
Proc. of Database Systems for Advanced Applications (DASFAA’2007),
Bangkok, Thailand, April 9-12, 2007.

OntoDB: It is Time to Embed your Domain
Ontology in your Database

Stéphane Jean1, Hondjack Dehainsala1, Dung Nguyen Xuan1, Guy Pierra1,
Ladjel Bellatreche1, Yamine Ait Ameur1

LISI/ENSMA - Poitiers University - France - E-mail : familyname@ensma.fr

Abstract. This demonstration presents OntoDB, a prototype that al-
lows to store explicitly in the database not only the data, but also the
conceptual model defining the structure of data and the domain ontology
representing the meaning of data. The demonstration illustrates three
main functionalities of OntoDB: (1) a storage of a domain ontology and
database content in the same repository, (2) the possibility of querying
databases at ontology level, and (3) an automatic integration of hetero-
geneous data sources referencing/extending the same domain ontology.

1 Introduction

Traditionally, the process of database application design goes through a chain of
three major steps: conceptual, logical and physical. The conceptual model (CM)
is the core of the application development. Its basic constructs (entity, relation-
ship between entities) are associated with semantics which can be understood
intuitively by designers and users. This model is then translated into a logical
model. Once this translation done, CM is usually discarded from the design
chain. Consequently, application semantics described by this CM may be lost.
Other work on ontology was undertaken in knowledge modeling [4]. Contrary
to CM, an ontology aims to describe in a consensual way the whole knowledge
of a domain. This description is agreed and shared by domain experts allow-
ing them to understand each other. When such an ontology exists, the process
of database design no longer needs to create completely new conceptualization,
but it just needs to extract or to specialize from the domain ontology pieces of
information that are relevant for the application to be designed. We call this ap-
proach ontology-based modeling. Recently, Sugumaran et al. work [7] shows how
domain ontology can be used to assist in the generation of complete and consis-
tent database conceptual design. Several approaches and systems were proposed
to store in the same database, data and the ontologies describing their meanings
[1, 2]. In this demonstration, we present one of these systems named OntoDB
[3]. By storing the conceptual model defining the structure of data, OntoDB is
the only one to follow the ontology-based modeling approach. Moreover, we have
shown in [3] that it outperforms other systems for a set of queries.

2 OntoDB Components

OntoDB represents explicitly: (1) ontologies, (2) data structures, (3) data, (4)
the links between the data and their schema and (5) the link between schema

1

This work has been partly supported by the French ANR under grant
 ANR05RNTL02706 (e-Wok-Hub).

and the ontology. Before defining the architecture of our prototype, we present
the three objectives assigned to our architecture model: (1) it shall support
an automatic integration and management of heterogeneous populations whose
data, schemas and ontologies are loaded dynamically, (2) it shall support evo-
lutions of the used ontologies (adding new classes, new properties, etc.) and
of their population schemas, and (3) it shall offer data access, at the ontology
level, whatever the type of the used DataBase Management System (DBMS)
(relational, object-relational or object). Taking in account these objectives, our
architecture is composed in four parts, where part 1 (meta base or system cata-
log) and part 2 (content) are traditional parts available in all DBMSs, and part
3 (ontology) and part 4 (meta schema) are specific to OntoDB (figure 1).

meta base contentontologymeta schema
Rules1-...2-... Mapping objectrelational : OntologyClasses to SQL/DDLRules1-...2-...

Import APIsQuery ModulePLIBExchangeFormat
Mapping objectrelational : EXPRESSto SQL/DDLPLIB ontology model

EXPRESSMetaschema
ExportClient applications (PLIBEditor)

Populate meta schema

Fig. 1. System Architecture

Ontology part allows to represent ontologies in the database. When ontology
model is object oriented and the target DBMS is relational, its logical schema
is defined using an object/relational mapping. The meta schema part records
the ontology model into a reflexive meta model. For the ontology part, the meta
schema part plays the same role as is played by the meta base in traditional
DBMSs. Indeed, this part allows: (1) a generic access to the ontology part, (2)
support of evolution of the used ontology model, and (3) storage of different
ontology models (OWL, PLIB [6], etc.). The link between ontology, meta base,
and content parts is established using a global universal identifier mechanism
associated to classes and properties of ontologies.

3 System Implementation

This section shows the implementation of each part of OntoDB. APIs to access
OntoDB and modules of client applications are also described (see figure 1).

1. OntoDB. OntoDB is implemented on PostgreSQL7.4 and the (multilingual)
PLIB ontology model (POM) is specified in EXPRESS (a formal OO modeling
language associated with an environment similar to Meta Object Facility). To
implement ontology part, POM has been mapped to a logical schema by a pro-
gram generator. It is based on defined transformation rules between EXPRESS
concepts and SQL/DDL. The logical schema of the meta schema part is also gen-
erated automatically by re-using an object relational generator. Concretely, the
generator receives as input parameter an EXPRESS meta model of EXPRESS
and returns a set of tables representing the meta model. Then the meta schema
part is populated with the POM and with itself as data. To define the content
part logical schema, the database designer selects a subset of the ontology that
represents its CM and then the logical schema is generated by another object
relational mapping which takes the CM as input parameter.

2. Import module. Like OWL in XML, the POM allows to represent and ex-
change both ontologies and ontologies individuals (instance data) in EXPRESS
exchange format. The import module allows to read a population of the POM
(ontology + data) and to store it in the database. If the ontology already exists
in the database, it can be potentially updated (version management) and its
instances will be automatically integrated in the existing population of ontology
instances.

3. Export module. It is dual of the import module. It allows to extract a
subset of an ontology from the classes of the ontology in the database, with
or without the associated content. This module combined with import module
allows to automatically migrate instances of a database to another.

4. Ontology and content edition module. It allows to dynamically display
and create classes and their properties in the ontology and to dynamically create
and visualize objects of these classes. Since each data is associated to an onto-
logical element which defines its meaning, it becomes possible to access the data
through their meaning. The interface offered by this module, called PLIBEditor
is appropriate to any ontology and any population of classes.

5. APIs. Almost all the modules of figure 1 access OntoDB using a three layered
API that we have implemented. The first layer is a generic API defined at the
meta level (all parameters are strings). It allows to create instances indepen-
dently of any model in any part of the database, but without any user control.
The second layer specific to the POM, is composed of java classes generated au-
tomatically, one for each POM entity. This API calls functions of the first API.
The last layer is also generated automatically to represent ontology classes as
java instances. Note that most of the developed programs, modules and API are
not POM-specific but they may be specialized for any ontology model after its
description in the EXPRESS language.

The OntoDB architecture requires new query functionalities more those of-
fered by traditional languages like SQL2003. We developed a query language,
called OntoQL that allows to query data in terms of concepts of the ontology
using its expressive power (multilingual, polymorphism, etc.) [5]. Moreover, it
provides a way to extract a part of the ontology with its associated content.

4 The Scenario to be Demonstrated

Our demonstration is based on an shared ontology (SO) defining concepts of
the LMD (License, Master, Doctorate) university course. The LMD system has
been established in order to harmonize diplomas in the European Union. The
scenario of our demonstration follows 5 mains steps: (1) Description of the
used shared ontology: the process of editing ontologies and the characteris-
tics of the POM are shown as well. Our ontology editor (PLIBEditor) is used
as client application. (2) Definition of local ontologies from SO : two dif-
ferent databases (representing two universities) specialize the SO to define the
particular concepts existing in their own course. (3) Extraction of concep-
tual models derived from the ontology: the conceptual models of the two
different databases are designed from their local ontologies. Several instances
of students are described (using the ontology concepts) and inserted in both
databases. (4) Automatic integration of information: shows the process
of students data integration of the two universities. (5) Query processing: a
set of retrieval queries using our QBE interface is executed on the integrated
data. We show specific queries expressed in different natural languages on data
involving ontology concepts that use the expressive power of the ontology model
(like inheritance, composition, . . .).

Additionally, in our demonstration, we present PLIBEditor that allows to
manage (create, delete, import, export, query, etc.) ontologies and ontology-
based data stored in OntoDB. The use of the OntoDB architecture to conceptu-
ally design a database using domain ontologies is also demonstrated. For more
details, refer to our Web site http://www.plib.ensma.fr/plib/demos/ontodb/,
some ”flash” demonstrations and snapshots are presented.

References

1. Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plexousakis,
and Karsten Tolle. The ics-forth rdfsuite: Managing voluminous rdf description
bases. In 2nd International Workshop on the Semantic Web (SemWeb’01), 2001.

2. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying rdf and rdf schema. In Proceedings of the First
International Semantic Web Conference (ISWC’02), pages 54–68, July 2002.

3. Hondjack Dehainsala, Guy Pierra, and Ladjel Bellatreche. Ontodb: An ontology-
based database for data intensive applications. In Proceedings of Database Sys-
tems for Advanced Applications, 12th International Conference (DASFAA’07) (to
appear), 2007.

4. Thomas Gruber. A translation approach to portable ontology specification. Knowl-
edge Acquisition, 7, 1993.

5. Stéphane Jean, Yamine Aı̈t-Ameur, and Guy Pierra. Querying ontology based
database using ontoql (an ontology query language). In Proceedings of OTM Con-
federated International Conferences (ODBASE’06), pages 704–721, 2006.

6. Guy Pierra. Context-explication in conceptual ontologies : The PLIB approach. In
Proceedings of Concurrent Engineering (CE’03), pages 243–254, July 2003.

7. Vijayan Sugumaran and Veda C. Storey. The role of domain ontologies in database
design: An ontology management and conceptual modeling environment. ACM
Transactions on Database Systems (TODS), 31(3):1064–1094, September 2006.

