
Proc. of Ontologies, DataBases, and Applications of Semantics
(ODBASE’2006), Montpellier, France, Oct 31 - Nov 2, 2006.

Querying Ontology Based Database Using
OntoQL (an Ontology Query Language)

Stéphane Jean, Yamine Aı̈t-Ameur, and Guy Pierra

LISI-ENSMA and University of Poitiers
BP 40109, 86961 Futuroscope Cedex, France

{jean,yamine,pierra}@ensma.fr

Abstract. Nowadays, ontologies are used in several research domains
by offering the means to describe and represent concepts of information
sources. Therefore, several approaches and systems storing ontologies and
their instances in the same repository (database) have been proposed.
As a consequence, defining a query language to support ontology-based
database (OBDB) becomes a challenge for the database community. In
this paper, we present OntoQL, an ontology query language for OBDBs.
Firstly, we present formally the OBDB data model supported by this
language. Secondly, an overview of the algebra defining the semantics of
operators used in OntoQL is described. Several query examples showing
the interest of this language compared to traditional database query
languages are given along this paper. Finally, we present a prototype of
the implementation of OntoQL.

1 Introduction

It is well accepted to state that database models have been defined in order to
store collections of data that are instances of given concepts defined by concep-
tual models. Usually, the developed conceptual models are specific to the de-
signed database and the meanings, definitions, descriptions and identifications
of these concepts are not formalized nor stored in the database. Moreover, the
definition of these conceptual models and their translation to logical models have
been well studied by a wide community of researchers. Formal data models and
algebras have been proposed for managing such databases.

Nowadays, several data models recommending the use of domain ontologies to
describe data and their semantics have been developed. These models enable an
user or a system to retrieve the definition, meaning, translation and/or identifier
of a given data item corresponding to a given data concept stored in an ontology.
Therefore, the idea of storing the ontology as well as the data in a single database
model emerged. We call Ontology Based Databases (OBDB) such a database
model.

In parallel to the work consisting in equipping database models with ontolo-
gies led by the database community, the semantic web community made several
persistence proposals to store the data described by instances of RDFS [1] or
OWL [2] schemas. These approaches either define persistence models for RDF

1

* This work has been partly supported by the French ANR under grant ANR05RNTL02706 (e-Wok-Hub).

triples or use specific storage approaches on these instances [3–5]. Languages
exploiting such models have been proposed. Examples are RQL [6], OWL-QL [7]
etc. They support several specific features like instance resonating, graph traver-
sal etc. However, they do not preserve any database compatibility with database
models. Therefore, migration of instances is necessary.

If several persistence data models and query languages have been proposed
by artificial intelligence community for the semantic web, few work have been
conducted and originated from a database-oriented perspective. In this paper,
we present OntoQL, an exploitation language for an OBDB data model, named
OntoDB designed by a layered approach on top of a relational database model.
It has been proved useful for several database applications (e.g. semantic in-
tegration [8]) in several application domains (electronic, automotive, medical
data).

This paper is structured as follows. Next section presents the formalization
of the OBDB data model addressed in this paper. Section 3 presents the algebra
designed for the OntoQL query language and section 4 discusses optimization
techniques for this algebra. Section 5 introduces the OntoQL data definition and
query languages by a set of examples showing the differences with traditional
query languages. Section 6 discusses the OntoQL implementation and processing
issues when implemented on top of an object-relational database (ORDBMS).
Section 7 describes, on a toy example, how our approach runs. Section 8 discusses
related work. Finally, section 9 concludes the paper by summarizing the main
results and suggesting future work.

2 The OBDB Data Model

The OBDB database model is based on the definition of two main related parts:
ontology and content. Instances are stored in the content part while ontologies
are stored in the ontology part.

2.1 Ontology.

The ontology part allows to store ontologies as instances of an ontology model.
It is formally defined by a 7-Tuple as < E, OC, A, SuperEntities, TypeOf,
AttDomain, AttRange, Val >, where:

– E is a set of entities representing the ontology model. It provides with a
global super entity Concept, the predefined entities C and P described below
and user-defined entities.

– OC is the set of concepts of ontologies (classes, properties . . .) available in
the database or that can be constructed by a query. All the concepts of
ontologies have an unique identifier.

– A is the set of attributes describing each ontology concept.

– SuperEntities : E→ 2E1 is a partial function associating a set of super en-
tities to an entity. It defines a lattice of entities. Its semantics is inheritance
and it ensures substitutability.

– TypeOf : OC→ E associates to each concept of an ontology the lower (strongest)
entity in the hierarchy it belongs to.

– AttributeDomain, AttributeRange : A→ E define respectively the domain
and the range of each attribute.

– Val : OC× A→ OC gives the value of an attribute of an ontology concept.

The OBDB data model provides with atomic types (Int, String, Boolean)
and with two parameterized types Set[T] and Tuple. Set[T] denotes a type for
collections of elements of type T and {o1, . . . , on} is an object of this type (the
oi’s are objects of type T). The Tuple[< (A1, T1), . . . , (An, Tn) >] parameterized
type creates relationships between objects. It is constructed by providing a set of
attribute names (Ai) and attribute types (Ti). Tuple[< (A1, T1), . . . , (An, Tn) >]
denotes a type tuple constructed using the Ai attribute names and Ti attribute
types. < A1 : o1, . . . , An : on > is an object of this type (the oi’s are objects of type
Ti). The Tuple type is equipped with the Get Ai value functions to retrieve the
value of a Tuple object o for the attribute Ai. The application of this function
may be abbreviated using the dot-notation (o.Ai)

E provides the predefined entities C and P. Instances of C and P are respec-
tively the classes and properties of the ontologies. Entity C defines the attribute
SuperClasses : C→ SET[C] and entity P defines the attributes PropDomain :
P→ C and PropRange : P→ C. The description of these attributes is similar to
the definitions given for SuperEntities, AttributeDomain and AttributeRange
replacing entities by classes and attributes by properties. Moreover, a global su-
per class Root is predefined.

Finally, an ontology gives a precise definition of concepts with more attributes
(comment, version, multi-lingual definition, synonymous names, . . .) to describe
classes and properties of ontologies. These predefined entities and attributes
constitute the kernel of the ontology models we have considered. User-defined
entities (illustration, document, . . .) and attributes (note, remark, . . .) may be
added to this kernel in order to take into account other specific ontology models.

Notice that the ontologies stored in this part are defined with the different
characteristics shared by the standard ontology models PLIB[9] and OWL[2].
The multi-instantiation and property subsumption (subproperty) specific fea-
tures of OWL are not taken into account in this formalization. They have been
removed to get an optimal database representation (OBDB Light). However, a
full version of the OBDB model with these features is under development (OBDB
Full). Nevertheless, for several examples and significant applications2 3 we have
developed, this limitation had neither effect nor impact on the expressive power
of the treated problems. [10] gives our precise view of ontologies with respect to
their exploitation in a database context.
1 We use the symbol 2E to denote the power set of E.
2 See http://www.plib.ensma.fr for references to IEC/ISO standards ontologies
3 For example, the EPICEM project (http://www.episem-action.org)

2.2 Content.

The content part stores instances of ontology classes. It is formalized by a 5-tuple
< EXTENT, I, TypeOf, SchemaProp, Val > where:

– EXTENT is a set of extensional definitions of ontology classes.
– I is the set of instances of the OBDB. Each instance has an identity.
– TypeOf : I→ EXTENT associates to each instance the extensional definition

of the class it belongs to (collection of its instances).
– SchemaProp : EXTENT→ 2P gives the properties used to describe the instances

of an extent (the set of properties valued for its instances).
– Val : I× P→ I gives the value of a property occurring in a given instance.

This property must be used in the extensional definition of the class the
instance belongs to.

2.3 Relationship Between each Part.

The relationship between ontology and its instances (content) is defined by the
partial function Nomination : C→ EXTENT. It associates a definition by intension
with a definition by extension of a class. Classes without extensional definition
are said to be abstract. The set of properties used in an extensional definition of
a class must be a subset of the properties defined in the intensional definition of
a class (propDomain−1(c) ⊇ SchemaProp(nomination(c))).

2.4 Related work.

Storing ontologies and their instances in databases has been the subject of several
research studies and proposals. In the context of the semantic web, several OBDB
models [3–5, 11] have been proposed to manage data described by ontologies
represented in the standard ontology models RDFS [1] or OWL [2]. In these
approaches, an instance, often called an individual, has its own property and
class structure. Therefore, to manage instances, a generic database schema, not
meaningful to an user and not customizable, is used. The simplest and more
general one uses an unique table of triples [11] for storing both the ontology and
its instances. Other approaches [3, 4] separate the representation of the ontology
and its instances in two parts. In these approaches, the most common practice for
storing instance data is to use the so-called vertical model [12] where information
is stored in triples (subject, property, value) a variant of which, called the
binary model is to have one table per property that contains only pairs of the
form (subject, value).

Our approach differs from the ones listed previously. Indeed, the conceptual
model of the instances is part of the OBDB data model (EXTENT, SchemaProp in
the formalization of this data model). This conceptual model may be created and
customized by users from the ontology (see section 5.1). Thus, many different
logical models may be derrived/related to the same ontology. This possibility
promotes a database approach preserving compatibility with RDBMs and pro-
motes semantic integration of OBDBs by offering an ontology for different logical
models.

3 Query Algebra for OBDB

The specific aspects of our OBDB data model, where not all the values of prop-
erties of a class are required in an instance of this class, raised the necessity to
define an exploitation language for such OBDBs. [13] provides with the precise
requirements we have set up at the beginning of our work for designing such a
language. More details about the positioning of this language among the differ-
ent database models are given in section 8. To reach this goal, we suggest to
build an algebra OntoAlgebra, for managing OBDB databases.

Since the OBDB model uses extensively object-oriented database (OODB)
features, we suggest to specialize, extend and reuse the operators issued from the
ENCORE algebra [14] in order to get benefits of the work achieved in the context
of OODBs. Signatures of the operators defined on the OBDB data model be-
long to (E ∪ C)× 2OC∪I → (E ∪ C)× 2OC∪I. These main operators of this algebra
are OntoImage, OntoProject, OntoSelect and OntoOJoin. For clarity purpose,
solely these operators are formally presented below restricted to the signature
C× 2I → C× 2I. However, the defined semantics is adapted for querying both
ontology, content and simultaneously ontology and content parts.
- OntoImage. The OntoImage operator returns the collection of objects result-
ing from applying a function to a collection of objects. Its signature is
C× 2I × Function→ C× 2I. Function contains all the properties in P and all
properties that can be defined by composing properties of P (path expressions).
Differently from the object-oriented data model, the OBDB data model autho-
rizes the fact that one or more of the properties occurring in the function pa-
rameter may not be valued in the extensional definition of the class. Notice that
this capability weakens the data model in order to support richer and flexible
descriptions than those allowed in classical OODBs. Thus, it becomes necessary
to extend the domain of the Val function to the properties defined on the in-
tensional definition of a class but not valued on its extensional definition. This
extension requires the introduction of the UNKNOWN value. We call OntoVal this
extension of Val. It is defined by:

OntoVal(i, p) = Val(i, p), if p ∈ SchemaProp(TypeOf(i)) else, UNKNOWN .

UNKNOWN is a special instance like NULL is a special value for SQL. Whereas NULL
may have many different interpretations like value unknown, value inapplicable
or value withheld, the only interpretation of UNKNOWN is value unknown, i.e.,
there is some value, but we don’t know what it is. To preserve composition,
OntoVal applied to a property which value is UNKNOWN returns UNKNOWN (strict
interpretation). So, the semantics of OntoImage is defined by:

OntoImage(T, {i1, . . . , in}, f) =
(PropRange(f), {OntoVal(i1, f), . . . , OntoVal(in, f)}) .

- OntoProject. The OntoProject operator extends OntoImage allowing the
application of more than one function to an object. The result type is a Tuple

which attribute names are taken as parameter. It is defined by:

Project(T, It,{(A1, f1), . . . (An, fn)}) =
(Tuple[< (A1, PropRange(f1)), . . . , (An, PropRange(fn)) >],

{< A1 : OntoVal(i, f1), . . . , An : OntoVal(i, fn) > |i ∈ It}) .

It returns the type of elements together with the set of corresponding values.
- OntoSelect. It creates a collection of objects satisfying a selection predicate.
Its signature is C× 2I × Predicate→ C× 2I and its semantics is defined by:

OntoSelect(T, It, pred) = (T, {i|i ∈ It ∧ pred(i)}) .

If the predicate taken as parameter of OntoSelect contains function applications,
then OntoVal must be used. So, operations involving UNKNOWN, that may appear
in a predicate, must be extended to handle this value (interpreted like NULL). If
any operator involves this value as parameter, then it returns UNKNOWN (strict
interpretation).
- OntoOJoin. It creates relationships between objects of two collections.

OntoOJoin(T, It, R, Ir, A1, A2, pred) =
(Tuple[< (A1, T), (A2, R) >], {< A1 : t, A2 : r > |t ∈ It ∧ r ∈ Ir ∧ pred(t, r)}) .

- Operator *. It is the explicit polymorphic operator to distinguish between
queries on instances of a single class C and instances of all the classes subsumed by
C and denoted C∗. ext : C→ 2I returns the instances of a class and ext∗ : C→ 2I

its deep extent. If c is a class and c1, . . . cn are the direct sub-classes (in the sense
of the subsumption relationship) of c, ext and ext∗ are derived recursively4 by:

ext(c) = TypeOf−1(Nomination(c)) .

ext∗(c) = ext(c) ∪ ext∗(c1) ∪ . . . ∪ ext∗(cn) .

The ext and ext∗ make it possible to define the ∗ operator as ∗ : C→ C× 2I

where∗(T) = (T, ext∗(T)).
In addition to these main operators, OntoAlgebra includes set operations

(OntoUnion, OntoDifference, and OntoIntersection) and collection operations
(OntoFlatten, OntoNest and OntoUnNest).

Next section shows how operators of OntoAlgebra can be optimized using the
characteristics of the OBDB data model.

4 Optimizations of OntoAlgebra ’s Operators

As identified when defining the OBDB model, some of the properties occurring
in the ontology part may not be valued (and thus not available) in the corre-
sponding instances of the content part. This is a main difference with OODBs
4 To simplify notation, we extend all functions f by f(∅) = ∅

where properties of a class are valued in the instances. As a consequence, impor-
tant optimizations based on partial evaluation techniques can be set up. Indeed,
it is not necessary to search the values of a property in the instances of a class
using a property defined as not available in the extensional definition of this
class. This source of optimizations is characterized by the formal logical expres-
sion(invariant property) (1). When this expression evaluates to true, it becomes
possible to reduce, and sometimes avoid, accesses and traversals of the content
part which is cost effective.

Let p ∈ P, let C be a class, let Ic be a set of instances of C,

p /∈ SchemaProp(Nomination(C)) ⇒
OntoImage(C, Ic, p) = {UNKNOWN|i ∈ Ic} . (1)

This optimization can be generalized to the OntoProject operator. It can also be
applied to the OntoSelect and OntoOJoin operators when the predicate taken
in parameter of these operators involves the use of a property. More precisely,
assume this predicate is in conjunctive normal form and that one of the con-
junctive element involves a property satisfying the logical expression (1), then,
the OntoSelect and OntoOJoin operators return the empty set.

This optimization is only available for local queries on instances of a class C.
The operator ∗ and path expressions introduce polymorphism. To optimize the
polymorphic operators of the OntoAlgebra, it is necessary to translate them into
non polymorphic operators acting on the class at each level of the polymorphic
hierarchy (flattening the hierarchy).

Assume p1 and p2 are two properties which domains are respectively C1 and
C2. Path expressions involving these two properties can be decomposed according
to the following algebraic law:

OntoImage(C1, ext(C1), p1 ◦ p2) ⇔ OntoImage(
LeftOuterOntoOJoin(C1, ext(C1),∗ (C2), A1, A2, A1.p1 = A2.oid), A2.p2) (2)

Since a result is required for each instance of C1, a left outer join is necessary.
This decomposition is easily extended to paths of any length. Moreover, the
same equivalence may be used for the OntoProject operator by decomposing
each path expression taken in parameter in the same way.

Path expressions may also appear in the predicate of the OntoSelect and
OntoOJoin operators. For example, assume the predicate is p1 ◦ p2 θ c where
θ is a comparison operator and c a constant, then, the following equivalence can
be used to decompose this predicate :

OntoSelect(C1, ext(C1), p1 ◦ p2 θ c) ⇔ OntoImage(OntoSelect(
LeftOuterOntoOJoin(C1, ext(C1),∗ (C2), A1, A2, A1.p1 = A2.oid),
A2.p2 θ c), get A1 Value) . (3)

The ∗ operator can be removed using the set operator OntoUnion. Assume
θ1 . . . θn to be a set of OntoAlgebra operators, C a class having C1 . . . Cn as di-
rect sub-classes. Removing ∗ operator is preformed by applying the following

Research Institute

type : String
birthdate : Date

Laboratory

title : String
acronym : String
headmaster : Person

Person

first name : String
last name : String
address : String
email : String

#name[fr]=’Laboratoire’
#name[es]=’Laboratorio’
#definition[fr]= ’lieu où des
 recherches sont conduites’
#definition[en]=’workplace
 for the conduct of research’

#synonymous_names[en]=
 {’human’, ’individual’}
#illustration=’person.jpg’

#note[en]=’abstract concept:
 must not be instancied’

Fig. 1. Ontology example

E_Laboratory

PK oid

p_title
FK1 p_headmaster

E_Person

PK oid

p_first_name
p_last_name
p_email

Fig. 2. Content example

equivalence recursively (unfolding operation).

θ1(. . . θn(∗(C)) ⇔ θ1(. . . θn(C, ext(C)) OntoUnion

θ1(. . . θn(∗(C1)) OntoUnion . . .OntoUnion θ1(. . . θn(∗(Cn)) (4)

The (1), (2), (3) and (4) algebraic laws will be exploited by the query plans
presented in section 6 below.

5 The OntoQL Language

OntoQL is the OBDB exploitation language built on the defined database model.
An overview of the querying capabilities of OntoQL has been given in [15]. Its
semantics is given by the OntoAlgebra previously defined. This section presents
the details of this language (DDL and QL). A toy example, presented on figure
1, is used along this description in order to avoid complex syntactic definitions.
Next subsections focus on the specific parts of this language. We will discuss
the positioning of this language among database and semantic web languages in
section 8.

5.1 The Data Definition (DDL) and Manipulation (DML) Parts of
OntoQL

OntoQL allows to create, alter and drop concepts of ontologies (classes, proper-
ties . . .) as well as their attributes values (name, definition . . .). Let’s consider
the following expression :

CREATE #CLASS Laboratory EXTENDS "Research Institute" (

DESCRIPTOR(#name[fr,es] = (’Laboratoire’,’Laboratorio’),

#definition[fr] = ’lieu où des recherches sont conduites’,

#definition[en] = ’workplace for the conduct of research’)

PROPERTIES(title String, headmaster Person, acronym String));

This expression creates an ontology class named Laboratory in English (the de-
fault language) as a subclass of Research Institute. Thus, it inherits the prop-
erties of Research Institute. DESCRIPTOR and PROPERTIES clauses make the dis-
tinction between the definition of the attributes values describing a class (name,

remark, note . . .) and the definition of its characterisation properties (those fixed
by the user). This distinction is carried by the attributes prefix # (see section 5.2).

On the content part, an extent can be attached to this class by the following
expression:

CREATE EXTENT OF Laboratory (title, headmaster);

Notice that the acronym property will not be valued in the content part. One
may define another content for the class Laboratory according to another logical
database model. When executed, this expression creates a relational schema
presented in figure 2 to store instances of this class.

Data Manipulation Language (DML) operators are also provided by OntoQL.
These operators may add, delete and update each parts of an OBDB. Indeed,
concepts and their instances may be managed by these operators. Moreover, since
the metadata describing the ontology model are themselves stored in a relational
database, the same operators allow adding/deleting/updating attributes of the
ontology model (e.g. adding the attributes unit, comment, etc. defining a new
translation language more than English, etc.).

5.2 The Query Language Part of OntoQL

The query language part of OntoQL is designed as an extension of SQL to query
ontologies, their contents and both ontologies and contents stored in an OBDB.
The syntax of a query is given by:

SELECT attributeList, propertyList, iteratorList

FROM iteratorDeclarationList

WHERE condition

GROUP BY attributeList, propertyList, iteratorList

HAVING condition

ORDER BY attributeList, propertyList

where attributeList (resp. propertyList) is a list of attributes (resp. properties);
iteratorList is a list of iterators declared in the FROM clause;
iteratorDeclarationList introduces iterators over a set of entity and/or class
instances. Moreover, the SELECT block of OntoQL supports the following features,
all expressed by OntoAlgebra operators composition.

– Path expressions. Associations may be traversed using the dot notation.
– Polymorphic query. The * operator is provided to distinguish between local

queries on instances of a class/entity C and instances of all the classes/entities
denoted C* subsumed by C.

– Dependent collection. A collection returned as the value of a property/attribute
may be traversed using an iterator introduced in the FROM clause.

– Nested queries. Queries may be nested not only in the WHERE clause but also
in the SELECT and FROM clauses.

– Aggregate functions. OntoQL provides aggregate functions count, sum, avg,
min and max.

– Quantification. Existential (ANY, SOME) and universal (ALL) quantification may
be expressed.

– Set operators. Union, Intersection and Except operators are provided.

Next subsections show how this general model of an OntoQL query is used to
express query on ontology, on content and both on ontology and on content.
Moreover, these sections show on several query examples, specific usages of On-
toQL to exploit ontology characteristics, content characteristics or both.

Ontology Querying. Ontologies querying retrieve descriptive information from
the ontology part. The FROM clause of an ontology query introduces iterators over
instances of predefined entities (class, property) of the ontology model as well as
on user-defined entities. The SELECT clause defines projection on predefined at-
tributes (name, definition, scope, superclasses . . .) and user-defined attributes.
The value of some attributes, such as name are given in different natural lan-
guages. The query Q1 searches for the English name of the class which French
name is ”Institut de Recherche”.

Q1. SELECT #name[EN] FROM #class WHERE #name[FR]=’Institut de Recherche’

Remember that the prefix # is used to distinguish between attributes of entities
and properties of classes.

Moreover classes and properties are implicitly named. For example, the query
Q2 uses Research Institute class name to retrieve the name in French of the
properties defined on this class.

Q2.SELECT p.#name[FR] FROM "Research Institute".#properties

This capability is also offered by OQL. However, to use it on a given object of a
class, users must explicitly name this object.

Content Querying. The FROM clause of a content query introduces iterators
over instances of ontology classes and the SELECT clause defines projection on
properties defined on this class but not necessary provided by the CREATE EXTENT

clause. The following queries search for the names of all laboratories with an En-
glish (Q3a) a French (Q3b), using external identifiers (Q3c) and internal identifiers
(Q3d) queries:

Q3a.SELECT acronym FROM Laboratory Q3c.SELECT @710C-01 FROM @7194-01

Q3b.SELECT accronyme FROM Laboratoire Q3d.SELECT !1012 FROM !1068

Here !x and @x are respectively internal identifiers (known by database develop-
ers) and external references (like URI).

Ontology and Content Querying. OntoQL introduces an iterator over in-
stances of classes retrieved by an ontology query. Q4a query illustrates this feature
using a dependant collection.

Q4a.SELECT i.oid, i.p, p.#name[en]

FROM C in #class, p in C.#properties, i in C*

WHERE C.#name[fr] like ’Per%’

Q4b is equivalent to Q4a. It uses a SELECT operator in the FROM clause to access
simultaneously the ontology and the content parts (nested query).

Q4b.SELECT i.oid, i.p, p.#name[en]

FROM C in (SELECT C FROM C in #class

WHERE C.#name[fr] like ’Per%’),

p in C.#properties, i in C*

This query retrieves classes which name begin with "Per". The iterator i ranges
over instances of these classes and is used to access and return property English
name and value for these instances.

OntoQL proposes the operator typeof to retrieve the base class of a con-
tent instance. This operator allows to express queries from the content to the
ontology. For example, the query Q5 searches for the address and email of all
polymorphic instances of the class Person and uses the operator typeof to re-
trieve the French name of the base class of these instances.

Q5.SELECT i.address, i.email, typeof(i).#name[fr] FROM i in Person*

The typeof operator returns only one base class for an instance. This query could
not be written this way if multi-instantiation was allowed.

6 Processing of OntoQL

We have implemented OntoQL and the OntoAlgebra operators on an OntoDB
prototype. Demonstrations of this prototype are available at
http://www.plib.ensma.fr/plib/demos/ontodb/index.html. This section briefly
outlines how these operators are processed on this platform.

The prototype considered is an implementation of the OntoDB data model in
a object-relational database (ORDBMS), namely PostgreSQL [16]. In this pro-
totype, the link between the ontology and its content parts are defined using an
identifier. To simplify, assume that the identifier of the ontological (intensional)
definition of a class is cid, then its content (extensional) definition is represented
by a table identified by ecid. A similar mechanism for properties is used. Indeed,
assume that the identifier of a property is pid in the intensional definition of a
class, then it is represented by a column identified by ppid if used in the content
definition.

To process OntoAlgebra operators, they are translated in the underlying
query language, i.e. SQL99. With this approach, the optimization process is
split into two sub-processes. The first one is related to the OntoQL engine and
the second one is performed by the underlying database engine. The translation
process follows six identified steps.

1. Logical query plan generation. The query, written in OntoQL, is parsed
and turned into an expression tree involving OntoAlgebra operators in its
nodes (logical query plan). Entities, classes, properties and attributes occur
in leaves.

2. Logical query plan transformation. Path expressions and * operators
are removed from the logical query plan using equivalence algebraic laws (2),
(3) and (4) defined on OntoAlgebra (see section 4). In this step, we use
an algorithm avoiding multiple decomposition of identical paths and thus
avoiding unnecessary join operations.

3. Optimize the tree. The optimization situations, identified in section 4, are
used to reduce the logical query plan. This step is performed together with
the previous step to avoid duplicating unnecessary parts of the tree.

4. Translation of an OntoAlgebra tree to relational algebra trees. This
translation is achieved by applying the following rules:
(a) the identifier of the intensional definition of a class is replaced by the

identifier of its extensional definition. If the class is abstract then its
identifier is replaced by the name of an empty table (e.g., Dual in Oracle);

(b) if the property is not used in the extensional definition of a class,
UNKNOWN is translated to NULL.

(c) OntoImage and OntoProject are translated into the projection operator
of the relational algebra. Other operators of OntoAlgebra are translated
into their relational counterpart.

An OntoQL query often requires access to the content of an OBDB according
to the query on the ontology part. Thus, this translation may require to build
more than one relational algebra tree.

5. Optimization of the relational algebra trees. This step consists in
using the different algebraic laws that hold for relational algebra to turn the
relational trees into equivalent trees that may be executed more efficiently
by the underlying ORDBMS. The ORDBMS optimizer may perform other
optimizations it supports.

6. Translation of the relational algebra trees into SQL queries. The
optimized relational trees are translated into SQL queries according to the
underlying ORDBMS and executed to get the OntoQL query result.

7 Example

To illustrate our language proposal, let us develop a practical example showing
how a query, written in OntoQL, is processed. This example extends the previous
one by precising the address property in the class person.

An Example of Data Model. Figure 3 shows an UML data model. Specific
annotations d/v are added to the property names to take into account the specific
features of the OBDB data model. d means that this property is defined on this
class ; v means that this property is valued in the extensional definition of
this class. This schema is defined to manage names of persons. Students and

employees are also described by their addresses. Since Address is an abstract
class (its name is in italic), addresses are located either in the USA or in France.
Notice that for French addresses, the property state is not valued on instances.

-name (d/v)
-address (d)
-phone (d)

Person

-name (d/v)
-address (d/v)
-phone (d/v)

Employe

-street (d)
-zip (d)
-state (d)
-city (d)

Address

-name (d/v)
-address (d/v)
-phone (d)

Student

-street (d/v)
-zip (d/v)
-state (d)
-city (d/v)

FrenchAddress

-street (d/v)
-zip (d/v)
-state (d/v)
-city (d/v)

AmericanAddress

Fig. 3. Schema example

An Example of Query. Assume we want to find in which cities of the state
Utah some persons are living. To answer this query, an OntoQL statement using
English attributes (left) or French ones (right) may be written:

SELECT address.city SELECT adresse.ville

FROM Person* <=> FROM Personne*

WHERE address.state=’Utah’ WHERE adresse.etat=’Utah’

Query Processing Steps. The first step of our processing generates the log-
ical plan presented in Fig. 4 (a). The path expressions are removed from this
query plan. If the application of the property address is decomposed in each
path, the transformed logical plan is the one presented in Fig. 4 (b). In this
logical plan, the upper left outer join is unnecessary. Therefore, application of
the property address is decomposed only once and paths composed with this
property are changed using an alias of the class Address. The query plan re-
sulting from this processing is presented in Fig. 4 (c). In step 3 and 4, * op-
erators applied to Person and Address are removed. Because address is not
used on classes Person, optimization (1) allows to deduce that the result of the
LeftOuterOntoOJoin is {< p, UNKNOWN > |p ∈ ext(Person)}. Thus, the predicate
a.state =′ Utah′ is always UNKNOWN. As a consequence, this query doesn’t return
any result for the class Person. Therefore our logical query plan must be dupli-
cated for the classes Employee and Student only. Let’s consider removing of ∗

from class Address. Because the property state is not used on classes Address
and FrenchAddress the result of the OntoSelect operator is empty and it is
not necessary to run it. Finally, our logical query plan must only be duplicated
for the AmericanAddress class. Logical query resulting from this processing is
presented in Fig. 4 (d).

OntoUnion

*

OntoImage

OntoSelect

*

Person

p.address = a.oidp.address = a.oid

OntoImage

OntoSelect

ap

a.state=’Utah’

LeftOuterOntoOJoin

a.city
OntoImage

OntoSelect

ap

a.state=’Utah’

LeftOuterOntoOJoin

a.city

OntoImage

Address

LeftOuterOntoOJoin

a1.city

a1

OntoImage

OntoSelect

Address

a**

Person

p

a.state=’Utah’

p

LeftOuterOntoOJoin

p.address = a.oid
p.address = a.oid

OntoImage

OntoSelect

Address

a**

Person

p

a.state=’Utah’

LeftOuterOntoOJoin

a.city

address.city

address.state=’Utah’

(c)

(a)

(b) (d)

AmericanAddressStudentEmployee AmericanAddress

p.address = a1.oid

Fig. 4. Logical query plans for our query example.

In this example, translation of this query plan to a relational query plan is
straightforward. It consists, first, in replacing names of classes and properties by
names of tables and columns corresponding to their extensional definitions, and,
second, in switching OntoAlgebra operators to their corresponding relational
operators. In step 6, the relational tree may be modified to replace operators not
supported by the underlying DBMS (e.g., outer join) or to optimize it according
to the generation and optimization of the logical query plan supported by the
DBMS. Without modification of our logical query plan, the obtained SQL query
running on the underlying DBMS is:

SELECT a.pcity

FROM eEmployee p LEFT OUTER JOIN eAmericanAddress a

ON p.paddress = a.oid

WHERE a.pstate=’Utah’

UNION

SELECT a.pcity

FROM eStudent s LEFT OUTER JOIN eAmericanAddress a

ON s.paddress = a.oid

WHERE a.pstate=’Utah’

This query returns the results of our OntoQL query.

8 Related Work

OntoQL is a language based on a database model for exploiting ontologies and
the knowledge they describe. Therefore, one can compare it with database lan-
guages on the one hand and with semantic web based languages on the other
hand.

8.1 Database Exploitation Languages

Compared to classical database languages, OntoQL preserves upward compati-
bility with existing database exploitation languages associated to different lay-
ered database models.

– RDB. When an user is aware of internal identifiers for tables and columns of
the OBDB model, classical SQL can be used to retrieve and manage table
data.

– ORDB. When all properties values of a class are provided at the instance
level, one can use the OBDB model as an OODB model and use OntoQL
constructs as an exploitation language.

– When the previous conditions are not fulfilled, we can use OntoQL as an
ontology exploitation language as shown in this paper.

– Finally, the top layer is the one of a linguistic based exploitation of an OBDB.
Indeed, when the attributes #name, #remark, #synonymous, #translations
are exploited by OntoQL constructs, it is possible to envisage a linguistic
exploitation as shown in queries Q2 and Q3 given in section 5.2 .

Moreover,OntoQL has been defined as an extension of SQL to exploit an
OBDB model defined for exploiting data and their semantics and for semantic
integration. According to these applications, related languages are multidatabase
languages like SchemaSQL [17] or MSQL [18]. OntoQL shares with these lan-
guages the capability to express queries on data independently of their schemas.
However, whereas these languages use the system catalog as an abstraction for
database schemas, OntoQL uses the ontologies themselves to encode this ab-
straction providing a dynamic approach for encoding different abstractions cor-
responding to different point of views of application domains. Consequently, On-
toQL presents many differences with these languages such as its object-oriented
nature or its independency w.r.t the model (relational, object-relational, object)
used to represent the schemas of the data.

The SOQA-QL [19] language (SIRUP project) allows querying ontologies
and the data they describe independently of the ontology model and of the
hardware/software used platform. Like OntoQL, the main application of SOQA-
QL is semantic integration. Moreover, they are both based on SQL and defined
on a core ontology model (the SOQA Ontology Meta Model for SOQA-QL)
representing the shared modelling capabilities of some ontology models in order
to provide an access to data independently of the used ontology model. Never-
theless, there are crucial differences between these two languages. First, in the
opposite of SOQA-QL, the core ontology model of OntoQL can be extended to
take into account particularities of some ontology models (e.g. adding new at-
tributes that characterize ontology model concepts). To provide this capability,
OntoQL is based on an algebra not tight to the core ontology model whereas the
SOQA-QL algebra (i.e, encoded in the SIRUP Ontology Query API) provides
access methods for all ontological components defined in the SOQA Ontology
Meta Model and the user does not have the possibility to dynamically update
this API. Another difference is that SOQA-QL and OntoQL do not keep the

same level of compatibility with SQL. Indeed, whereas SOQA-QL queries on on-
tologies are expressed in a SQL-like syntax, SOQA-QL queries on data require to
call the value function for each projection. Moreover, SOQA-QL doesn’t provide
all the useful operators of the object-oriented paradigm introduced in SQL99 like
path expressions or collection manipulation. Last, SOQA-QL is a platform inde-
pendent language whereas OntoQL is a language for OBDBs. As a consequence,
OntoQL assumes that the data queried are stored in an OBDB and therefore it
addresses some database problems such as query optimization or data definition
and manipulation specific to OBDBs that cannot be considered by SOQA-QL
due to its platform independency.

8.2 Semantic Web exploitation languages

Over the last years, many semantic web query languages have been proposed.
Recently, a survey [20] classifies these languages into six categories with three
main categories:

1. the SPARQL [21] category which groups query languages considering all
data, both ontologies and their instances, as a set of triples;

2. the RQL [6] category which gathers query languages that make the distinc-
tion between the ontology and the data information (ontology instances).
These languages provide operators to exploit the subsumption hierarchies of
classes/properties and to combine data and schema querying;

3. the deductive languages (e.g, OWL-QL [7]) category for query languages
expressing rules that define how new data can be derived from existing ones
and thus be in the answer of a query.

OntoQL shares many characteristics with the second category. Indeed, like
these languages, OntoQL offers the possibility to query ontologies, instances and
both ontologies and instances but it does not offer rule based reasoning. However,
contrary to these languages, OntoQL presents the following characteristics:

– SQL Upward Compatibility. OntoQL extends the SQL syntax and semantics.
Thus, it has the benefits of SQL and it can be implemented as additional
components of existing ORDBMS.

– Schema manipulation. In a lot of semantic integration approaches, the ma-
nipulation of the structure of the data is useful. OntoQL allows retrieving,
creating, altering and dropping the schema of the data thanks to the pos-
sibility left to manage the metadata in both of the instance part or of the
ontology part. Moreover, OntoQL uses this schema for query optimization;

– Exploitation of multi-lingual definitions. Concepts describe by an ontology
may be associated with a linguistic representation in different natural lan-
guages. Using OntoQL, one can retrieve this representation and express
queries in different natural languages.

– Ontology model independency. OntoQL is based on a core ontology model
which can be extended to take into account specific features of a given on-
tology model. The RDF meta-model may also be extended. However, query

languages such as RQL restrict this extension to specializing the meta-classes
rdfs : Class (the class of all classes) and rdfs : Property (the class of all
of properties) to ensure a clear separation of the three abstraction layers
of RDF and RDFS (data, ontologies and meta-schema). There is no such
restriction with OntoQL. As a consequence, new attributes (e.g, comment,
remark, illustration) and new entities (e.g, document, restriction) may be
added and managed using OntoQL.

Regarding the expressive power, OntoQL doesn’t allow to express query with-
out specifying the search scope (the FROM clause is mandatory) and doesn’t sup-
port yet the multi-instanciation capability. However, OntoQL is equipped with
grouping operators (GROUP BY), sorting operator (ORDER BY) and collection ma-
nipulation operators not yet provided by semantic web query languages [22].

9 Conclusion

In this paper, we have formally presented an OBDB data model called OntoDB.
This model differs from classical database models as well as other OBDB data
models propositions. The need for a new exploitation language to manage this
OBDB data model was a result of this constatation.

As a consequence, we proposed a formal algebra of operators together with
the definition of the OntoQL database exploitation language for managing OB-
DBs. We have shown on some query examples how this language exploits the
characteristics of the OBDB data model to support the multilingual querying
of OBDBs at the ontology, content and both ontology and content levels. As a
further step, we have defined an operational approach implementing these oper-
ators on top of a relational database model. The interested reader is invited to
see the demonstrations of this prototype available at
http://www.plib.ensma.fr/plib/demos/ontodb/index.html.

OntoQL differs from the semantic web languages in the sense that it origi-
nates from databases approaches. It is built on top of RDBs and ORDBs pre-
serving an upward compatibility and getting benefits of the power of database
approaches keeping the possibility to exploit Web Semantic data.

For the future we plan to work in two directions related to database and
to the semantic web. From a database perspective, it is important to study the
query optimization on large databases and then the scalability of the OntoQL
implementations in order to address large sets of data. Optimizations on the
algebra operators and their composition shall be studied as well.

From a semantic web point of view, it it is planned to relax some assumptions
made in the OBDB data model in order to offer an efficient storage capability
for the instances described in the logic based approaches for ontologies like in
OWL. The objective is to unify the proposition issued from the semantic web
community which extensively use triples and descriptive logic and their deriva-
tives, and the object orientation and database communities which use strong
typing approaches.

References

1. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
World Wide Web Consortium. (2004)

2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. World Wide
Web Consortium. (2004)

3. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The
ics-forth rdfsuite: Managing voluminous rdf description bases. In: SemWeb. (2001)

4. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture
for storing and querying rdf and rdf schema. In: International Semantic Web
Conference. (2002) 54–68

5. Pan, Z., Heflin, J.: Dldb: Extending relational databases to support semantic web
queries. In: PSSS. (2003)

6. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: Rql:
a declarative query language for rdf. In: WWW. (2002) 592–603

7. Fikes, R., Hayes, P.J., Horrocks, I.: Owl-ql - a language for deductive query an-
swering on the semantic web. J. Web Sem. 2 (2004) 19–29

8. Bellatreche, L., Pierra, G., Xuan, D.N., Dehainsala, H., Aı̈t-Ameur, Y.: An a priori
approach for automatic integration of heterogeneous and autonomous databases.
In: DEXA. (2004) 475–485

9. Pierra, G.: Context-explication in conceptual ontologies: Plib ontologies and their
use for industrial data. Journal of Advanced Manufacturing Systems (2004)

10. Jean, S., Pierra, G., Aı̈t-Ameur, Y.: Domain ontologies: a database-oriented anal-
ysis. In: Web Information Systems and Technologies (WEBIST’2006). (2006) 341–
351

11. Harris, S., Gibbins, N.: 3store: Efficient bulk rdf storage. In: PSSS. (2003)
12. Agrawal, R., Somani, A., Xu, Y.: Storage and querying of e-commerce data. In:

VLDB ’01: Proceedings of the 27th International Conference on Very Large Data
Bases, Morgan Kaufmann Publishers Inc. (2001) 149–158

13. Jean, S., Pierra, G., Aı̈t-Ameur, Y.: Ontoql: an exploitation language for obdbs.
In: VLDB PhD Workshop. (2005) 41–45

14. Shaw, G.M., Zdonik, S.B.: A query algebra for object-oriented databases. In:
ICDE. (1990) 154–162

15. Jean, S., Aı̈t-Ameur, Y., Pierra, G.: Querying ontology based databases. the ontoql
proposal. In: 18th International Conference on Software Egineering and Knowledge
Engineering (SEKE’2006). (2006) 166–171

16. Douglas, K., Douglas, S.: PostgreSQL. New Riders Publishing (2003)
17. Lakshmanan, L.V.S., Sadri, F., Subramanian, I.N.: Schemasql - a language for

interoperability in relational multi-database systems. In: VLDB. (1996) 239–250
18. Litwin, W., Abdellatif, A., Zeroual, A., Nicolas, B., Vigier, P.: Msql: A multi-

database language. Inf. Sci. 49 (1989) 59–101
19. Ziegler, P., Sturm, C., Dittrich, K.R.: Unified querying of ontology languages with

the sirup ontology query api. In: BTW. (2005) 325–344
20. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and semantic web query languages:

A survey. In: Reasoning Web. (2005) 35–133
21. W3C: Sparql. visited on (2005) retrieved from http://www.w3.org/TR/rdf-sparql-

query/.
22. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of rdf query lan-

guages. In: SemWeb. (2004)

