
Continuity and Approximability of Response Time Bounds

S.K Baruah
Department of Computer Science, University of North Carolina, Chapel Hill, USA.

E. Bini
Scuola Superiore Sant’Anna, Pisa, Italy

T.H.C. Nguyen, P. Richard
Laboratoire d’Informatique Scientifique et Industrielle, Ensma, Poitiers,France.

Abstract

Since worst-case response times must be deter-
mined repeatedly during the interactive design of
real-time application systems, repeated exact com-
putation of such response times would slow down
the design process considerably. In this research,
we identify three desirable properties of estimates
of the exact response times:continuitywith respect
to system parameters;efficient computability; and
approximability. We demonstrate that a recently-
proposed technique for estimating the worst-case
response time of sporadic task systems that are
scheduled using static priority upon a preemptive
uniprocessor possesses these properties.

1. Introduction and Motivation

In preemptive uniprocessor sporadic task sys-
tems that are scheduled according to static prior-
ities, the well-known technique ofresponse-time
analysis(RTA) allows for the exact computation
of the worst-case response time of each task in
time pseudo-polynomial in the representation of
the task system. Consider a system ofn tasks
τ1, τ2, . . . , τn, with the i’th task τi characterized
by a worst-case execution timeCi and a minimum
inter-arrival separation parameterTi, and with the

additional constraint that each taskτi have a worst-
case response time≤ Ti. Without loss of general-
ity, assume that the tasks are indexed in decreasing
order of priority. LetRi denote the the worst-case
response time ofτi; RTA asserts that the the value
of Ri is equal to the smallestt satisfying the fol-
lowing equality:

t = Ci +
∑

j<i

⌈
t

Tj

⌉
Cj (1)

One of the features of the worst-case response time
that is easily seen from Equation 1 above is that it
is not a continuous function of system parameters.
For instance in Equation 1, if decreasing someTj

by an infinitesimally small amount causesdRi/Tje
to increase by one, it can be shown thatτi’s re-
sponse time increases by an amount≥ Cj .

Such discontinuities are a major hurdle to a
process of incremental, interactive system design.
Ideally, such an design process would allow for the
interactive exploration of the state space of possible
designs; this would be greatly facilitated if mak-
ing minor changes to a design (equivalently, mov-
ing small distances in the state space of possible
system designs) results in minor changes to system
properties.

Now these discontinuities are unavoidable, since
they are a feature of worst-case response time per
se, and not just of the RTA technique for comput-
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ing them. Nevertheless, we believe that there is
some benefit to studyingupper boundson worst-
case response times that do not suffer such discon-
tinuities with system parameters. If we were to
use these continuous upper bounds (rather than the
discontinuous exact bounds) during the system de-
sign process, then we would know that neighboring
points in the design state space would have simi-
lar response time bounds. (Thus for example if we
were at a point in the design state space where every
task except one had its response-time bound well
within acceptable limits, we could safely consider
making small changes to the task parameters in or-
der to search for neighboring points in the design
state space in which the response time bound of the
non-compliant task is decreased, without needing
to worry that the response time of some currently
compliant task would increase by a large amount.)

Any such continuous upper bound on response-
time is necessarily not tight (since as stated above,
the property of worst-case response-time is itself
not continuous in the system parameters). In other
words, by choosing a continuous upper bound we
would be trading off accuracy for continuity: it is
desirable that this loss of continuity bequantifiedin
some manner in order that the system designer may
determine whether the loss of accuracy is worth the
benefits that continuous bounds provide to the sys-
tem design process.

An additional requirement on such bounds, if
they are to be used repeatedly during an interac-
tive design process, is that they beefficiently com-
putable, preferably in fast polynomial time. (Effi-
cient computation could be another reason for pre-
ferring to use some approximation – continuous or
not – rather than the exact worst-case response-
time of Equation 1, which has a pseudo-polynomial
computation time.)

To summarize the points made above: we are
seeking upper bounds on the worst-case response
time that arecontinuous functions of system para-
meters; in addition, we would like these bounds to
be efficiently computable, and to havequantifi-
able deviationfrom the exact bounds.

2. Approximation results

The theory of approximation algorithms for
combinatorial optimization problem can be used
to quantify the performance guarantee of response
time bounds. The performance guarantee of an al-
gorithm is analyzed through itsapproximation ra-
tio. Let a be the value obtained by an algorithm
A that solves a minimization problem, andopt be
the exact (i.e., minimum) value; algorithmA has an
approximation ratio ofc, wherec ≤ 1, if and only
if opt ≤ a ≤ c× opt for all inputs to the algorithm
A. (If such ac does not exist, then algorithmA is
said to have no approximation ratio — this means
that the bound computed byA can be very far away
from the optimal one.) IfA is a polynomial time al-
gorithm and has a bounded performance guarantee,
then it is called an approximation algorithm.

An efficiently-computable continuous upper
bound on response time is easily derived from the
technique of [3] (this technique was originally pro-
posed in [3] for computing a lower bound):

Ri ≤
∑

j<i Cj

1−∑
j<i Uj

(2)

(Here and henceforth,Ui denotes theutilization
Ci/Ti of taskτi.)

An improved efficiently-computable continuous
upper bound was recently proposed in [1]:

Ri ≤
Ci +

∑
j<i Cj(1− Uj)

1−∑
j<i Uj

def= ubi (3)

In [2] it was shown that the upper bound of [3]
(Equation 2 above) does not have an approximation
ratio. The next result states that neither does the
upper boundubi of [1] (Equation 3 above).

Theorem 1 The upper boundubi of [1] (Equa-
tion 3 above) does not have an approximation ratio.

Proof: We prove this by demonstrating a task
system and a taskτi for which ubi/Ri tends to
∞. Let us represent the parameters of a taskτi by
an ordered pair(Ci, Ti). Consider the following
task set:τ1 = (K, 2K + ε), τ2 = (K, 2K + ε)



and τ3 = (ε, 2K + ε), whereε is an arbitrarily
small positive number andK is an arbitrary number
greater thanε. The utilizationU1+U2+U3 is 1 and
since tasks have all periods equal to2K + ε, then
R3 = 2K +ε using the Rate Monotonic scheduling
policy. The upper bound is:

ubi =
ε + 2K(1− K

2K+ε )

1− 2K
2K+ε

=
ε(2K + ε) + 2K(2K + ε−K)

2K + ε− 2K

=
(2K + ε)ε + 2K(K + ε)

ε

= 4K + ε +
2K2

ε

Thus,

lim
ε→0

ubi = lim
ε→0

(
4K + ε +

2K2

ε

)
= ∞

and the theorem is proved.

3. Resource Augmentation analysis

The results in Section 2 reveal that the upper
boundubi on response-time of [1] does not offer
any quantifiable performance guarantee, according
to the conventional approximation ratio measure
that is used in optimization theory. However, an
alternative approach towards approximate analysis
is sometimes used in real-time scheduling theory –
the technique ofresource augmentation. In this
technique, the performance of the algorithm under
analysis is compared with that of an optimal al-
gorithm that runs on a slower processor.In this
section, we apply this resource augmentation tech-
nique to quantify the deviation ofubi from optimal-
ity.

In obtaining upper bounds to the worst-case re-
sponse time, the first step is typically to replace the
expression within the ceiling function — i.e., the
expression(dt/TjeCj) — in the exact computation
of the worst-case response time (Equation 1) by a
linear approximationLA(τj , t). The approximation
introduced in [1] is as follows:

LA(τj , t) = Uj × t + Cj(1− Uj) (4)

(See [1] for details, and a proof of correctness.)

Now it would be nice if

Cj

⌈
t

Tj

⌉
≤ LA(τj , t)

were to hold for allt ≥ 0; if this were the case,
the correctness ofubi — the fact that it is indeed
an upper bound on the exact worst-case response
time — would follow immediately. Unfortunately,
however, this inequality is not true for allt; indeed,
values oft arbitrarily close to0 bear witness to its

falsity. However, it can be shown1 thatCj

⌈
t

Tj

⌉
≤

LA(τj , t) does indeed hold at all those values oft
which matter:

Lemme 1 For all values oft that are potential val-
ues ofRi,

Cj

⌈
t

Tj

⌉
≤ LA(τj , t)

An upper bound on amount by whichLA(τj , t) de-
viates from its exact value can also be shown:

Lemme 2 For all values oft that are potential val-
ues ofRi,

LA(τj , t) ≤ 2× Cj

⌈
t

Tj

⌉

It can be shown that the boundubi (as defined in
Equation 3 above) is equal to the smallest value of
t satisfying the following inequality:

t = Cj +
∑

j<i

LA(τj , t) (5)

We can use this result to prove a resource-
augmentation bound onubi, as follows. Sinceubi

is the smallest value oft to satisfy Equation 5

1Many proofs are omitted below, for this WIP submission.



above, it must be the case that for allt < ubi

t < Cj +
∑

j<i

LA(τj , t)

⇒ t < Cj + 2
∑

j<i

⌈
t

Tj

⌉
Cj

⇒ t < 2


Cj +

∑

j<i

⌈
t

Tj

⌉
Cj




≡ 1
2

t < Cj +
∑

j<i

⌈
t

Tj

⌉
Cj

That is, the cumulative workload of jobs with prior-
ity greater than or equal toτi’s that must be sched-
uled over the interval[0, t) prior to the completion
of taskτi’s first job in the critical instant exceeds
the total capacity of a processor with computing ca-
pacity1/2 over the same interval. Hence no such
t < ubi can represent the worst-case response time
of τi upon a processor of computing capacity one-
half. Theorem 2 follows:

Theorem 2 The boundubi of [1] (Equation 3) is

1. An upper bound on the worst-case response
time ofτi; and

2. A lower bound on the worst-case response
time ofτi if the system is implemented upon a
processor of speed one-half.

How is the systems designer to interpret The-
orem 2 above? First, it is guaranteed thatubi is
indeed an upper bound onRi; hence, it is a safe es-
timate of the exact worst response time. And while
Theorem 2 is unable to bound the amount by which
ubi exceeds the actual value ofRi (indeed, Sec-
tion 2 has shown that there can, in general, be no
such bound), it does assure the designer that [s]he
could have obtained a worst-case response time no
better thanubi if the system had instead been im-
plemented upon a processor half as fast. Stated dif-
ferently, a processor speedup of two is an upper
bound on the price being paid for using an effi-
ciently computable upper bound on response time
that is a continuous function of the system parame-
ters.

4. Conclusions

We have argued thatcontinuitywith respect to
system parameters is a very desirable property of
response-time bounds, if such bounds are to be
used as an integral part of an incremental, inter-
active, design process. However, such continuity
necessarily comes with a loss of accuracy; in this
work, we have attempted to quantify this loss of
accuracy in some recently-proposed continuous up-
per bounds on response time. We have shown that
while these upper bounds do not offer non-trivial
performance guarantees according to conventional
metrics, we were able to show that a performance
guarantee can indeed be obtained using the concept
of resource augmentation.

Specifically, we considered the response-time
bound presented in [1]. This bound is continuous in
all system parameters, and is very efficiently com-
putable in time linear in the representation of the
task system. We demonstrated that this bound of-
fers the following quantitative guarantee – it is in-
deed an upper bound on the exact response time,
and the exact response time would necessarily be
at least as large as this bound if the system were in-
stead implemented upon a processor that is at most
only one-half times as fast.
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