
Context Representation in Domain Ontologies
and Its Use for Semantic Integration of Data

Guy Pierra

Laboratory of Applied Computer Science (LISI)
National Engineering School for Mechanics and Aerotechnics (ENSMA), Poitiers

86960 Futuroscope Cedex - France
pierra@ensma.fr

Abstract. The goal of this paper is to identify various aspects of
context-awareness needed to facilitate semantics integration of data, and
to discuss how this knowledge may be represented within ontologies. We
first present a taxonomy of ontologies and we show how various kinds
of ontologies may cooperate. Then, we compare ontologies and concep-
tual models. We claim that their main difference is the consensual na-
ture of ontologies when conceptual models are specifically designed for
one particular target system. Reaching consensus, in turn, needs specific
models of which context dependency has been represented and mini-
mized. We identify five principles for making ontologies less contextual
than models and suitable for data integration and we show, as an exam-
ple, how these principles have been implemented in the PLIB ontology
model developed for industrial data integration. Finally, we suggest a
road map for switching from conventional databases to ontology-based
databases without waiting until standard ontologies are available in every
domains.

1 Introduction

A number of computer science problems, including heterogeneous database inte-
gration, natural language processing, intelligent document retrieval would ben-
efit from the capability to model the absolute meaning of things of a domain,
independently of any particular use of them. In the structured-data universe,
information is represented as data. Indeed, many studies have been performed
to integrate heterogeneous and autonomous databases [8], in particular using
domain ontologies [33]. Distributed architecture models have been developed,
where mediators [34] provide uniform access to heterogeneous data sources. Me-
diators export integrated schemas that reconcile data both at the structural
(schematic heterogeneity) and at the meaning level (semantic heterogeneity). If
large progresses have been made to automate schema integration at the struc-
tural level, using in particular new model management techniques [3], the major
challenge remains the automation of semantic integration of several heteroge-
neous schemas. Such an automation would need enabling programs to identify
unambiguously:

S. Spaccapietra (Ed.): Journal on Data Semantics X, LNCS 4900, pp. 174–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Context Representation in Domain Ontologies 175

– those data having exactly the same semantic meaning,
– those data that are similar and may be converted in or compared with each

others by given processes, and
– those data having no semantic commonality.

In the above list, data may be either atomic or structured data like tuple or
entity instance. On the Internet, data is not the only means for representing
information, another one is largely used, namely documents. Large progresses
were achieved by search engines to retrieve over the Internet the most relevant
documents with respect to a user query expressed as a sentence of words. Un-
fortunately, if semantic of both the query and target documents are not made
computer-sensible, it is impossible to retrieve documents dealing with the query
subject without using exactly the same words (e.g., worker instead of employee,
size instead of length or convertible instead of car). Here again some kinds of
computer interpretable representation of word meaning is needed:

– in a first step to improve search engine in order to retrieve which documents
are semantically relevant for a topic defined by a set of words, even when
the same words are not used, and

– in a second step, to retrieve which documents might provide answer to a user
query.

Both kinds of information integration requiring explicit representation of mean-
ing, these last ten years a lot of work has been done to develop domain ontology
models1 intended to capture the a priori nature of reality of some Universe of
Discourse (UoD), as independently as possible from any particular use of this
reality. Once defined, such representations may then be used to reconcile various
information sources addressing this UoD at the meaning level.

The word ontology is now extensively used in a number of computer science
domains, including e.g., knowledge management, natural language processing,
database, object oriented modeling. If there seems to be some consensus on
what an ontology structure should be - categories (classes), properties, logical
relationships - the focus of the various approaches is so different that the same
word seems to represent quite different realities, and that ontologies developed,
e.g., for natural language processing seems to be nearly useless for e.g., database
integration, and conversely.

The goal of this paper is twofold. The first goal is to investigate the concept
of an ontology in a structured-data integration perspective. We claim that the
major difference between ontologies and conceptual models is the existence of
a consensus that founds ontologies as a shared meaning, and that consensus, in
turn, needs representation of the modeling context. As an example, it is easy
to reach consensus on the fact that the resistance is an essential property of a
resistor. But the resistance depends upon the temperature where the resistance
is measured, and it is nearly impossible to reach consensus on the temperature

1 In this paper, we only consider domain ontologies, and not upper-level generic on-
tologies. Thus, for short, ontology means domain ontology.

176 G. Pierra

where the resistance should be measured since this temperature depends upon
the resistor target usage. To include in the ontology model a mechanism allowing
to represent with each resistance value the temperature where it was evaluated
(value-evaluation context awareness) enables consensus since it allows each user
category to select its own resistance measuring process while making explicit
commonality and differences. Thus, we propose five principles allowing to make
ontologies much more generic through context representation, and thus more
suitable for heterogeneous data integration. The second goal is to show how
these principles have been implemented in the ontology model we have devel-
oped over the last 15 years. Discussed within an international standardization
project (see Annex A), the PLIB ontology model (officially ISO 13584), was
initially developed for giving meaning to technical data and for providing for
automatic integration of heterogeneous engineering data sources. The overview
of PLIB presented in this paper allows both to illustrate the context representa-
tion principles that we propose, and to show some typical uses of this ontology
model.

The content of this paper is as follows. In the next section, we discuss the
various kinds of ontologies needed for representing semantics. We distinguish
between document-oriented linguistic ontology (LO) and information-modeling-
oriented conceptual ontology (CO). In section 3, we investigate the differences
between ontologies and models, and we propose mechanisms to represent both
modeling and value context within an ontology. In section 4, we outline how PLIB
ontologies are specified (and exchanged) thanks to an executable specification de-
fined in the EXPRESS data specification language, and we present how context-
awareness mechanisms are represented in the PLIB ontology model. In section
5, we present a formal model of PLIB ontologies, including the mapping capa-
bilities to external ontologies, and we outline how such ontologies may be used
to integrate various heterogeneous data bases. We suggest, in section 6, a road
map for switching from conventional databases to ontology-based databases. A
discussion of related work regarding context representation, ontology models and
data integration is presented in section 7. Conclusion is presented in section 8.
Some standards being quoted in the paper, Annex A outlines the standardization
activities around PLIB.

2 Concept Ontologies and Linguistic Ontologies

Since the term ontology was borrowed from philosophy and introduced in the
computer science vocabulary, many definitions have been offered. The most com-
monly cited definition is one by T. Gruber ”An ontology is an explicit specifica-
tion of a conceptualization”, therefore ”shared ontologies” provide for ”knowl-
edge sharing” [15]. In all the ontology models, such a conceptualization consists
of three parts :

– primitive items of the ontology (where items are either classes or properties)
are those items ”for which we are not able to give a complete axiomatic

Context Representation in Domain Ontologies 177

definition; we must rely on textual documentation and a background of
knowledge shared with the reader” [15],

– defined items are those items for which the ontology provides a complete
axiomatic definition by means of necessary and sufficient conditions, and

– logical relationships (or inference rules) provide for reasoning over ontology
items, and for supporting some problem-solving activities over the ontology
domain.

The agreed definition and structure description leave open what may be consid-
ered as the major criteria for classifying ontologies and ontology models: whether
their area of interest consists of beings (what does exist in the world) or of words
(how beings are apprehended and reflected in a particular natural language).

We call linguistic ontologies (LO) those ontologies whose goal is to represent
the meaning of the words used in a particular UoD in a particular language.
We call concept ontology (CO) those ontologies whose goal is to represent the
categories of objects and object properties that are used to apprehend some part
of the world. These two kinds of ontologies address quite different problems and
should have quite different contents.

LOs [9] are document-oriented. The typical problem they address may be
termed as follows:
”find all documents relevant to a query expressed as a set of words possibly
connected by logical operators like AND, OR and NOT, even if these documents
do not contain these words”.

Since natural languages contain a number of different words for reflecting
identical or similar meanings, LOs are large in nature. They include a number
of conservative definitions, i.e., defined items that only introduce terminology
and do not add any knowledge about the world [15]. They are language-specific
and they use a number of linguistic relationships such that synonym, hypernym,
hyponym, overlap, covering, disjoint to capture in a semi-formal way meaning
relations [33]. Such relationships being not formally grounded, inference could
only provide some help to a user supposed to be involved in some computer-aided
search process. Development of LOs may be done through a semi-automatic
process where significant words are automatically extracted from a document
collection and then validated and structured by experts.

COs, for instance themeasure ontology [15], are information-modeling-oriented.
The typical problem they address may be termed as follows:

”decide whether two instances belong to the same class and whether two proper-
ties have identical meaning or may be converted into each other”.

To be able to represent all the beings existing in some part of the world, COs
need only to describe those primitive concepts that cannot be derived from other
concepts. Like technical vocabulary where one and only one word should always
be used for the same meaning, COs may be restricted to primitive concepts.
Such primitive COs, that we call canonical conceptual ontologies (CCOs), are
compact in nature. To reduce again the number of concepts that need to be
represented, COs may also be property-oriented. This means that in place of

178 G. Pierra

introducing a number of different concepts such that ”10-HP-engine”,”20-HP-
engine”,”25-HP-engine”, they introduce only two concepts that may express the
same meaning: one class (engine) and one integer-valued property (power in
HP). Indeed, only those classes that cannot be represented by restriction of an
existing class by means of property values need to belong to a property-oriented
CCO. The focus being on primitive concepts, and understanding such concepts
being based on reader background knowledge, an extensive information model
has to be used to describe both textually and formally each primitive concept.
COs are multilingual because most concepts are language-independent. Even
though a collection of documents in one particular language of which significant
words are automatically extracted may be used as a starting point for defining
a CO of some domain, development of a CO is mainly manual. Finally, if the
relationships involved in a CO are formally defined, and if two data sources
reference the same CO, semantic integration of these data sources may be done
automatically [2].

Table 1. Typical characteristics of LO and CO

LO CO
Tokens Word Concept

Token identification Word Id
Token definition Sentence Model
Ontology Size Extensive Minimal

Relations Formal + Linguistic Formal
Content Primitive Items Primitive Items (CCO)

+ Conservative Definitions + Conservative Definitions (NCCO)
Focus Class-oriented Property-oriented

Development Automatic/Semi-automatic Semi-automatic/Manual
Ontology usage Computer-aided tasks Task automation

When the goal of a CO is to define a common language for data exchange or
data integration, CCOs are well suited. For data integration, the use of CCOs
assumes that each source or agent is in charge of converting its own vocabulary
onto the shared CCO. It is the approach followed by the PLIB ontology model
developed to support exchange of industrial data. In PLIB ontologies, equiva-
lences between ontology concepts are not represented within the PLIB ontology
but as an external mapping between ontologies, called ontology articulations (see
section 5.2). Example 1 presents an informal description of a small CCO that
represents some categories of industrial components2.

Example 1. A circular bearing is a mechanical component used to connect and to
transmit load between two cylindrical shapes having the same axis but different
diameters and rotational movements. Characteristic properties include width,
inner diameter and outer diameter. But a crucial property, called life-time, is
2 Such an ontology is formally defined in ISO 23768 using the PLIB ontology model.

Context Representation in Domain Ontologies 179

the length of the time period where the bearing will behave correctly. The value of
this property depends upon the number of revolutions done by the bearing, and
of the load it must support. Mathematically, the bearing life-time is a function
of the velocity (i.e. rotational speed), the radical load and the axial load. At
the class level, circular bearings may be circular ball bearings (there are also
other kinds of bearings, not modeled within this small ontology, having, e.g.,
needles or rollers). The ball diameter is a property that should be defined at the
level of circular ball bearing where it is meaningful. Figure 1 presents the main
properties of a circular ball bearing.

Fig. 1. Characterization of a bearing

Equivalence of concepts may also be represented within a CO. This may be
done for instance using either formal class relationships like set-oriented oper-
ations (union, intersection and difference) and class restrictions (by property
values), as it is done in OWL [20], or property value deduction, as it is done
by F-logic rules, or property value algebraic derivation function, like in the EX-
PRESS language [30]. For example, the thickness of the bearing may be defined
as (outer diameter − inner diameter)/2. Such COs, that we call non-canonical
conceptual ontologies (NCCO), allow to integrate in the same ontology different
conceptualizations and the articulations between them. NCCOs are in particular
largely used in artificial intelligence. They allow to make inference over concept
equivalence, but they often encounter scaling problems for processing large data
sets.

Table 1 emphasizes the main differences between COs and LOs. But, in fact,
LO, NCCO and CCO are complementary, and, in a number of ontology-based
applications, all three kinds of constructs are needed over the same domain. It
is the case, for instance, when a domain ontology is built using natural language
processing (NLP) tools that extract terms from a document corpus. This set
of terms is progressively structured by domain experts into a LO that contains
both formal relationships, such that subsumption and class-property links, and
linguistic relationships such that homonymy or synonymy. In this ontology, en-
tries are still words of a particular language. From this LO, a NCCO may be
extracted under expert supervision. In this ontology, entries become identifiers,

180 G. Pierra

and relationships are based on a clear mathematical semantics. Finally, a CCO
may be chosen from the NCCO and all non-canonical concepts are formally de-
fined in terms of canonical concepts. Note that this process is quite similar to
the one defined in [24]. Similarly, all three kinds of constructs are also needed
when one wants indexing a set of documents by means of concepts of a CO,
either CCO or NCCO. If the starting ontology is a CCO, a NCCO needs first
to be defined to address all the concepts usual in the CCO domain, even when
some of them might be represented by some other ones. Then, a LO must be
developed on top of this NCCO. This LO must include all the language-specific
terms, and term patterns, that may be considered as representing each particu-
lar concept or particular property. Then, these terms may be used for indexing
a set of documents, either automatically or under expert supervision. These
two possible approaches for building domain ontology suggest a layered view
of domain ontologies [18] in which CCOs, NCCOs and LOs may cooperate. In
this view, a kernel CCO defines all the UoD semantics. We call this layer the
characterization layer. Thanks to this CCO, any object belonging to the UoD
may be characterized by class belonging and property-value pairs, thus provid-
ing a canonical language for information exchange. At the second layer, that
we call integration layer, a NCCO extends this conceptual vocabulary by means
of conservative definitions to encompass all concepts broadly used in the do-
main. Using the ontology defined according to this layer, several data sources
addressing the same domain but based on different CCOs may be integrated,
and inference may be performed. At the third layer, that we call discourse layer,
a LO provides a multilingual natural language interface for person-system and
person-person communication. Figure 1 show the resulting onion-shaped model
that we call the Characterization-Integration-Discourse CID model of domain
ontology.

Fig. 2. The CID layered model of domain ontologies

Context Representation in Domain Ontologies 181

Example 2. A CCO for characterizing (to some extent) persons might define the
class person with two properties: gender and age. If one wants to cover more
broadly the same domain, the two classes man and woman need to be introduced
in a NCCO. Man for instance being defined as a person whose gender= male.
Migrating to LO would need, beside the terms used as labels for the NCCO and
that are formally grounded on this NCCO, other terms such that children, boy,
girl, oldster that could not be formally defined.

Data integration being mainly concerned with CO, in the next section we discuss
the differences between CO and conceptual models.

3 Concept Ontologies Versus Model

In the previous section we have discussed the differences between the various
kinds of domain ontologies and we have proposed a model representing how they
may fit and cooperate altogether. In this section we propose to clarify the differ-
ences between domain ontologies and conceptual models. Indeed, a conceptual
model may be considered as an ”explicit specification of a conceptualization”.
Therefore, as noticed by Guarino and Welty [16], conceptual models are some-
times denoted as ontologies. But we perfectly know that conceptual modeling
leaves open the semantic heterogeneity problem. Thus, it is worthwhile investi-
gating the difference between a shared ontology and a model if we want to use
ontology as a tool for semantic integration of data.

An old definition from Minsky [22] would introduce the discussion: ”To an
observer B, an object A* is a model of an object A to the extent that B can use
A* to answer questions that interest him about A”. This definition emphasizes
the ternary character of a model relationship: it depends on the object (A)
and the observer (B), but it depends also on which questions the observer is
interested about A. In other terms, in which context the model was built. In data
engineering, we are in line with this definition when we teach that a conceptual
model shall be built within a precise context. The key point here is that when one
designs an application system, the context of the modeling activity is defined by
the target system goals and environment. The functions that two systems must
perform are never exactly the same. Thus models are always slightly different,
enough to make instance data incompatible.

This shows that usual conceptual models can hardly fit several needs. If one
wants to build shared ontologies, i.e., ontologies that reflect the information
requirements of several application contexts, not only the conceptualization ap-
proach must be different from usual modeling activity directed toward a specific
target system, but also the conceptualization formalism must have specific ca-
pabilities to allow specification of generic models. These generic models must be
either context-independent or at least context explicit to fit the needs of various
application contexts.

Importance of context representation for semantic integration of heteroge-
neous database was already underlined by researchers in multidatabase systems.
Kashyap et al. [19] proposed an explicit representation of the modeling context

182 G. Pierra

at the schema definition level. For instance, what is the meaning of the ”width”
property when we try to use it with a ”car engine” without knowing in the con-
text of which class and with which precise meaning this property was described?

The property becomes clear when we know that it was defined in a packaging
perspective for any material object as the width of the virtual box where it might
be packaged.

But even if a property definition is clearly understood, property value may
also be context dependent, such context-sensitivity was studied in particular by
[31], [14]. These authors proposed to represent context at the extensional level,
i.e., at the level of data values and object instances. For instance, what means
the temperature of a particular city if we do not know when this temperature
was measured, and in which unit? What means the life time of a bearing if we
do not know which load it supports and what would be its rotational speed?

In fact most of the causes of semantic conflicts in data integration result from
implicit context, either in schema definition or in value evaluation. They may
be solved if both the modeling context and the value context are made explicit.
Goh [14] identified three main causes for semantic heterogeneity:

1. naming conflicts occur when naming schemas of information differ signifi-
cantly. A frequent phenomenon is the presence of homonyms and synonyms.
We claim that naming conflicts may be avoided if data base schemas refer
explicitly for all the shared concepts they represent to identifiers of a shared
conceptual ontology, and if this shared ontology makes explicit the context
of each definition. Driving license id is unambiguous if it is defined in the
context of a French car drivers class, it becomes ambiguous (and may have
several values) in a context of a person.

2. scaling conflicts occur when different reference systems are used to measure
the value of some properties. Examples are different currencies. Scaling con-
flict may be avoided, either by associating explicitly at the schema level a
computer-interpretable representation of the unit that shall be used for any
value of a property, or by associating explicitly with each value its own unit.

3. confounding conflicts occur when information items seem to have the same
meaning, but differ in reality, e.g., due to different temporal contexts. We
claim that confounding conflicts may be avoided by investigating whether a
value is an intrinsic and permanent property of some instance, or it depends
on some evaluation context, and, in the latter case, by associating this value
with its context. For instance the driving license id of a person depends on
the country where the license was issued, its weight depends on the date
where it was recorded, but its birth date is not context dependent (once the
scaling conflicts is solved as above).

Moreover, most causes of schematic conflicts, and in particular schema isomor-
phism conflicts which means that semantically similar entities have a different
number of attributes [19] also result from context sensitivity. It is not so difficult
to identify, to describe and to reach consensus in some community on all the
major properties which are rigid [16], i.e. which necessarily hold for all instances

Context Representation in Domain Ontologies 183

of a class. For instance, each customer has a birth date, each mechanical com-
ponent has a weight, and each town has a (current) number of inhabitants. But
it is impossible to agree on those rigid properties that should be represented for
each class in a database. Thus, ontological description of a class should describe
all its rigid properties (at least within some rather broad context common to
all data sources that might exist in some target community) in order to reduce
context-dependency in the class description. Then, each schema may restrict
this general description to its design context by selecting those ontology-defined
properties that are relevant to the problem at hand and are thus represented
in the database. For instance, the weight or birth date of a person are seldom
used in a customer database. So, when several schemas refer to a same ontology
by means explicit mappings [2], these mappings allow to identify automatically
which ontology-defined properties are semantically equivalent in several data
sources, which properties are represented in some data sources without being
represented in some others, and, possibly, which properties if any are not de-
fined in the common ontology.

This discussion allows to define five principles that should be followed by
ontology models to provide for automatic integration of several data sources. It
also suggests five mechanisms that may be proposed for satisfying each principle.

– Definition context representation. At the schema level the modeling context
in which each class or property is defined should be explicitly represented
and minimized.
Proposed mechanism: to represent its definition context, each property should
be defined in the context of a class that defines its domain of application. To
minimize its context-sensitivity, each class should define all its rigid proper-
ties, at least in some very broad context common to all the target data sources.

– Point of view representation. The perspective adopted by the modeling team
when the ontology is designed and agreed upon in some community should
be explicitly represented.
Proposed mechanism: if several perspectives are needed over the ontology
target domain, an ontology of perspectives should be defined or referenced.
Then, each needed perspective should correspond to a specific domain ontol-
ogy. Different perspectives over the same real world object should be repre-
sented either by an instance aggregate, one instance per perspective-specific
ontology, or by multi-instantiation.

– Locality of interpretation context. Importation of resources from one ontology
into another one should be possible while controlling the impact of the former
over the interpretation of the latter.
Proposed mechanism: importation on a class per class basis, and, for a class,
on a property per property basis should be feasible. Domains of both ontolo-
gies should be separated.

– Value context representation. At the value level, the local context in which
each value is evaluated should be explicit.
Proposed mechanism: when the property value of some ontology class in-
stance depends upon some evaluation context, this evaluation context should

184 G. Pierra

be modeled by properties defined over this evaluation context, and the for-
mer property should be modeled as a function over the latter properties.

– Value scaling representation When the same property magnitude may be
represented by different values depending upon some scaling process, scale
should be explicitly represented, either at the ontology level, or at the in-
stance level.
Proposed mechanism: When property value represents a physical (resp. a
financial) amount, represent or reference in a computer-sensible way the
physical unit (resp. the currency unit) used for scaling the value.

We present in the next section how these mechanisms have been implemented
and may be represented in the PLIB ontology model.

4 PLIB: A Context-Explicit Ontology for Data
Integration

Initiated in the early 90’s the goal of the PLIB project was to develop an ap-
proach and standard models for exchanging and integrating automatically engi-
neering component databases [26]. To allow such an automatic integration, an
ontology-based approach has been developed. An ontology model (known as the
PLIB ontology model) has been defined3 and each PLIB-based data source is
supposed to contain at least three parts: (1) an ontology, (2) a database schema,
and (3) instance data represented according to the schema that references the
ontology. Because one cannot assume that complete shared ontologies will ever
exist, each database must have its own local ontology. But, to make automatic
integration feasible, each particular local ontology may also contain (4) a map-
ping onto pre-existing shared ontology(ies) (e.g., standard ontologies) through
semantic relationships. In particular, a specific subsumption relationship called
case-of was defined to allow a local ontology to reference a shared ontology
and to import properties without needing to duplicate class or property defini-
tions. Development of standard ontologies is encouraged. Several such ontologies
already exist or are in progress (see Annex A).

The role of a PLIB ontology is twofold. First it is intended to support user
query over integrated component databases. Such queries need to be supported
at various levels of abstraction (a screw, a machine screw, an hexagon machine
screw, an ISO 1014-compliant hexagon machine screw). Thus, subsumption is a
key feature of any PLIB ontology. Second, it provides for automatic integration.

We first present in this section a formalization of PLIB ontologies. 4.1 gives a
short overview of the EXPRESS data specification language, and 4.2 presents,
through two simplified schemas, the global architecture of the formal PLIB spec-
ification. Then, clauses 4.3 to 4.7 present the main mechanisms used to make
context explicit in PLIB ontologies. Finally, clause 4.8 discusses the relationships
between ontologies and schema in databases.
3 ISO 13584-42:1998. Industrial Automation Systems and Integration, Parts Library,

Methodology For Structuring Part Families. H. U. Wiedmer and G. Pierra, Eds.
ISO, Geneva, 1998.

Context Representation in Domain Ontologies 185

4.1 Specification of the PLIB Ontology Model: EXPRESS

The PLIB ontology model is defined in EXPRESS, a standard data specification
language initially developed in ISO [30] to represent product models in the engi-
neering field. The major advantage of this language is the integration of schema
definition, constraint specification and instance representation capabilities in a
common formalism with common semantics. This integration avoids the use of
several models and languages like e.g., UML, OCL and XMI.

A specification in EXPRESS is represented by a set of schemas that may
refer to each other. Each schema contains two parts. The first part is a set of
entities that are structured in an object oriented approach supporting multiple
inheritance. The second part is a procedural part that contains procedures and
functions. These procedures and functions are used for restricting the allowed
interpretation of the schemas by describing constraints on data. They are also
used to specify how the value of a property of some entity may be computed
from values of some other properties (derivation functions).

Each entity is described by a set of properties called attributes. Each attribute
has a range (where it takes its values) defining a data type. It can be either a
simple type (like integer, string ...), an entity type (meaning that the attribute
establishes a relationship with another entity), a union of type (like integer OR
string) or a collection over any data type (collections may be list, set, bag and
array that are hard encoded in EXPRESS).

Syntactically one writes:

SCHEMA Foo1;
TYPE number_or_string = SELECT (REAL, STRING);END_TYTPE;

ENTITY b;
ENTITY a; att_1:number_or_string;
att_a:OPTIONAL INTEGER; att_2:LIST [0:?] OF STRING;
INVERSE att_3:a;
att_i: DERIVE
SET [0:2] OF b FOR att_3; att_4:BOOLEAN

END_ENTITY; := EXISTS(SELF.att_3.att_a);
END_ENTITY;

END_SCHEMA;

Informally, the entity b has three attributes: a value that may be either a real
or a string, a list of any number of strings and a pointer to another entity a.
Entity a has only one integer attribute that may have no value (lack of value
is represented by a particular symbol). Attribute att i is an inverse attribute of
entity a, corresponding to the inverse link defined by attribute att 3 in entity b.
At most, two instances of b may reference an instance of a. Attribute att 4 is
a derived attribute of entity b computed by the predefined EXPRESS function
EXISTS. This function evaluates to true if its parameter has a value. In the
case of entity b, this parameter is the optional att a attribute of the instance of
entity a referenced by the current instance (optional keyword SELF) of entity
b. As usual, EXPRESS uses the dot notation to access attributes of an entity.

186 G. Pierra

Semantically, an entity has a model. In the EXPRESS community, the model
is named a physical file. The model consists of a set of entity instances with
explicit instance identity. The attribute values are either literal values of the
EXPRESS simple or structured built-in types or they are references to other
entity instances. Instead of entering into deep semantic details, we give below
an example of a model (physical file) which can be associated to the previous
entity definitions. Note that an EXPRESS schema is an executable specification.
EXPRESS compilers are able to generate both storage structures for managing
EXPRESS models, checking constraints over these data or computing derivation
functions and programs able to read and write physical files for which a standard
syntax has been defined.

Let us consider a particular instance of the entity b, where att 1 evaluates to
4.0, att 2 is the list (’hello’, ’bye’) and att 3 points the particular instance of
the entity a whose att a attribute evaluates to 3. Then, the model (physical file)
associated to these particular instances of the entities A and B is described by
(derived and inverse attributes are not represented as they may be computed):

1=A(3);
2=B(4.0, (’hello’,’bye’), #1);

It is possible to limit the allowed population (elements) of the models to
those instances that satisfy some stated constraints. EXPRESS uses first order
logic which is completely processable since the set of instances (physical file) is
finite. Constraints are introduced thanks to the WHERE clause of EXPRESS
that provides for instance invariant, and thanks to the global RULE clause that
provides for model invariant.

Let us assume that the allowed values for att a in a are [1..10] and that exactly
two instances of entity a shall have an attribute value equals to 1. We may write
(QUERY is a built-in iterator on class, and SIZEOF a built-in function that
returns the size of a collection):

ENTITY a;
att_A:OPTIONAL INTEGER;

WHERE
WR1: correct_range (SELF.att_A); -- WR1 is the constraint label

END_ENTITY;
RULE Card FOR a;
WHERE SIZEOF(QUERY(inst <* a|inst.att_a=1)) = 2; END_RULE;

FUNCTION correct_range (val: integer): Boolean;
BEGIN RETURN ((val>=1) AND (val<=10));END_FUNCTION;

All value domains and operators are extended with the INDETERMINATE (’?’)
value to process optional attributes, and EXPRESS uses a tree-valued logic
(TRUE, UNKNOWN, FALSE) to return values of predicates that cannot be
assigned a Boolean result. Assignment, sequence and control structures (if state-
ments, loops and recursion) can be used in the function bodies. These features
give powerful expression possibilities to the language. Indeed, one gets the same

Context Representation in Domain Ontologies 187

expression possibility as other recursive specification languages. Derivations and
constraints are the only places where functions may occur. They provide the two
high level abstraction mechanisms identified as necessary in data driven active
databases. Therefore, it is possible to specify formally a large class of problems.
Moreover, derivations and constraints are inherited. These features define a set
inclusion semantics to the EXPRESS inheritance mechanism.

4.2 PLIB Syntax and Semantics

To provide for easy integration of several ontologies, PLIB uses a meta-modeling
approach for representing both ontologies, and ontology-based representation of
domain objects. These two schemas are connected by formal constraints to ensure
that instances of ontology classes fit with class descriptions. The partial schema
below outlines the global structure of the PLIB ontology (meta) model (the
data type entity, not detailed, allows to specify the data type of a property).

SCHEMA PLIB_ontology;
TYPE class_id=STRING;END_TYPE; TYPE prop_id=STRING;END_TYPE;
TYPE class_ref=SELECT (class, class_id);END_TYPE;
TYPE prop_ref=SELECT (property, prop_id);END_TYPE;
ENTITY property;
code:STRING; version:STRING; name:STRING; domain:class_ref;
range:data_type; value_context:SET [0:?] OF prop_ref;
DERIVE
prop_id:STRING:= compute_class_id(domain)+’.’+code +’-’+version;
END_ENTITY;
ENTITY class;
id:class_id; name:STRING; superclass:OPTIONAL class_ref;
case_of:SET [0:?] OF class_ref;
imported_properties:SET [0:?] OF prop_ref;
new_applicable_properties:SET [0:?] OF prop_ref;
DERIVE
known_applicable_properties

:SET [0:?] OF prop_ref := compute_applic (SELF);
WHERE
WR1: is_acyclic([SELF], SELF.superclass);
WR2: correct_importation(SELF.imported_properties, SELF.case_of);
WR3: correct_applicability(SELF.new_applicable_properties, SELF);
END_ENTITY;

Properties and classes are identified by universal identifiers (UId) (prop id and
class id), but references between them are done either by these identifiers, or by
instance references to allow exchanging partial ontologies or referencing external
ontologies. A property is defined in the context of the higher class (domain)
where it is meaningful, even if it is not applicable (semi-rigid [16]) to some of its
subclasses. Its UId concatenates the identifier of this class (user-defined function
compute class id), its code and its version. If the value of a property depends

188 G. Pierra

upon some evaluation context (see 4.6), parameters that characterize this context
are specified (value context). A class has at most one superclass. It selects among
all the inherited (semi-rigid) properties, those that become applicable, (rigid
[16]), i.e., essential for all its instances (new applicable properties). Moreover, it
may also establish subsumption links with other preexisting classes (case-of), for
instance from standard ontologies, of which it imports any number of properties
(imported properties).

The rules that govern the semantics of such a specification are formally de-
fined by means of user-defined functions. As examples, is acyclic asserts that
subclass/superclass relationships do not include loops, correct importation as-
serts that only properties defined for the classes referenced by means of case of
are imported from these classes and correct applicability asserts that the current
class is (possibly by inheritance) in the domain of all the properties it selects as
applicable by new applicable properties). The final set of applicable properties
of a class (that gathers inherited applicable properties, new applicable proper-
ties and imported properties) is also formally specified by means of a function
(known applicable properties). When the specification is run over some model
(physical file), if some classes are only referenced by their class ids but are not
available in the model, the assertions do not fail. They return an UNKNOWN
result as allowed by the EXPRESS language.

Let us consider the class of ball bearing presented in Fig.2. Let us assume
that it is a subclass of a predefined bearing class whose class id attributes equals
’XX.bearing-1’ and where all Fig.2 properties, but ball radius, are already defined
as applicable. Then, the model (physical file) allowing to extend this predefined
ontology by a new ball bearing class associated with a new ball radius applicable
property would be as follows (measure type, not detailed here, allows to represent
a subtype of data type that is a real number associated with a measure unit,
and ’()’ represents the empty set):

1=PROPERTY(’b_radius’,’1’,’ball radius’,’XX.ball_bear-1,#10);
#10= MEASURE_TYPE(...);
2=CLASS(’XX.ball_bear-1’,’ball bearing’,’XX.bearing-1’,(),(),(#1));

Ontologies being represented as instances of the PLIB ontology schema, an-
other schema, called the PLIB instance schema, has been developed for repre-
senting domain objects (e.g., a particular ball bearing) as ontology individuals.
Such individuals, called ontology-based data, may be exchanged together or with-
out the domain ontologies to which they correspond. The partial schema below
outlines the structure of the PLIB instance schema (the REFERENCE clause
imports all the definitions from a referenced schema):

SCHEMA PLIB_instance;
REFERENCE FROM PLIB_ontology;
TYPE primitive_value=SELECT (integer, string, instance); END_TYPE;
ENTITY property_value;
property:prop_ref; value:primitive_value;
WHERE WR1: correct_type(SELF.property, SELF.value);

Context Representation in Domain Ontologies 189

END_ENTITY;
ENTITY instance;
class:class_ref; properties:LIST [0:?] OF property_value;
WHERE WR1: correct_properties(SELF.class, SELF.properties);
END_ENTITY;

When ontology and ontology-based data are gathered in the same model (i.e.,
physical file or database), thanks to the constraints specification capabilities of
the EXPRESS language, constraints over the instance schema allow to assert
that each ontology individuals complies with its ontological definition in the
following sense. The user-defined correct type function ensures that the value
of each property belongs to the range defined for this property at the ontology
level. The user-defined correct properties function ensures that an instance of
an ontology class may only be described by properties that are applicable to this
class, and that if the evaluation context of a property depends upon some other
properties, any value of the former is associated with values of the latter. Note
that the database schema of a class consists of the union of all its applicable
properties that are associated with values for at least one of its instances.

Let us consider an instance of the ball bearing class presented in Fig.2 that
is only described by its ball radius property that evaluates to 3.0 (in the unit
specified for this property in the ontology, e.g., millimeter). Then, the model
(physical file) allowing to represent this particular bearing would be as follows :

1=PROPERTY_VALUE(’XX.ball_bear-1.b_radius-1’,3.0);
2=INSTANCE(’XX.ball_bear-1’,(#1));

Thus, both PLIB ontologies and PLIB ontology-based data may be modeled,
exchanged and checked for consistency by automatic tools generated from the
two EXPRESS schemas. Note that only simplified versions of these schemas
were presented above. We describe informally in the next sections, the various
mechanisms used to make context explicit in PLIB ontologies.

4.3 Global Structuring of the Definition Context and Point of View
Representation

The role of ontologies being to capture the essence of beings, PLIB supports a
distinction between:

– those properties that are rigid [16] for a class, i.e., that are essential for any
instance of a class (i.e., that must hold or have a value): all these properties
are associated with a particular class

– those properties that may or not hold or exist according to the role in which
an entity is involved.

Each category of real world objects is represented by one or more ontology
classes. One particular class, point of view-independent, contains all the rigid

190 G. Pierra

properties. If needed, point of view-specific classes gather those additional prop-
erties that correspond to a particular point of view over objects of the real world
class.

For instance having a birth date is an essential property for any person: such a
birth date may be unknown in some context, but, if it does not exist, the person
does not exist. Contrariwise, having a salary is not an essential property. It
exists only if the person is an employee of some organization and it corresponds
to a working status point of view. For a mechanical part, having a mass is a
rigid property, having a price is not. The price only exists if the part is sold on
the market, and the price depends on the market (e.g., wholesaler or retail sale,
quantity of order, discounted customer). It corresponds to the marketing point
of view.

Of course, in a database schema, a person may have a salary, and a part
may have a price and a supplier, but this is based on some implicit context
assumptions that shall be explicit at the ontological level.

In fact, a PLIB ontology consists of three categories of classes of which only
the first one was presented in clause 4.2.

– definition classes (modeled by the class entity in clause 4.2) capture the
beings of the area of interest, together with all their rigid properties.

– functional model classes represent the additional properties that result from
a particular role or point of view [27]. A functional model class exists only
when associated with a definition class. Each instance of a functional model
class is a view of an instance of a definition class. This relationship is termed
is-view-of.

– Point of view classes capture the modeling context of (i.e., the point of view
corresponding to) each particular functional model class: each functional
model class shall reference a point of view class as its modeling context.

For instance, the definition class of a person should contain properties such that
birth date, gender, current name, first name. An employee functional model class
should contain properties like: date of first employment, status, salary. A working
status point of view class allows to define the context of the functional model
class. It may also contains for instance the date of recording, and the employer
id attribute.

The definition class of a particular subclass of mechanical part, e.g., screw
should contain properties like threaded length, total length, threaded diameter,
material. The screw procurement functional model class should contain proper-
ties such that price, quantity of order. The marketing point of view class specifies
the context of the screw procurement. It contains properties such that date, kind
of market (e.g., wholesale, retail sale, negotiated), supplier.

4.4 Representation of the Local Definition Context

As noted in [19] a property cannot be understood if we don’t know in which
context it was defined: the same property names and informal definitions may

Context Representation in Domain Ontologies 191

be used with quite different meanings in different context. Thus, to define un-
ambiguously classes and properties of an ontology, a basic modeling principle is
that:

– a property cannot be defined without defining, in the mean time, its field of
application by means of the class where it is meaningful; this class constitutes
its definitions context;

– a class cannot be defined without defining, in the mean time, the properties
that are essential for its instances.

Following this principle, a PLIB ontology includes two aspects:

– a classification tree where classes and properties are identified and connected;
– a set of meta-attributes that describe successively each class and each prop-

erty.

Defined through a set of formal relationships, the first aspect allows to for-
mally retrict the allowed interpretations of an ontology. Described through a
number of human-readable pieces of information, the second part allows to make
understandable the real world semantics of the conceptualization represented by
the ontology.

Property definitions are formulated in the context of the higher class where
they are meaningful (attribute domain in 4.2), even if they don’t apply to all
its subclasses (in PLIB jargon they are said to be visible for this class, and all
its subclasses). Then, class definitions specify which properties are applicable,
i.e., essential for every instance of this class (attribute new applicable properties
and imported properties in 4.2). Finally, when instances are represented within
some model (physical file) or some database schema, only a subset of all the
applicable properties may be used to describe them (such properties are said to
be provided). For any class C the following holds:

provided(C) ⊂ applicable(C) ⊂ visible(C)
This formula shows, at the property level, the difference between an ontology

and a schema: various schemas, designed by various database administrators,
may represent for the same ontology class C various subsets of applicable(C).
During an integration process, and thanks to the UId of each ontology concept,
it will be obvious which properties are the same and which are not.

Concerning the classes to be defined, PLIB is property-oriented: all what can
be described meaningfully by properties is defined by properties. A class shall
only be introduced in an ontology when it constitutes the domain of a new
property, i.e., the property would be meaningless for the superclass of this new
class, but it is meaningful for the new class and all its subclass. Thus reference
ontologies are in general rather flat. For example, the internal diameter property
is meaningless for a mechanical component whatever its definition. It becomes
meaningful if one introduces a new subclass of mechanical components that
models circular bearings.

But these formal relationships between classes ands properties are not suffi-
cient for unambiguous definitions. Indeed, a PLIB ontology mainly consisting of

192 G. Pierra

primitive items, i.e., items whose definition ”must rely on textual documentation
and a background of knowledge shared with the reader to convey meanings” [15],
the PLIB ontology model includes an extensive number of (meta) attributes used
for representing the real world conceptualization and for connecting the ontol-
ogy constructs to the background knowledge of the ontology user. In clause 4.2
only the name (meta) attribute was presented, in fact these (meta) attributes
include: names and synonymous names, symbols, definitions with notes and re-
marks, pictures and drawings, references to document.

4.5 Locality of Ontology Interpretation Context

When a particular domain ontology is developed, it is often the case that (1)
its domain overlaps the target domains of some other ontology, and (2) the
perspective adopted in these various ontologies is, at least, partially different.
For example, a travel ontology needs the capability to capture the concept of
a plane. Let’s assume that a plane ontology exists. If such an ontology has
been developed to provide a suitable vocabulary for exchanging information
between airplane manufacturers and airline companies, the ontological definition
of a plane might contain such properties as frequency of maintenance operation,
guaranty duration, and a number of technical properties which are useless in the
context of the travel ontology. If the capability to use the basic plane properties
in another ontology requires to integrate all the plane properties, more all the
plane subclasses, probably the travel ontology designers would prefer to define
their own plane concept. Indeed, the plane ontology might contain a number of
technical details not understandable by the travel ontology designers, thus, they
would not be able to understand the global conceptualization resulting from the
global merging.

For addressing this issue, the PLIB ontology model introduces the case-of sub-
sumption relationship. This relationship affects only one class of the referenced
ontology from which it imports some selected properties, and the interpretation
domains of both ontologies remains different.

Note that this importation is compatible with the local definition context
representation discussed in 4.4: the referencing class being subsumed by the ref-
erenced one, the former is included in the domain of the latter. This mechanism
allows to provide a view of a local ontology in terms of a global one, and, if the
local classes is also defined as a restriction of the referenced classes, to migrate
instances from the global context to the local one.

4.6 Representation of the Local Value Context

In a number of cases, the value of an instance property changes when its eval-
uation context changes. This means that the range of such properties is not a
value set, it is a function set. Let C be the set of all instances of a class, P be
a property whose domain includes C, D be the range of values of P , EV ALC,P

be the set of all the states of the context where values of property P may be

Context Representation in Domain Ontologies 193

evaluated for any instance of C, P1, ..., Pn be the set of properties allowing to
characterize the states of EV ALC,P , and D1, ..., Dn their ranges of values.

– A characteristic property (characteristic for short) is a property that defines
a function over C:

P : C → D.
– A context parameter is a property that defines a function over EV ALC,P :

Pi : EV ALC,P → Di.
– A context dependent property is a property whose value is a function of the

context:
P : C → (EV ALC,P → D).

Table 2 shows various examples of characteristics and context dependent prop-
erties.

Table 2. Representing value context

Entity Person Ball bearing Plane
characteristic birth date inner diameter plane type

context-dependent property hair color life time cheapest fare
context parameter date load, speed customer age

In the PLIB ontology model, the signature of the function corresponding to a
context dependent property is defined by the value context attribute (see 4.2),
and context parameters must be explicitly defined within the ontology. Two
means are provided for specifying the function itself:

– either, as suggested in [31], it is discretized at the instance level as one or
several sets of property-value pairs, each set defining the particular value
of the context dependent property for a particular evaluation context state,
defined by context parameter values;

– or, when the dependency may be expressed by an algebraic function that
is the same for all instances and all interpretations, the function itself may
be represented at the ontology level as an instance of an expression meta-
model4.

Moreover, on the database site, a database administrator may implement the
function as a database-defined function, allowing a user to query the database
by means of context parameters and context-dependant property values.

Of course, the ontology designer may decide to freeze all the context parameter
values within a property definition, like: hair color when birth; life time for
100 Pascal radial load and 6000 RPM; cheapest fare when 65 years old. But, if
the whole evaluation context is not specified within a property definition, this
property shall be represented as a context-dependent property. In this case, the

4 This expression meta-model is defined in ISO13584-20.

194 G. Pierra

context parameters of which its value depends shall be explicitly modeled at the
ontology level, together with the dependency relationships.

Note that representing instances is a question of schema and not of ontology.
As discussed in Sciore et al. [31], all the context-parameter/value pairs that char-
acterize a context dependent property value shall be represented by some means:
at the property value level, at the instance level if the same context has been
used for all the instance properties, or even at the level of the whole database
if properties of all instances were evaluated in the same context. Anyway, the
PLIB ontology model includes axioms that ensure that context-dependant values
cannot exist in a model without their evaluation context.

4.7 Representation of Value Scaling

To provide for automatic value conversion and integration, units and currencies
must be formally modeled. But they may be represented either at the ontology
definition level, or at the value level. In a PLIB ontology, default units have to be
represented at the ontology property definition level, together with alternative
units. The default unit may be overridden by an alternative unit at the value level
by associating each value with its own unit. The unit model allows to represent
both dimensional exponents for a physical quantity, and all kinds of measure
unit: either SI unit (e.g., millimeter), derived (e.g., m/s), or conversion-based
unit (e.g., inch).

4.8 From Ontology to Schema

Provided that property inheritance and referential integrity is ensured, any sub-
set of classes of a CCO, each one associated with any subset of its applicable prop-
erties, defines a database schema. We call ontology-based database (OBDB)[28]
a database (1) that explicitly represents an ontology, (2) whose schema refers to
the ontology for each of its represented class and property. In such a database,
each data may be interpreted in a consistent way using the meaning defined for
the corresponding ontology entry. Note that an OBDB is not required to popu-
late either all the classes of its ontology or all the properties defined for a given
class. Moreover, provided that the link from data to ontology is preserved, the
schema structure is not required to preserve the ontology structure. Inheritance
composition and view-of relationship may be ”flattened”. This means that values
representing:

– properties of a definition class instance,
– properties of a part of this instance, and
– properties of a functional model class instance that is view-of the definition

class instance

may all appear as values in the same database relation. This shows the diversity
of the various schemas that may be built just from the same ontology while
preserving semantic integration capabilities.

Context Representation in Domain Ontologies 195

5 Formal Definition of PLIB Ontologies

In section 4 we have outlined, through partial schemas, how PLIB ontologies
and ontology-based data were specified and exchanged using an executable data
specification language. We also detailed informally the various mechanisms used
for making context explicit in PLIB ontologies. In this section, we present a
formal model of PLIB ontology semantics independent of any syntax (note that
an XML syntax, called OntoML, is currently under ballot within ISO as an al-
ternative for exchanging PLIB ontologies). This model covers globally the PLIB
specification. Its only restriction is to focus on ontologies that consists of def-
inition classes (no functional model class or point of view class as the use of
these construct is not widespread). A PLIB ontology may be defined separately
as a single ontology, but it may also be mapped onto one (or several) stan-
dard ontologies. These two models are presented respectively in 5.1 and in 5.2.
Clause 5.3 outlines how a shared ontology and various mapped ontologies may
be used to integrate heterogeneous data bases. To illustrate the various aspects
of the formal definitions, example 3 represents formally the ontology described
in example 1

5.1 Single PLIB Ontology

Formally, a single PLIB ontology may be defined as a 8-tuple :
O =< C, P, U, IsA, PropCont, ClassCont, V alCont, V alScale >,

where:

– C is the set of classes used to describe the concepts of a given domain;
– P is the set of properties used to describe the instances of C; P is partitioned

into Pval (characteristics properties), Pfonc (context dependent properties)
and Pcont (context parameters);

– U is the set of units of measure, including currencies, used to describe the
values of the properties of a given domain that define a measure;

– IsA : C → C is a partial function5 that associates to a class its smallest
subsumer6; IsA implies inheritance of both visible properties (as visible)
and of applicable properties (as applicable);

– PropCont : P → C associates to each property the higher class where it is
meaningful;

– ClassCont : C → 2P associates to each class all the properties that are
applicable to every instances of this class (rigid properties);

– V alCont : Pfonc → 2Pcont associates to each context dependent property the
context parameters of which its value depends;

– V alScale : P → U ×2U is a partial function that associates to each property
that defines a measure the default unit used to represent its values, and,
possibly, the other units that may be used to override the default unit.

5 IsA is assumed to define a single subsumption hierarchy.
6 C1 subsumes C2 iff ∀x ∈ C2 ⇒ x ∈ C1.

196 G. Pierra

Example 3. Definition of the circular bearing ontology presented in example 1
is as follows.

– C = {circular bearing, circular ball bearing};
– Pval={inner diameter, outer diameter, width, ball radius}, Pcont ={velocity,

radial load, axial load}, Pfonc = {life time};
– U = {millimeter, meter, revolutions per minute, newton, hour };
– IsA(circular ball bearing) = circular bearing, IsA(circular bearing) = ∅ ;
– PropCont(inner diameter | outer diameter | width | velocity | radial load |

axial | life time) = circular bearing, PropCont(ball radius) = circular ball
bearing;

– ClassCont(circular bearing) = {inner diameter, outerdiameter, width, ve-
locity, radial load, axial load, life time}, ClassCont(circular ball bearing) =
{ball diameter};

– V alCont(life time) = {velocity, radial load, axial load};
– V alScale(inner diameter | outer diameter | width | ball radius) = (millime-

ter, {meter}), V alScale(radial load | axial load) = (newton , {}), V alScale
(velocity) = (revolutions per minute, {}), V alScale(life time) = (hour, {});

Example 4. Let’s assume that, using some bearing ontology, a user queries the
life-time of a circular bearing whose part identification property equals XYZ
when its velocity is 1500 rpm and it supports a radial load of 6000 N. Using the
OntoML PLIB syntax, a system answer would be as follows (all class and prop-
erty UIds come from a bearing ontology standardized as ISO 23768, the codes
of class and properties have been changed to reflect their meaning, all concepts
are in version 1, and condition is the OntoML tag for context parameters):

<item class-ref="ISO23768#CIRCULAR_BALL_BEARING#1">
<property-value property-ref="ISO23768#PART_IDENTIFICATION#1">

<val:string-value >XYZ</val:string-value>
</property-value>
<property-value property-ref="ISO23768#LIFE_TIME#1">

<val:real-value>20000</val:real-value>
<val:condition>

<val:element property-ref="ISO23768#VELOCITY#1">
<val:real-value>1500</val:real-value>

</val:element>
<val:element property-ref="ISO23768#RADIAL_LOAD#1">

<val:real-value>6000</val:real-value>
</val:element>

</val:condition>
</property-value>

</item>

Four axioms are defined on this formal PLIB model. If we define recursively the
visible properties as7:

visible(c) = visible(IsA(c))
⋃

PropCont−1(c),
then the following axioms shall hold :
7 To simplify notation, we extend all functions f by f(∅) = ∅.

Context Representation in Domain Ontologies 197

1. IsA defines a single sumsumption hierarchy: the graph G whose vertex are
classes and whose edges are the IsA relationships is a forest, i.e., a disjoint
union of trees. G is defined by:
G = {C, {(c1, c2)}|c1 ∈ C ∧ c1 ∈ Dom(IsA) ∧ c2 ∈ IsA(c1)}

2. IsA implies inheritance of applicable properties:
ClassCont(c) ⊇ ClassCont(IsA(c))

3. A context-dependent properties must not be defined in a class that does not
belong to the domain of the context parameters of which it depends:
∀c ∈ C, p ∈ Pfonc p ∈ ClassCont(c) ⇒ V alCont(p) ⊂ ClassCont(c)

Moreover, for stand-alone ontologies, one more axiom applies: only meaningful
properties (i.e., visible properties) may become applicable :

(4a) ClassCont(c) − ClassCont(IsA(c)) ⊂ visible(c)

5.2 Mapped PLIB Ontology

A major focus of PLIB ontologies being heterogeneous data source integration,
PLIB does not assume that all data sources use the same ontology. Each data
source may build its own local ontology without any external reference. It may
also build it based upon one or several existing ontologies (e.g., standard ones).
A class of a local ontology may be described as subsumed by one or several other
class(es) defined in other ontologies by the case-of relationship. Through this
relationship the subsumed class may import properties (their UIds and defini-
tions are preserved, as presented in 4.2). But it may also map properties that
are defined in the referenced class(es) (the properties are different but they are
semantically equivalent) . A class of a local ontology may also define properties
that are neither imported nor mapped.

A PLIB ontology Om that includes mapping onto one (or several) other on-
tologies may be formally defined as a pair: Om =< O, M >, where : O =<
C, P, U, IsA, PropCont, ClassCont, V alCont, V alScale > is an ontology, and
M = {mi}, is a mapping defined as a set of mapping objects.

Each mapping object has four attributes: m=< domain, range, import, map >

– domain ∈ C defines the class that is mapped onto an external class by a
case-of relationship;

– range ∈ UId ⊂ {string} is the universal identifier of the external class onto
which the m.domain class is mapped;

– import ∈ 2p is a set of properties visible or applicable in the m.range class
that are imported in ClassCont(m.domain);

– map ⊂ {(p, id) | p ∈ P ∧ id ∈ UId ⊂ {string}} defines the mapping of
properties defined in the m.domain class with equivalent properties visible
or applicable in the m.range class. The latter are identified by their UIds.

Note that each mapping object defines a subsumption relationship between
the m.range and m.domain classes. Nevertheless, the m.range class does not
belong to C. The interpretation domain of the referencing ontology remains
different from the one of the referenced ontology. Note also that when properties
are imported, they belong to P .

198 G. Pierra

Fig. 3. An example of a reference ontology (a) and of an user defined ontology (b)

Example 5. Figure 2 (a) presents a single ontology. Class hierarchy is represented
by indentation. P = {mass}. The mass properties applies to hardware and com-
ponents, but not to software and simulation models. mass is visible at the level
of resources : PropCont(mass) = resources, with a definition s. t. ”the physical
mass of a resource that is a material object”. It becomes applicable in hardware
and components : ClassCont (hardware) = {mass}; ClassCont (component) =
{mass}

Example 6. Figure 2 (b) presents a (user-defined) ontology mapped on a refer-
ence ontology (a). C = {items, products, computer hardware, electronic compo-
nents, software} and P = {mass}. M = m1, m2, m3, m4 with m1 =(item, id1, (),
()) ; m2 = (products, id1, (id2), ()) ; m3 = (computer hardware, id4, (), ()) ; m4
= (electronic components, id7, (), ()). We note that no properties are mapped,
they are all imported.

All the axioms for single ontologies hold. The specific axiom (4a) becomes (4b
and 4c) that state that imported properties belongs to the set of applicable
properties of the importing class (and of its subclasses), and that the other new
applicable properties of the importing class shall belongs to its visible properties.
(4b) ∀m ∈ M, ClassCont(m.domain) ⊃ m.import,
(4c) ∀m ∈ M, LetM(m) = {mi ∈ M | mi.domain = m.domain}

(ClassCont(m.domain) − ClassCont(IsA−1(m.domain)) −
⋃

mi∈M(m)

mi.import)

⊂ visible(m.domain)

As shown by Figure 2, the structure of a (user) ontology may be quite dif-
ferent from the one of a standard ontology it references. Nevertheless, a system
storing the user ontology < O, M > may automatically answer queries against

Context Representation in Domain Ontologies 199

a standard ontology onto which O is mapped. It may also migrate instance data
from its local user ontology to the standard ontology.

Note that the above mapping only allows to query local ontologies through
one, or a set of standard ontologies of which the former are case-of, and to
return the answer as standard ontology individuals. A typical application is the
case where component provider data sources are based on ontologies defined as
specialization, through case-of, of a standard ontology. The customer formulates
its query in terms of the standard ontology. The answers is also returned in
terms of the standard ontology, whatever local ontology is used by the provider.
Nevertheless, this approach does not allow:

– to know the precise definition of the provider product; for example if ad-
ditional properties were defined by the provider, value of these properties
cannot be returned in the answer;

– to store automatically the returned data in the customer database when the
customer has also created its own local ontology by specialization from the
same standard ontology, as I recommend it in 6.

Concerning the first problem, if the customer needs this precise information, the
provider may return the answer not as a projection onto the standard ontology,
but in the native terms of the provider ontology together with the relevant spe-
cialization of the standard ontology defined locally. Then, these two pieces of
information may be integrated automatically within a customer ontology-based
database providing fine grain access to provider-defined specialization. This ap-
proach, called ExtendOnto, was proposed in [2]. Note that such an approach
may be followed both with PLIB ontologies, using one of the PLIB exchange
format, and with C-OWL [4] ontology, using OWL syntax.

Example 7. Let’s assume that in Figure 2, 2a is the standard ontology and 2b
is the provider ontology, and that a customer wants to retrieve those hardware
products whose mass is less that 104 .

The provider answer may consist of two parts:

1. the computer hardware class definition together with all its applicable prop-
erties and its subsumption relationship with the standard hardware class;

2. the set of instances of the computer hardware class that correspond to the
customer request.

Concerning the capability for a customer to map a set of standard-ontology-
defined instances onto its own locally defined specialization of the standard on-
tology, this can be done by adding to each mapping object m a fifth attribute
called filter that is a predicate over the subsuming class instances:

filter : (class-of(m.range))I −→ Boolean.8

The meaning of such a filter is that all instances of the subsuming class for
which the predicate holds are members of the subsumed class:
∀x ∈ (class-of(m.range))I , m.filter(x) =⇒ x ∈ m.domain.
8 We note class-of the function that associates to a class identifier the corresponding

class. As usual, we note (.)I the interpretation function.

200 G. Pierra

Example 8. Let’s now assume that, in Figure 2, 2a is the standard ontology
and 2b is the customer ontology. The customer has retrieved those hardware
products whose mass is less that 104, and the value of the category property
of these hardware products. If, in the mapping m of his/her computer hardware
class onto the standard hardware class, the following filter was added :
m.filter = (category = ”computer”),
then all the returned hardware instances whose category values are ”computer”
are automatically recorded as a computer hardware instances. Other hardware
instances are not recorded in the customer database.

5.3 Automatic Integration of Data Sources through a Priori
Ontology Mapping

In the domains where it has been feasible (possibly using the context representa-
tion mechanisms defined in this paper) to define a consensual domain ontology,
this ontology may be used to allow automatic integration of ontology-based data
sources in the following sense:

– Let’s assume that there exist some consensual ontology O over the domain
that is common to all the sources;

– Let’s also assume that each local source Si is associated with a local ontology
Oi and that each class Cij of Si that is in the domain modeled by O is mapped
by a subsumption relationship (e.g. case-of), either directly or indirectly
(through inheritance within Oi), onto its smallest subsuming class Cj in O
(smallest subsuming class reference requirement: SSCRR) [2]

– Then, each local source, whatever its local ontology, may answer queries
stated in terms of O.

Note that this automated integration technique leaves a lot of schematic au-
tonomy to each data source. It only assumes that each database administrator
wants to make its data available in terms of a standard domain ontology. Thus,
each administrator is required to describe a priori a mapping between its own
local ontology and the consensual ontology by means of a subsumption rela-
tionship ensuring the SSCRR assumption, and to import or to map properties
having a common meaning. This a priori approach, different from most existing
approaches where ontology mapping is done at integration time [23], seems to
suit quite well the needs of a number of Web applications, including in particular
B2B e-commerce. This approach is discussed in more details in [2].

6 A Road Map for Implementing Ontology-Based
Databases in Manufacturing Enterprises

Currently, most of manufacturing enterprises still record their component infor-
mation in conventional component databases where the various components are
all described by the same set of relational attributes, one of them encoding in
a long string (often called ”designation”) all the engineering properties (Fig. 3).

Context Representation in Domain Ontologies 201

Such a representation has two major drawbacks. At the cost level, conventional
component databases promote the increase in the number of similar components.
Indeed, when a designer is searching for a component, there are very few chances
that the best existing candidate be retrieved using string matching. As a result,
new components are created again and again, increasing dramatically the cost
of company products. At the quality level, few engineering properties may be
encoded in a single string. Therefore, components are often selected only from
force of habit without checking for each particular design whether all the engi-
neering requirements of the problem at hand are really fulfilled by the selected
component.

’SCREW-ISO1014-L10-D5-GRADa’

Fig. 4. Engineering information encoding in usual component database

Improving this situation requires migrating from conventional component
database to engineering database where each class of components is defined
by its own engineering properties. Taking into account that standard ontologies
are emerging in more and more industrial domains, a major issue is to decide
whether the corporate engineering database should use a private ontology or one
(or a set of) standard ontology.

The direct use of standard ontologies may seems attractive, but it would have
several drawbacks.

– A number of domains being not yet addressed, it would need to wait, but
the market is not waiting.

– Even if the enterprise industrial sector is addressed, the relevant standard
ontology probably does not contain all the classes and properties needed.
And it surely contains a number of classes which are useless.

– Standards are rather stable. Nevertheless each standard is to be updated
from time to time. Remaining in line with a standard ontology might request
to change the corporate database schema when it is no longer in line with
updated standards.

Contrariwise, developing its own corporate ontology would have a number of
advantages.

– It is possible immediately, whatever the particular industrial sector is.
– Provided that there exist some mechanisms allowing to control impact of

standard ontology evolution onto corporate ontology evolution, it would al-
low to gather standard definitions and local definitions. The corporate ontol-
ogy may borrow class definitions and import standardized properties from
standard ontologies, while adding company-specific classes and properties.

– It would ensure that each company remains free to upgrade its own ontology
when and how it is needed, either by importing new standard properties or
by creating new proprietary elements.

202 G. Pierra

Note that both PLIB, through case-of, and OWL, through C-OWL [4] offer
suitable mechanisms for controlling impact of standard ontology evolutions over
local ontologies.

case-of

case-of

case-of

case-of

case-of

Local properties
part number
life cycle
...

capacitors conductors

electronics

bearings gears

basic

mechanics

thermometer thermowell

process control

local ontology

Fig. 5. Defining corporate ontology from standard ontologies (IEC 61360-4:1998 and
ISO 13584-501:2006)

This suggests the following road map for switching from conventional compo-
nent databases to ontology-based engineering databases.

1. Define an ontology that consists of a single class to host those generic
properties that need to be available for describing any existing component.
Definition of these generic properties must take into account both existing
standard ontologies and the current content of the company conventional
component database if any. Then, this ontology will be referenced by the
main corporate ontology and all the classes where generic properties need to
be used will be subsumed by this class (in PLIB, using case-of).

2. Define a proprietary overall classification of the various component domains
until class nodes where generic search would make sense (e.g., metric screw,
circular bearing).

3. At the level of each of these classes, define the technical properties needed
for characterizing their components, importing as many properties as possible
from existing standard ontologies using subsumption (in PLIB, using case-of).

4. If some needed properties require more precise class for defining their ap-
plication domain, refine the existing classes using subsumption relationship
from corporate classes, and possibly from standard classes when properties
of which they define the domain need to be imported.

5. Use this ontology structure for defining the logical schema of the new corpo-
rate engineering database, implemented either on top of an OBDB (ontology
within the database) or on a relational or object relational DBMS.

6. Extend progressively the existing schema when new needs, and possibly new
standard ontologies, emerge.

7. If automatic exchange of component information appears both feasible and
useful, define mapping from proprietary class and property onto standard
class and property when the latter become available.

Context Representation in Domain Ontologies 203

7 Related Work

We discuss below three research threads deeply connected with the material
presented in this paper: (1) the role of context representation in data integration,
(2) context representation in some ontology models, and (3) some proposed
approaches for ontology-based data integration.

7.1 Context Representation for Semantic Integration

Importance of context representation for data integration was identified by sev-
eral researchers in the field of multidatabase system in the 90’s. Kashyap and
al. [19] proposed to represent the intentional definition context, at the schema
level, as a set of meta-attributes expressing intentional properties, and in par-
ticular the constraints each object must fulfill. They proposed to use descrip-
tion logic (DL) to reason over such a context. But, in this work, the evaluation
context of property values was only informally defined. Sciore and al. [31] pro-
posed to represent value context at the value level by means of another set
of meta-attributes. For these authors, a semantic value is a piece of data to-
gether with its associated context. This context may be represented, e.g., as a
LISP-like list of meta-attribute-value pairs, or a set of environment variables.
Following this work, the COntext INterchange project (COIN) was developed in
MIT [13,14]. This project noted that a number of property values depends both
of the evaluation context in which they are evaluated, and on the way in which
they are represented. They proposed to associate with properties both attributes
and modifiers. Attributes characterize the evaluation context of property values
(e.g., the date where some financial property was evaluated). Modifiers charac-
terize how property values should be interpreted (e.g., the currency in which it
is represented, and possibly the scaling factor used to encode the value). In an
integration process, both the information source and the information receiver
specify their respective context for all the properties of some shared ontology.
Then, a context mediator ensures the conversion of data from the export context
to the import context to achieve interoperability at the semantic layer.

The idea to associate to each source the context of all its information element
as a set of meta-data was also followed by Ziegler et al. [35] in the SIRUP project.
The SIRUP system assumes the existence of one or several shared ontologies,
but these ontologies are not supposed to explicitly define in which context prop-
erties are evaluated and represented. Therefore, source owner must build an
intermediate model, called IConcepts (intermediate concepts), where each on-
tology concept is associated with ”extensive meta-data ...(attribute data types,
measurement unit, precision, constraints, etc)” [35].

In the context of data warehousing, a powerful data integration and reconcilia-
tion approach based on value context representation was proposed by. Calvanese
et al. [5]. In this approach, domain conceptual model and source conceptual mod-
els, similar to ontologies, are formalized using a specific description logic, called
DLR, which supports n-ary relations. Articulations between global model and

204 G. Pierra

source models are specified by means of inter-model assertions, and the links be-
tween conceptual and logical levels is formally defined by associating with each
relational table a query over the conceptual model that describes its content.
This query is adorned by annotations that represent the local value context of
each table column (e.g., the currency used for a price). Data conflicts are avoided
by declaratively specifying suitable matching, conversion and data reconciliation
operations by means of non-materialized views adorned by the name of a pro-
gram able to compute the view. Then, a re-writing algorithm is able to compute
automatically (or semi-automatically) the query allowing to load the various
data warehouse relations.

If all these contributions developed efficient integration algorithms once value
contexts are made explicit, up to now, few ontology models provided the nec-
essary meta-attributes. Thus, context representation could not be provided by
source owners. It needed to be done at source integration time, thus preventing
automatic integration. Extending ontology models to support extensive context
representation, as proposed by this paper, would constitute a major step toward
automatic integration of heterogeneous data sources.

7.2 Context Representation in Ontology Models

Currently, most ontology models, and in particular OIL [11], DAML [6] and OWL
[20] are based on DL. The main focus of these ontology languages is semantic
annotations of Web resources using terms, and inferences over these terms. As
a rule, DL-based ontologies consist of two parts. The TBox specifies class-level
and property-level axioms. Class, and possibly properties, are structured as a
subsumption lattice. The ABox (that may be empty) consists of a number of
individual assertions. A class lattice is a powerful means for representing class
definition context as it supports two important reasoning tasks [1]. Subsumption
checking amounts to check whether a class is a subclass of another class. Class
membership inference allows to checking whether an individual is a member of
a specific class.

Concerning property definition context, most formalisms allow (but do not
require) that a property is associated with a domain. Provided that this ca-
pability is systematically used in each source ontology and that ontology-level
information may be accessed at integration time, an integration system may be
able to distinguish, e.g., department.name and employee.name and to know that
these two attributes are not semantically equivalent. Moreover, the C-OWL ex-
tension of OWL [4] allows to contextualize the interpretation of OWL constructs
when they are imported from an ontology into another one. In such a case, the
classical OWL semantics [25] assumes the existence of a unique interpretation
domain used both for the referencing ontology and the referenced ontologies.
This may lead to inconsistency, in particular when imported ontologies evolve.
To the contrary, C-OWL associates with each ontology its own local domain
[4]. The various domains may overlap but they are different. For the importing
ontology, the local interpretation of an imported construct, i.e., concept or role,
is different from its interpretation in its source ontology. This interpretation is

Context Representation in Domain Ontologies 205

restricted to the set of objets that belong to the local interpretation domain
of the importing ontology. Bridge rules may be defined between imported and
importing ontology constructs, thus controlling how object may be mapped, or
migrated, from an imported ontology domain to a local domain. Such a do-
main contextualisation provides the required autonomy for corporate ontology
to implement the road map proposed in section 6 also in OWL.

So, DL-based ontologies allow to represent important aspects of schema def-
inition context and to contextualize interpretation domain. But they are much
less efficient for representing context at the extensional level. Indeed, most DL
languages support only unary (classes) and binary (properties) predicates. And
binary predicates may only have class as a domain. Therefore, it is impossible,
in DL-based ontologies, to connect formally two properties. It is neither possible
e.g., to define, like in COIN, that the value of a financial property depends upon a
date, or that a length depends upon a temperature, nor to express that the finan-
cial value is represented in billions of Euros, the length in millimeters, and the
temperature in degree Celsius. These drawbacks of DL-based ontology languages,
that exist also for OWL, require evolution of these languages, as suggested in
this paper, for making them really usable in domains like engineering.

7.3 Ontology-Based Integration of Information

Various approaches have been developed for ontology-based integration of infor-
mation [33]. In the single ontology approach each source is related to the same
global domain ontology (e.g., PICSEL [12], COIN [14]). As a result, a new source
cannot bring any new or specific concept without requiring change in the global
ontology. In the multiple ontologies approach (e.g., Observer [21]), each source
has its own ontology developed without respect of other sources. In this case the
inter-ontology mapping is very difficult to define. This is because the different
ontologies may use different aggregation and granularity of the ontology con-
cept [33]. To overcome the drawback of single or multiple ontology approaches,
several researches have proposed an hybrid approach where each source has its
own ontology, but where all ontologies are connected by some means to a com-
mon shared vocabulary. For instance, BUSTER system [32] assumes that local
ontologies are only restrictions of the global ontology. PLIB-based integration
follows the hybrid approach and proposes a formal model for ontologies and on-
tology mappings. But, unlike BUSTER it does not restrict source autonomy and
sovereignty: each source may define its own classes and completely re-structure
the class subsumption hierarchy. It may also add whatever properties. To give
modeling autonomy to the local sources, we use the same kind of ontology ar-
ticulation as ONION [23]. But, unlike ONION, we suppose that articulation
between local and shared ontology is done a priori by the local source admin-
istrator (as done in another context in e.g., [35]). As a result, our integration
approach is completely automatic and it scales to any number of data sources
[2]. Note that the PLIB ontology model is the first model we know that explicitly

206 G. Pierra

represents ontology mapping within a local ontology as a first class citizen (see
4.2: case of and imported properties attributes) as suggested by model manage-
ment vision [3].

8 Conclusion

The concept of a domain ontology was mainly studied in computer science
since early 90’s. Its intent is to capture and to represent the essential nature
of things of a domain through class structures and properties. In a number of
computer disciplines, such an explicit representation of semantics appeared like
some kind of philosopher’s stone and a lot of languages, understandings, mod-
els and approaches were developed. Not surprisingly, differences in approaches
reflect differences in the addressed problems, and it is often unclear how the
various approaches and languages fit with each other and how they may be used
for addressing a particular problem.

In this paper, we have investigated the use of ontology in a structured data
integration perspective. First we have proposed a taxonomy of ontologies. Lin-
guistic ontologies (LO) represent words and words relationships. They are nat-
ural language-oriented. They provide, in particular, for intelligent structuring,
modeling and querying set of documents, such as those available on the Web. But
they may also be used for defining a canonic human vocabulary for a particular
domain, or for searching for equivalence between concepts through relationships
between their linguistic descriptions. Conceptual ontologies (CO) represent con-
cepts, as they are manipulated in the structured data universe like database
or data engineering, and concept properties. Like for LO, two slightly different
but complementary problems may be addressed using CO. The first one is to
define a set of concepts allowing software systems, databases or agents existing
within some community to exchange unambiguously information about a do-
main. For this purpose, concept equivalence should be avoided and canonical
conceptual ontology (CCO) are needed. The second one is to also map different
conceptualizations over the same domain. In this case, several CCOs need to
be gathered within a unique non-canonical conceptual ontology (NCCO) that
includes operators for reasoning over concept equivalence. In both cases how-
ever concept definitions and value interpretations must be unambiguous across
their target community, and we have shown that this requests, in turn, ontology
models of which context sensitivity has been explicitly represented and mini-
mized. We have defined five principles to ensure that the definitions and value
representations within an ontology are not context-sensitive and may thus be
used to support semantic integration of data while leaving enough autonomy to
the various sources. We have also shown how these principles have been imple-
mented within the PLIB model, a CCO model developed to support integration
of industrial data. The goal was not to promote PLIB as an alternative ontology
language, but to identify and to illustrate those mechanisms that any ontology
formalism should support to be usable for large-size integration of data. These
principles are as follows:

Context Representation in Domain Ontologies 207

– Definition context representation. Each property should be defined in the
context of a class. Each class should define all its rigid properties, at least
in some very broad context common to all the target data sources.

– Point of view representation. If several perspectives are needed over the
domain, an ontology of perspectives should be defined and each needed per-
spective should correspond to a specific domain ontology.

– Locality of interpretation context. Resource importation between ontology
should be feasible on a class per class basis, and then on a property per
property basis. Interpretation domains of both referenced and referencing
ontologies should be separated.

– Value context representation. Value dependency between property values
should be explicit.

– Value scaling representation Unit and scaling of values should be explicit
and computer interpretable.

A first version of the PLIB ontology model is now standardized, and a number
of standard ontologies and of implementations are now emerging in various do-
mains, and in particular in e-procurement and e-engineering that were the initial
domains targeted by PLIB. Currently, most major manufacturing enterprises are
switching from conventional component databases to ontology-based engineering
databases that should allow to reduce useless component diversity, to improve
component selection support and to facilitate integration of supplier catalogs,
whatever the ontology model used. In this domain, our recommendation is not
to use directly standard ontologies if they exist. It is to define a proprietary on-
tology and (1) to map classes onto standard classes if and when they exist, and
(2) to import as much properties as needed properties from standard ontologies.
Not only this approach may be followed immediately. But it also seems much
more promising for the future.

Our current implementation of ontology-based databases are mainly based on
the PLIB model with mapping onto this model of other ontology-based data [7].
We are now developing layered implementations [10] based on the CID model we
have proposed and where various ontology models may cooperate. At the data
level, all the context representation mechanisms are implemented together with
a canonical data model. In the above layer, some concept equivalence operators
from OWL and FLIGHT are implemented, providing for some ontology-level
reasoning. In the upper layer, linguistic access is provided, in particular using
ontology model-independent query language [17]. We are also further developing
the PLIB model, adding integrity constraints and UML/XML [29] view over this
model.

Acknowledgements

The author would like to thank the anonymous referees who provided helpful
and valuable comments on an earlier version of this paper. The research reported
here was supported in part by EU Project Esprit 8984 and IST-1999-12238 and
by ANR grant 05RNTL02706.

208 G. Pierra

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook. Cambridge University Press, Cambridge (2003)

2. Bellatreche, L., Dung, N.X., Pierra, G., Dehainsala, H.: Contribution of ontology-
based data modeling to automatic integration of electronic catalogues within en-
gineering databases. Computers in Industry 57(8-9), 711–724 (2006)

3. Bernstein, P.A., Havely, A.Y., Pottinger, R.A.: A vision of managament of complex
models. SIGMOD Record 29(4), 55–63 (2000)

4. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:
Contextualizing ontologies. Journal of Web Semantics 1(4), 325–343 (2004)

5. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: A principled
approach to data integration and reconciliation in data warehousing. In: DMDW
1999. Proceedings of the Intl. Workshop on Design and Management of Data Ware-
houses, Heidelberg, Germany (June 14-15, 1999)

6. Connolly, D., Stein, L., McGuinness, D.: Daml-ont initial release (2000),
www.daml.org/2000/10/daml-ont.html

7. Dehainsala, H., Pierra, G., Bellatreche, L.: OntoDB: An ontology-based database
for data intensive applications. In: Kotagiri, et al. (eds.) DASFAA 2007. LNCS,
vol. 4443, pp. 497–508. Springer, Heidelberg (2007)

8. Elmagarmid, A., Rusinkiewicz, M.: Heterogeneous Autonomous Database Systems.
Morgan Kaufmann, San Francisco (1999)

9. Everett, J.O., Bobrow, D.G., Stolle, R., Crouch, R.S., de Paiva, V., Condoravdi, C.,
van den Berg, M., Polanyi, L.: Making ontologies work for resolving redundancies
across documents. Communication of ACM 45(2), 55–60 (2002)

10. Fankam, C., Aı̈t-Ameur, Y., Pierra, G.: Exploitation of ontology languages for
both persistence and reasoning purposes: Mapping PLIB, OWL and flight ontol-
ogy models. In: WEBIST 2007. Proc. of Third International Conference on Web
Information Systems and Technologies, pp. 254–262 (2007)

11. Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider,
P.F: Oil: an ontology infrastructure for the semantic web. IEEE Intelligent Sys-
tems 16(2), 38–45 (2001)

12. Goasdoué, F., Lattès, V., Rousset, M.C.: The use of carin language and algorithms
for information integration: The picsel system. International Journal of Cooperative
Information Systems (IJCIS) 9(4), 383–401 (2000)

13. Goh, C.H., Madnick, S.E., Siegel, M.: Context interchange: Overcoming the chal-
lenges of large-scale interoperable database systems in a dynamic environment. In:
CIKM 1994. Proceedings of the Third International Conference on Information
and Knowledge Management, pp. 337–346 (December 1994)

14. Goh, C.H., Bressan, S., Madnick, E., Siegel, M.D.: Context interchange: New fea-
tures and formalisms for the intelligent integration of information. ACM Transac-
tions on Information Systems 17(3), 270–293 (1999)

15. Gruber, T.: Toward principles for the design of ontologies used for knowledge shar-
ing in formal ontology. In: Guarino, N., Poli, R. (eds.) Conceptual Analysis and
Knowledge Representation, Kluwer Academic, Dordrecht (1993)

16. Guarino, N., Welty, C.A.: Evaluating ontological decisions with ontoclean. Com-
munications of the ACM 45(2), 61–65 (2002)

www.daml.org/2000/10/daml-ont.html

Context Representation in Domain Ontologies 209

17. Jean, S., Aı̈t Ameur, Y., Pierra, G.: Querying ontology based databases using
ontoql (an ontology query language). In: ODBASE, pp. 704–721 (2006)

18. Jean, S., Pierra, G., Ameur, Y.A.: Domain ontologies: A database-oriented analysis.
In: Filipe, J., Cordeiro, J., Pedrosa, V. (eds.) WEBIST (Selected Papers). Lecture
Notes in Business Information Processing, vol. 1, pp. 238–254. Springer, Heidelberg
(2006)

19. Kashyap, V., Sheth, A.P.: Semantic and schematic similarities between database
objects: A context-based approach. VLDB Journal 5(4), 276–304 (1996)

20. McGuinness, D.L., Harmelen, F.: OWL web ontology language overview. W3C
Recommendation (February 10, 2004)

21. Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.P.: Managing multiple informa-
tion sources through ontologies: Relationship between vocabulary heterogeneity
and loss of information. In: Proceedings of Third Workshop on Knowledge Repre-
sentation Meets Databases (August 1996)

22. Minsky, M.: Matter, mind and models. International Federation of Information
Processing Congress 1, 45–49 (1965)

23. Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation of
ontology interdependencies. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann,
P.C. (eds.) EDBT 2000. LNCS, vol. 1777, Springer, Heidelberg (2000)

24. Noy, N.F., McGuinness, D.L.: Ontology development: A guide to creating your
first ontology. Technical report ksl-01-05 and stanford medical informatics technical
report smi-2001-0880, stanford Knowledge Systems Laboratory (April 2001)

25. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL web ontology language seman-
tics and abstract syntax. W3C Recommendation (February 2004)

26. Pierra, G.: An object oriented approach to ensure portability of cad standard parts
libraries. In: Eurographics 1990. Proceedings of the European Computer Graphics
Conference and Exhibition, pp. 205–214 (1990)

27. Pierra, G.: A multiple perspective object oriented model for engineering design.
In: New Advances in Computer Aided Design & Computer Graphics, pp. 368–373.
International Academic Publishers, Beijing (1993)

28. Pierra, G., Dehainsala, H., Aı̈t-Ameur, Y., Bellatreche, L.: Base de données
à base ontologique: principe et mise en oeuvre. Ingénierie des systèmes
d’information 10(2), 91–115 (2005)

29. Pierra, G., Sardet, E.: Proposal for a XML representation of the PLIB ontology
model: Ontoml. Research Report RR 07-01, p. 188 (2007),
http://www.lisi.ensma.fr/ftp/pub/documents/reports/2007/
2007-LISI-2007-01.pdf

30. Schenck, D., Wilson, P.: Information modelling: The express way. Oxford Univer-
sity Press, Oxford (1994)

31. Sciore, E., Siegel, M., Rosenthal, A.: Using semantic values to facilitate interoper-
ability among heterogeneous information systems. ACM Transactions on Database
Systems 19(2), 254–290 (1994)

32. Stuckenschmidt, H., Vögele, T., Visser, U., Meyer, R.: Intelligent brokering of en-
vironmental information with the buster system. In: Proceedings of the 5th Inter-
national Conference “Wirtschaftsinformatik”, Physica-Verlag, pp. 15–20 (2001)

33. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hübner, S.: Ontology-based integration of information - a survey of existing
approaches. In: Proceedings of the International Workshop on Ontologies and In-
formation Sharing, pp. 108–117 (August 2001)

http://www.lisi.ensma.fr/ftp/pub/documents/reports/2007/2007-LISI-2007-01.pdf
http://www.lisi.ensma.fr/ftp/pub/documents/reports/2007/2007-LISI-2007-01.pdf

210 G. Pierra

34. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Computer 25(3), 38–49 (1992)

35. Ziegler, P., Dittrich, K.R.: User-specific semantic integration of heterogeneous data:
The sirup approach. In: Bouzeghoub, M., Goble, C.A., Kashyap, V., Spaccapietra,
S. (eds.) ICSNW 2004. LNCS, vol. 3226, pp. 44–64. Springer, Heidelberg (2004)

A Annex: PLIB-Related Standards

Some standard numbers are quoted throughout the paper. Formal designations
and some descriptions of these standards may be found at :

– http://www.iso.org/iso/en/CatalogueListPage.CatalogueList ;
– http://www.iec.ch;
– http://www.plib.ensma.fr .

This annex gives a short overview of international standardization activities
around PLIB.

One may distinguish four categories of standards.

A.1 Ontology Model

The standard ontology model was developed as a joint effort of ISO (Interna-
tional Organization for Standardization) and IEC (International electro techni-
cal commission) and published as the ISO 13584 and IEC 61360 standard series.
The ontology model was first published in ISO 13584-42 and IEC 61360-2, as
an EXPRESS specification, further extended in ISO 13584-25. A new edition is
currently in process. An UML / XML self-contained view of the model, called
OntoML (ISO 13584-32), is currently under ballot. Both should be published in
2008.

A.2 Ontology-Based Data

Capability to model and to exchange real world objects as ontology individuals
(e.g., electronic catalogues, ontology-based database content) was specified in
some other parts of ISO 13584, mainly part 20, 24 and 25 that provide both for
static description (i.e., property value pairs) and dynamic behavioral description
by meta-modelling of expressions and functions.

A.3 Methodological Aspect

Over the last two years, a guide for using PLIB ontology model for specification
of product properties and classes was developed. It will be published as ISO/IEC
Guide 77 in 2007, and recommended for use by all ISO and IEC product stan-
dardization committees.

Context Representation in Domain Ontologies 211

A.4 Standard Ontologies

Several standard domain ontologies have been developed or are currently under
development. Some of them are associated with maintenance agencies allowing to
update continuously these ontologies. Examples of already standardized domain
ontologies include : Electronic Components (IEC 61360-4), Laboratory Mea-
suring Instruments (ISO 13584-501), Machining Tools (ISO 13399), Mechanical
Fasteners (ISO 13584-511). Examples of domain ontologies under development
include: Optics and Optronic (ISO 23584), Bearing (ISO 23768).

	Context Representation in Domain Ontologies and Its Use for Semantic Integration of Data
	Introduction
	Concept Ontologies and Linguistic Ontologies
	Concept Ontologies Versus Model
	PLIB: A Context-Explicit Ontology for Data Integration
	Specification of the PLIB Ontology Model: EXPRESS
	PLIB Syntax and Semantics
	Global Structuring of the Definition Context and Point of View Representation
	Representation of the Local Definition Context
	Locality of Ontology Interpretation Context
	Representation of the Local Value Context
	Representation of Value Scaling
	From Ontology to Schema

	Formal Definition of PLIB Ontologies
	Single PLIB Ontology
	Mapped PLIB Ontology
	Automatic Integration of Data Sources through a Priori Ontology Mapping

	A Road Map for Implementing Ontology-Based Databases in Manufacturing Enterprises
	Related Work
	Context Representation for Semantic Integration
	Context Representation in Ontology Models
	Ontology-Based Integration of Information

	Conclusion
	Annex: PLIB-Related Standards
	Ontology Model
	Ontology-Based Data
	Methodological Aspect
	Standard Ontologies

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

