1), dart2 = lag
corresponds tdsz, a1, f1), 3 = 2«1 corresponds td sz, az, f1),
and 20 = 3aw corresponds tdsz, a2, f2). The vertex incident to
dart 2 is (a1, az) (2) = {2, 3,20, 21}, the edge incident to dart 3
is (v, a2) (3) = {3,4, 19,20}, and the face incident to dart 9 is
<Oéo7 Oé1> (9) = {9, 10, 137 14, 17, 18}.

3. V4,5,0 <i<i+2<j<n,a;qa is aninvolution.

Let G be an n-G-map, and’ be the corresponding subdivison.
Intuitively, a dart of G corresponds to an (n+1)-tuple of cells
(co, ..., cn), Wherec; is ani-dimensional cell that belongs to the
boundary ofc; ;1 [Brisson 1993] (Fig. 5).c.; associates darts cor-
responding with(co, .. ., ¢n) @nd(cp, . . ., ¢,), wheree; = ¢ for

j # i, andc; # ¢ (o; swaps the twé-cells that are incident to the

model presented above. We use the kernel of the modeler Mokasame(i —1) and (i + 1)-cells). When two darts; andb, are such

(based on generalized maps) in order to show a case study.

3 Case study: generalized maps
The choice of generalized maps (G-maps) model as a study cas
divide an nD space (in the example below, we limit us to the 3D

case) into n-dimensional quasi-manifolds, orientable or not, with
or without boundary [Lienhardt 1994]. Therefore, we have cho-

sen this model for its generality, although we could have used any
other B-rep model. In order to implement the previously described -
solution on the G-maps model, we have defined a structure called
tag. In this section, we describe this structure as well as the various

follow-up event mechanisms.

3.1 Generalized maps model

An n-dimensional generalized map is a set of abstract elements,

called darts, and applications defined on these darts:

Definition 1 (Generalized map) Let > 0. A n-dimensional gen-
eralized map (or n-G-map) € = (B, aw, . . ., ) Where:

1. B is afinite set of darts;

2. Vi,0 < i < n, a is an involutiort on B;

1An involution f on S is a one mapping fron$ onto S such thatf =
1

FL

e
is not fortuitous. Indeed, this model (see figure 5) enables to sub-

thatbia; = be (0 < @ < n), by is saidi-sewn withb,. G-maps
represent cells in an implicit way:

Definition 2 (i-cell) LetG be ann-G-map,b a dartandi € N =
{0, .,n}. Thei-cell incident to b is the orbft

(O n—qay (0) = (a0, .. -5 am) (b)
Intuitively, ani-cell is the set of all darts which can be reached
starting fromb, by using any combination of all involutions except
The set of-cells is a partition of the darts of the G-map, for
eachi betweerd andn. Two cells are disjoined if their intersection
is empty, i.e. when no dart is shared by the cells. More precisions
about G-maps are provided in Ref. [Lienhardt 1994].

ey X1, Q41 . .

3.2 Solution brought by the “tag” structure

Tracking the modifications of topologicélcells [Lienhardt 1994]

0 < ¢ < 3) of a G-mapG can be done by means of tracking the
modifications on the darts constituting theseells. It consists in
calculating which cells contain this dart before and after a high level
operation. To do so, a data structure called “tag” is defined. It is
a pair of quadruplets of integers related to each bdaft G. The

2Let {Iy,...,II,} be a set of permutations oB. The orbit of an
elementb relatively to this set of permutations Iy, ..., II,) (b) =
{®(b),® € (I, ..., II,)}, where(Ilo,...,II,) denotes the group of
permutations generated K¥Io, ..., II, }.



two components of this pair are respectively called “curtegt
and “ancestatag”, and are defined as:

1. currenttag: it corresponds to quadrupletur_ido, cur_id;,
cur_ids, cur_ids) and respectively characterizes eaetell
¢; (0 < ¢ < 3) containing darb by an identifiercur_id;;

2. ancestortag: it corresponds to quadrupletifc_ido, anc_ids,
anc_ds, anc_ids) and respectively characterizes eadtell,
ancestor of;;, by an identifierznc_id; (¢ matches a dimension
of ¢;).

b2 andbs. Eventually, vertexS receives the numb@rand this value
is set to identifiecur_idy of bs andby.

The next section is dedicated to the implementation of the elemen-
tary mechanisms for following up events to Moka during the ele-
mentary operations forming the co-refinement high level operation.

3.3 Co-refinement high level operation

Until now, in order to realise a machining operations on an geo-
metric objects, we use classic boolean operations such as the union,
the difference or the intersection. The co-refinement is a common

Figure 6 shows the tags related to the darts constituting an edgedenominator for the calculation of an intersection and allows to ob-

before and after an elementary operatioredfe splitting For ex-
ample, quadruplet4, 1,2, 3) corresponding to theurrenttag of
dart b, in figure 6a, means thdt, belongs to the)-cell number
4, to the1-cell numberl, to the2-cell number2 and to the3-cell
number3. This principle is similar for every other dart.

All the currenttags related to darts belonging to anell ¢; have
the same identifierur_id;. In figure 6a (resp. figure 6c¢), daris
andb,, (resp. dart$s andb,) forming1-cell A (resp.0-cell S) have
the same identifierur_id, 1 (resp. the same identifiewr_idy 8).
However, ani-cell gathers a set of identifiersic_id;. Indeed,c;

tain, after an extraction (this step allows to save only one volume
resulting from a 3D subdivision of the co-refinement operation)
phase, the same results as the three preceding operations.

The co-refinement operation in dimension 3 consists in generating
the spatial subdivision resulting from the intersection between two
original 3D subdivisions. Generally, applying co-refinement con-
sists in computing the intersections of faces of the original subdivi-
sions and updating the topology to obtain a valid final subdivision.

Most existing works in this field ([Perrin 2005], [Gardan et al.

contains ancestaags that do not necessarily have the same iden- 2003], [Kitajima and Yamaguchi 1992], [Mantyla and Tamminen
tifier anc_id;. Moreover, this set can be empty when all identifiers 1983], [Ma and Tang 1988]) are essentialy based on applying the

anc_id; are set to valueD_NULL (ID_.NULL is a particular value
which means that an identifier has no value). In figure 6c, darts
andbs have ancestaotags that contain aanc_idy set tolID_NULL

boolean operation on two volumes. They let us classify the differ-
ent parts of an object against the interior or the exterior of another
object. In most cases, these methods only allow to process surfacic

(represented by the character “-). The current and ancestor tagobjects {e. 2D topological objects having 3D embedding) and to

structures allow one to associate an identifier_id; (which char-
acterizes eachcell ¢;) with a set of identifierset_id characteriz-
ing the ancestor of;.

o dart

-~~~ involutionog

involution oy

Figure 6: Edge splitting. For every dart, the curretdags are sur-
rounded with full border, while the ancesttags are surrounded
with dashed border. a) Darts; and b, form edgeA before the
Sp"t. b)A is Sp”t in A1 = (bl, b3 = Olo(b1)) andAg = (bz, by =
ao(b2)). VertexS connectingA; and A, is made of botlbs and

bs = ai1(bs). b1 andb, save and propagate their tags to the new
darts of A; and As: bs andb,. ¢) Update of currentag ofb, and

b2, and update of both tags associated witrandb..

For each dimension, the identifiers of cells are defined modulo
because we work in 3D space. Thus, we can directly deduce the
dimension of the cell from its identifier. More precisely, eaeh
cell has got an identifietur_id; such thatcur_id; mod4 = 4. In
that way, we have implemented the functidiimension defined

in section 2.2. Then, we can update the curttagtstructure on the
darts of figure 6¢: edgd, created during the split, is characterized
by the numbe® (9 mod4 = 1), and this value is set to identifier
cur_idy of by andbs. This principle is the same for edgé,: it
receives the numbér, and this value is set to identifietir_id; of

build a single volume from the initial objects.

As in the case of boolean operations, many problems can occur
when computing intersections. Indeed, the 3D co-refinement al-
gorithm we use is based on a method frequently used in the algo-
rithms associated with boolean operations on surfacic objects, but
Guiard [Guiard 2006] has extended this method for 3D grids, with
a new algorithm based on the intersections of pairs of faces, and
has implemented it with the G-maps model. The use of boolean
operations is fundamental in many modelers. Moreover, the impor-
tant number and the unpredictable behaviour of events which occur
during the co-refinement operation makes them difficult, and thus
particularly interesting, to track.

The operation of co-refinement is decomposed in the following
way: insertion of a dangling edge into a faeglge splitting face
splitting and face identification. This set represents only a part of
the elementary operations that can be defined in a geometric kernel
and particularly in the case of a G-map kernel. However, in order
to integrate the mechanisms of events’ follow-up, the approach de-
scribed in this paper is still the same and can easily be extended to
the whole set of elementary operations. We present here the nec-
essary functions to describe every elementary operation used in the
co-refinement algorithm:

e Copyi ng_Tag(b : Dart,O : Orbit) : this function propa-
gatescurrenttagandancestortag related to darb to all darts
constituting orbitO.

e Rep_Anc_l D( O : Orbit, d : [0..Dim_max], id : ID_Cell) : this
function updates the identifiemc_id, of eachancestortag
related to the darts constituting orlaitwith valueid (id must
pass the conditionid mod4 = d).

e Rep_Cur I D(O : Orbit,d : [0..Dim_max],id : ID_Cell):
This function has the same role as functiBap_Anc_| D.
However, it uses theurrenttag structure.

We only describe the elementary operatiface splitting because
the principle is similar for every other elementary operation.



3.3.1 Face splitting Algo. 2 FunctionNane spl i tted._face

o . . . . Data: b; andbs: two darts representing the parameters of function
Splitting a faceF results in the insertion of an edgkinto F'. The Slp| it l:2ace. P 9 P

result of this split is the generation of two new faces incident'to . . .
and calledF; and F, (see figure 7). Mechanisnslit elemand Result Allocation of valid tags to the darts forming the facEs

crea elemrelate to this function. andF.
begin
oa Jox § 1 | foreachb’ € < ao, s, a3 > (a1(b1)) do
’ N Fl | Copying_Tag(ai(b'),<> (ao(b)));

Rep_Anc_l D( < ag, a2, a3 > (a1 (b1)),1,ID-NULL) ;
Rep,Cur _ D( < g, g, 003 > (Ocl(b1)),

1,Get _-New.l D(1));
Rep_Cur | D( < ao, v1, vz > (bl),Z,Get New I D(2));
5 Rep_Cur _I D( < ag, a1, a3 > (b2),2,Get _New.l D(2));
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end
(@ (b)
Before
din 4ance53t0L;ag 3T curr5ent_t2ag 3 to darta, (b'). In figure 7, dartsl, 3,2 and 4 respectively
5 T T 923 a9 23 propagate their tags to darts numbebed, 7 ands.
3 8 13|23 8 (13|23 2. Because A is a new edge, the edge identifier of each ances-
4 8 |17|2 3| 8 |17]|2|3 tor_tag, anc_id;, related to the darts belonging # is ini-
9 121 52312 5]2]3 tialized with the valueD_NULL. In figure 7, dart5, 6,7, 8}
10 |12 13| 231211323 have their identifiennc_id, set tolD_NULL (represented by
11 (16| 9 (2316 9 2] 3 the character ™-").
12 [16)17]2]3]16]17]2]3 3. Forthe same reason, a new value is given to identifierid,
Alter for each currentag related to the darts forming. In figure 7,
dart | ancestortag current tag identifiercur_id, of the currenttags of dart{5, 6, 7, 8} is set
1 4 | 5123 4]5]6]|3 t0 21.
2 41 92|34 ]9]10]3
3 8 13|23 8 13| 6 | 3 4. We assign a new value to identifienr_id, for each dart
4 8 1712131 8 171103 belonging toF;. In figure 7, the values is assigned to
5 4 121314 21| 6 |3 identifier cur_ids for each currentag of the darts numbered
6 | 8| -]2|3|8 21|63 {1,3,5,6,9,10}.
! 4| -12]3]4]21/10)3 5. The same process is done on fdée In figure 7, identi-
8 8 - [2]3]8 121103 fier cur_id2 of each currentag related to the darts numbered
9 |12]5]2[3]12] 5|6 |3 {2,4,7,8,11, 12} receives the valug0.
10 [ 12| 13| 2[3]12|13] 6 |3
12 |16 | 17| 2 | 3 16| 17 10| 3 Steps2 and3 correspond to the mechanistrea.elemapplied on
© A. Indeed, these steps relate the identifiecharacterizingd to an

empty set of identifiers. Stefds4 and5 implement the mechanism
Figure 7: Face splitting. (a) Dartg1, 2,3, 4,9, 10, 11, 12} belong split.elem(see section 2.2) appl_led onF. The propagation (resp. the
to F before the split. (b)F is split into F; (composed of darts ~ Update) of tags performed during stefresp. during steps and
{1,3,5,6,9,10}) and F» (composed of dart§2, 4, 7,8, 11,12}). _5) en_qbles ce.llsFl and F> to inherit the a_ncestor_of CQIT: the
EdgeA, incident toF; and F», is made of dart{5,6,7,8}. (c) identifier anc_id2 2 (resp. to be characterized by identifiérand
The content of each tag related to one of these darts at before and10):
after face splitting.
3.4 Results

This elementary operation is performed by: ) . . .

In this section, we present the results obtained after the applica-
Spl it Face( b1, be: Dart) — Dart: this function splits the face  tion of follow-up event mechanisms on the G-map model; we have
incident to dart$; andb,. It inserts a topological edge betwelgn successfully experimented our method on numerous models built
andb; in order to obtainys (a1 (b1)) = ao(ai1(b2)). using different operations, including classical boolean operations.
The following example (see figure 8) has been created with boolean
operations. Considering the high number of darts (872) involved in
this figure, we can not show the tag structure related to each dart.
Therefore, we only show some specific darts. The other darts can
easily be deduced by definitions and examples introduced in sec-
We show the behaviour of algorithm 2 in figure 7. Suppose that tions 2.2 and 3.3.
dartsb; andb, are numbered and4 respectively.

The functionName_Spl i t t ed_Face, described in algorithm 2,
associates the tag structures with the darts constitutingnd F%.
Narme_Spl i tt ed_Face is used afterSpl i t Face and it takes
two darts,b; andb., incident to facel”, as input parameters.

In particular, the contents of tags (see Tab. 2a and 2b) obtained after
The following steps are performed (figure 7c summarizes the whole application of the difference boolean operation (see figure 8) show
processs): that:

1. Every dart of the inserted edgkis processed (lei’ be one e Edges As; and A4, respectively represented by darts
of these darts). Each ddrtreceives a copy of the tags related {2.3,2.4} and{2.9,2.10}, have just been created. Indeed,
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Figure 8: G-map model of spanner resulting from high level oper-
ation (boolean difference). Both figures a) and b) are Moka screen-

shots which show spanner in the top view. The darts are symbolized

by half-edges, and involutions, (resp.as, a2) are symbolized by
white (resp. red, green) lines.

their identifieranc_id; is equal toD_NULL.

VerticesS1, Sz, Ss and Sy, respectively represented by darts
{2.2,2.3}, {2.4,2.5}, {2.8,2.9} and {2.10, 2.11} (among
others), have also just been created: their identifietid, is
equal tolD_NULL.

Face F, constituted by darts{1.1,1.2,...,1.3,1.4} and
characterized by the identifierur_id, 6 (see Tab. 2a), is
split. FacesFi (cur_ids 98) and Fy (cur_idz
74) result from this split. Therefore, every dart being
part of F; and F» (resp.{2.1,2.2,2.3,..., 2.4,2.5,2.6}
and {2.7,2.8,2.9,...,2.10,2.11,2.12}) has its identifier
anc_ids equal to 6.

Edge A: (resp. edgeA,), constituted by dart§1.1,1.2}
(resp.{1.3,1.4}) and characterized by identifiet.r_id, 17
(resp.25), is split in edgesA:.1 (cur-idiy = 197) and A; 2
(cur-idi = 133) (resp.Az2.1 and Az.2: cur_idi = 201 and
cur_id; = 145). Therefore, dart§2.1,2.2,2.7, 2.8} form-
ing both A; 1 and A, 5 have their identifietnc_id; equal to
17, and darts{2.5, 2.6, 2.11,2.12}, forming both A ; and
As .2, have their identifieanc_id; equal to25.

The bulletin board (see Tab. 3), sums ups all those events. More-

over, we can indicate:

e the split of edgesA; and A, (resp. of faceF') characterized
by identifiersanc_id: 17 and25 (resp. by identifietnc_ids
6);

e the creation of vertices (resp. edges), Sz, Sz and Sy
(resp.As and A4) characterized by identifief@ur_ido 160,
148, 176 and172 (resp. by identifiersur_id, 285 and297);

e other events have occured during this high level operation (ta-

(a) Before high level operation

Dart | Ancestortag | Currenttag
1.1 | (16,17,6,3) | (16,17,6,3)
1.2 (4,17,6,3) (4,17,6,3)
1.3 | (20,25,6,3) | (20,25,6,3)
1.4 | (24,25,6,3) | (24,25,6,3)
(b) After high level operation
Dart | Ancestortag Currenttag
2.1 | (16,17,6,3) | (16,197,98,35)
22 | (-,17,6,3) | (160,197,98,35)
2.3 (—,—,6,3) | (160,285,98,35)
2.4 (—,—,6,3) | (148,285,98,35)
25 | (- ,25767 3) | (148,201,98,35)
2.6 | (24,25,6,3) | (24,201,98,35)
2.7 (4,17,6,3) (4,133,74,35)
28 | (—-,17,6,3) | (176,133,74,35)
2.9 (—,—,6,3) | (176,297,74,35)
210 | (—,—,6,3) | (172,297,74,35)
211 | (— ,2 ,6,3) | (172,145,74,35)
2.12 | (20,25,6,3) | (20,145,74,35)

Table 2: currenttags and ancestarags matching the high level
operation shown on figure 8.

ble 3 only shows some of them). We can quote the deletion of
vertex (resp. of edge and of face) characterized by identifiers
anc_ido 76 (resp. by identifiersinc_id; 109 and anc_ids

54) or the creation of cells (vertex and edge) characterized
by identifierscur_id; 281 and160.

Our work is currently focused on the completeness of the generated
events; our method has been implemented regardless of complexity.
As explained in Sections 2.2 and 2.3, there are two global traversals
of the model (in order to associate and to retrieve tag structures from
darts at the beginning and at the end of the high-level operation).
These traversals can be optimized to process only the tag structures
which have been modified by the operation.

4 Conclusion

In this paper, we have proposed a generic model allowing a bulletin
board to be generated during a constructive operation (i.e. sup-
plied by the API of a geometric modeling system). This bulletin
board contains the complete list of events which reflects the evo-
lution of cells of any dimension in a geometric system based on a
topological model. The method uses some mechanisms for event
(creation, deletion, split, merge) follow-up. More precisely, any
high level operation is decomposed into a finite set of elementary
operations. Each of them is associated with one or many event
follow-up mechanisms. The model is generic because, on the one
hand it is exclusively based on mechanisms defined independently
of any geometric model, making different types of implementation
possible, and, on the other hand, because these mechanisms are de-
fined in a generic way for any dimension.

Our implementation is based on the model of generalized maps (G-
maps). By using a “tag” structure associated with each dart of a
G-map, this system characterizes, through “curtags”, each cell

of the current geometric model; and links through “ancetgs”
these cells to the other cells which existed at the beginning of the
high level operation. Next, the system assigns the right tag structure
to each dart.

We have successfully experimented this principle on numerous
models built with different operations; the co-refinement high level



Starting cells | Ending cells Event type
{61} {61} no modification
{3 {281} edge creation
{} {160} vertex creation
{} {148} vertex creation
160 vertex creation
176 vertex creation
{3 {172 vertex creation
{25} {145,207 edge split
{17} {133,19 edge split
{6} {74,98 face split
{} {285} edge creation
{3 {297} edge creation
{76} {} vertex deletion
{109} {} edge deletion
{54} {} face deletion

KRIPAC, J. 1995. A mechanism for persistently naming topological
entities in history-based parametric solid models (topological id
system).Proceedings of Solid Modeling981-30.

LIENHARDT, P. 1994. N-dimensional generalized combinato-
rial maps and cellular quasi-manifolddnternational Journal
of Computational Geometry and Applications 4(3§5-324.

MA, D., AND TANG, R. 1988. Realizing the boolean operations
in solid modeling technique via directed loop€omputer and
Graphics 12 3/4.
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tions for solid modelingComputer and Graphics 13.
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PERRIN, E. 2005. Oprations bodennes: trente ages d'un al-
gorithme toujours au coeur des syses de CAO.Revue inter-
nationale d’ingnierie nurérique 1 265-289.

Table 3: Bulletin board matching the high level operation shown
on figure 8.

operation is a good case study because it is complex and often used
in the geometric modeling domain. The last step of the bulletin
board generation process is based on the traversal of darts and the
recognition of events. Our implementation enables us to realize
generic mechanisms for event follow-up. It is a method useable
for many and various practical application domains. It also permits
the topological operations to be separated from the bulletin board
generation; therefore, while topological operations are always the
same for a given geometric operation, there can be several ways to
generate the bulletin board, with respect to the events this bulletin
board should collect.

The next step of this research is to study the possibility to test mech-
anisms which have been formally and independently defined in or-
der to do a high-level experimentation and to compare the results
obtained with the events contained in the bulletin board. Finally,
the genericity of tag structure should allow our approach to be ex-
tended to space-timé D) modeling for animation.
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