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Abstract— This article presents some results about schedula-
bility analysis of tasks with offsets also known as transactions,
in the particular case of monotonic transactions. The impact
of a transaction on the response time of a lower priority task
under analysis is computed with the interference implied by
the transaction. In the general context of tasks with offsets
(general transactions), only exponential methods are known to
calculate the exact worst-case response time of a task. However,
in this case, Mäki-Turja and Nolin have proposed an efficient
approximation method. A monotonic pattern in a transaction
(regarding the priority of the task under analysis), occurs when,
by rotation of the higher priority tasks in a transaction, it
is possible to find a pattern of tasks such that the processor
demand of the transaction is monotically decreasing during a
period of the transaction. We have shown in our previous work
that if a task under analysis is such that all the interfering
transactions are monotonic, then it is possible to evaluate its
exact response time in a pseudo-polynomial time. This article
presents in detail how to apply this method. Then, it compares
our results to the multiframe model proposed by Mok and
Chen in [5] (AM "Accumulatively Monotonic" pattern). We
show that the multiframe model is a particular instance of
tasks with offsets but the results presented for AM multiframe
cannot be applied on monotonic transactions. Finally, we show
that the approximation method proposed by Mäki-Turja and
Nolin computes an exact response time in the case of monotonic
transactions, even if its complexity is higher than the one of
the test that we proposed.

I. INTRODUCTION

The validation process is an important step in the
development of a real-time application. This validation
process consists in proving that, whatever happens, the
scheduling policy guarantees that all the temporal constraints
are met. Usually, the task model is an extension of the
model of Liu and Layland [4]. The schedulability conditions
obtained with this model are however too pessimistic
for certain kinds of pattern of tasks. Thus some authors
proposed many other models of tasks: the multiframe model
[5] [2], and generalized multiframe model [1], the model
of tasks with self-suspension [7] [8] [9], the model of tasks
with offsets (transactions) [10] [6] [13] [14]; the models of
serial transactions and reverse transactions [11] which is a
particular instance of the model of tasks with offset. Tindell
[10] suggested the model of tasks with offsets; Palencia and
Harbour[6] extended and formalized Tindell’s work. Then,
Turja and Nolin [13] improved the schedulability conditions
by introducing the concept of "imposed interference"

different from the "released for execution interference".
This model of tasks with offsets is a general model allowing
to obtain good results for a broad range of patterns of
tasks. In a context of tasks with offsets, all the tasks
bounded by relations of offsets form a transaction; and,
since a classic task is a transaction containing only one
task, a configuration is a set of transactions. For now, the
method of determination of the exact worst-case response
time of the tasks of a transaction set is exponential. Thus,
pseudo-polynomial time approximation methods, giving
more or less pessimistic schedulability conditions have
been proposed. In any case,The concept of approximation
leads to some pessimism. This paper is a complementary
contribution for analyzing tasks with offsets. We show
that, in certain cases, it is possible to use a method of
calculation of the exact worst-case response time, and that
this method has lower complexity than the complexity of the
approximation methods. Moreover, we show in this article
that the multiframe model is a particular case of the model
of tasks with offsets, but that the results on the multiframe
model cannot be directly applied on transactions., however,
the results presented obtained on monotonic transactions can
be closely related to the results obtained on the multiframe
model. The structure of the article is as follows: in section
2, we present the model of tasks with offsets. Section 3
presents the previous work about monotonic transactions.
In section 4, we show that the approximation method
proposed in [15] gives an exact worst-case response time
for monotonic transactions. In Section 5, we present the
relation between the multiframe model and the model of
tasks with offsets. Finally, we present the exact method of
calculation of the worst-case response time for monotonic
transactions on an example.

II. BACKGROUND

A. Presentation of the model

The model of tasks with offsets was proposed by Tindell
[10] in order to reduce existing pessimism of the schedu-
lability analysis where the critical instant for a task occurs
when it is released at the same time as all the higher priority
tasks. Indeed, certain tasks can have for example the same
period and be bound by relations of offsets i.e. they can
never be released at the same time. A set of tasks of the



Fig. 1. model of tasks with offsets
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same period bound by offset is called a transaction. The
release of a transaction is bound to an external event (the
transactions themselves are non-concrete), whose worst-case
period of occurrence is the period of the transaction. A task
system Γ is compound of a set of transactions Γi. [6][13]:

Γ := {Γ1,Γ2, ..,Γk}

A transaction (see Figure 1) contains |Γi| tasks of the same
period (with |E| is the cardinal of set E) :

Γi :=< {τi1, τi1, ..., τi|Γi|}, Ti >

A task is defined by

τij :=< Cij ,Φij , Dij , Jij , Bij , Pij >

where Cij is the worst-case execution time (WCET), Φij

is the offset (minimal time between the release of the
transaction and the release of the task),Dij is the relative
deadline, Jij the maximum jitter (giving t0 the release date of
an instance of the transaction Γi , then the task τij is released
between t0+Φij and t0+Φij +Jij), Bij maximum blocking
due to lower priority tasks, and Pij the priority. It has been
shown in [6] that it is equivalent , regarding to the worst-case
response time analysis to consider Oij = Φij%Ti. Without
loss of generality, we consider that the tasks are ordered by
increasing offsets Oij ; in our case, we define the response
time as being the time between the release of the task and
the completion of this task. Let us note also hpi(τua) the
set of indices of the tasks of Γi with a priority higher than
the priority of a task under analysis τua i.e. j ∈ hpi(τua) if
and only if Pij > Pua. (assuming that the priorities of the
tasks are unique). We denote |Γi| the number of tasks in a
transaction.

In order to validate the system, the Response-Time Anal-
ysis (RTA) [3] method is to be applied on each task of
the transactions. The task under analysis is usually noted
τua. Tindell showed that the critical instant of τua is a
particular instant when it is released at the same time as at
least one task of higher priority in each transaction Γi. The
main difficulty is to determine what is the critical instant
candidate τic of a transaction Γi that initiates the critical
instant of τua. An exact calculation method would require
to evaluate the response time obtained by carrying out all
the possible combinations of the tasks of priority higher in
each transaction and to choose the task in each transaction

that leads to the worst-case response time. This exhaustive
method has an exponential complexity and is intractable
for realistic task systems; several approximation methods
giving an upper bound of the worst-case response time have
been proposed. The best known approximation method is the
upper bound method based on the "imposed interference".

B. Utlisation of the approximation method

The best known approximation method has been proposed
in [13]. This method removes the unnecessary overestima-
tion taken into account in the classic computation of the
interference imposed by a task τij on a lower priority task
τua. This overestimation does not have any impact in the
case of tasks without offset but has a considerable effect
in the approximation of the worst-case response time when
we are in the presence of tasks with offsets. This method
consists in calculating the interference effectively imposed
by a task τij on a task τua with a lower priority during a
time interval of length t; the idea is that this interference
cannot exceed the interval of time t. In order to calculate
this "imposed interference", [13] substracts a parameter x
(see Figure 2) from the original interference formula; let us
note Wic(τua, t) the interference that Γi imposes effectively
on the response time of τua during a time interval of length
t when τic is released at the same instant as τua [13]. In a
first study of transactions, we will focus on cases with no
jitter(i.e Jij = 0).

Wic(τua, t) =
∑

j∈hpi(τua)

((⌊
t∗

Ti

⌋
+ 1

)
∗ Cij − xijc(t)

)
t∗ = t− phase(τij , τic)

phase(τij , τic) = (Ti + (Oij −Oic)) % Ti

xijc(t) =
{

0 for t∗ < 0
max(0, Cij − (t∗%Ti)) otherwise

xijc(t) corresponds to the part of the task τij that cannot
be executed in the time interval of length t; since this
interference is not effectively imposed in this interval, it is
not taken into account (see an example on Figure 2).

In order to determine the upper bound of the response-
time, [13] uses this function :

Wi(τua, t) = max
c∈hpiτua

(Wic(τua, t))

With the value of each Wi(τua, t) , the upper bound of
response-time Rua of τua can be calculated: Rua is found
by iterative fix-point lookup.

R0
ua = Cua

R(n+1)
ua = Cua +

∑
Γi∈Γ

(Wi(τua, Rn
ua))

¨We apply this method on the example of figure 3. In
this example, we have two transactions Γ1 and Γ2. Let us
consider a task under analysis τua with a WCET equal
to 2; let us suppose that the priority of τua is lower than



Table 1 : Application of "Imposed Interference" method

Iter W11/21 W12/22 W13/23 W14/24 W15/25 W16/26 W17/27 W18 W19 W1/2 Rua

0 2

1 2/1 2/1 2/1 2/1 2/1 2/1 2/2 2 2 2/2 6

2 4/2 4/2 4/2 4/2 4/2 4/3 4/3 4 4 4/3 9

3 5/3 5/3 5/3 5/3 5/3 5/4 5/3 6 4 6/4 12

4 6/3 6/3 6/3 6/3 6/5 6/4 8/3 6 4 8/5 15

5 8/4 8/4 8/4 8/6 8/5 9/4 8/3 6 4 9/6 17

6 9/5 9/5 9/5 9/6 9/5 10/4 8/3 6 4 10/6 18

7 10/5 10/5 10/6 10/6 10/5 10/4 8/3 6 4 10/6 18

Fig. 2. "Imposed interference" method on a transaction of 4 tasks
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Γi =< {τi1, τi2, τi3, τi4}, 50 >

τi1 =< 2, 0, 4, 0, 0, 4 >

τi2 =< 4, 4, 8, 0, 0, 2 >

τi3 =< 2, 12, 15, 0, 0, 3 >

τi4 =< 3, 17, 15, 0, 0, 1 >

Wi1(τua, 5) = (2− 0) + (4− 3) + (0− 0) + (0− 0) = 3

Fig. 3. Example of RTA
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Γ1 =< τ11, τ12, τ13, τ14, τ15, τ16, τ17, τ18, 100 >
τ1j =< 2, 4 ∗ (j − 1), 6, 0, 0, j > for 1 ≤ j < 9
τ19 =< 4, 32, 10, 0, 0, 16 >

Γ2 =< τ21, τ22, τ23, τ24, τ25, τ26, 100 >
τ2j =< 1, 4 ∗ (j − 1), 6, 0, 0, j + 8 > for 1 ≤ j < 7
τ27 =< 3, 24, 10, 0, 0, 15 >

the priority of each task of the transactions Γ1 and Γ2,
for instance (Priority(τua) = 0). We present the details
of the two first significant iterations in the process of the
application of this method.

Iteration 0 : R0
ua = 2

Iteration 1 :

Evaluation of W2(τua, 2) :

W2j(τua, 2) = (1− 0) + (0− 0) + .... + (0− 0) = 1
for 1 ≤ j < 7

W27(τua, 2) = (3− 1) + (0− 0) + .... + (0− 0) = 2

W2(τua, 2) = max1≤j<9 (W2j(τua, 2))
Thus W2(τua, 2) = 2

And R
(1)
ua = Cua + W1(τua, 2) + W2(τua, 2); consequently

R
(1)
ua = 2 + 2 + 2 = 6.

Iteration 2 :

Evaluation of W1(τua, 6) :

W1j(τua, 6) = (2− 0) + (2− 0) = 4
for 1 ≤ j < 8

W18(τua, 6) = (2− 0) + (4− 2) = 4

W19(τua, 2) = (4− 0) = 4

Thus W1(τua, 6) = 4

Evaluation of W2(τua, 6) :

W2j(τua, 6) = (1− 0) + (1− 0) = 2



for 1 ≤ j < 6

W26(τua, 2) = (1− 0) + (3− 1) = 3

W27(τua, 2) = (3− 0) = 3

Thus W2(τua, 6) = 3

Then R
(2)
ua = 2 + 4 + 3 = 9.

We present in the table 1 the values obtained in the
following iterations. The upper bound of the worst-case
response time obtained with this method is thus equal to 18.

However, the exact worst-case response time of the
task τua (obtained in testing every combinations) is equal to
14. This value is obtained when τua is released at the same
time as τ17 and τ26. The "imposed interference" method is
less pessimistic than the others methods of approximation
but its application needs the evaluation of the value of
xijc(t) for each iteration and for each task. Moreover, the
application of these methods of approximations on some
concrete real-time application is sometimes unnecessary.
Indeed, in certain cases there is a tractable method for
determining the real worst-case response time; this method
is less complex than all known approximation methods.

III. MONOTONIC TRANSACTIONS

Let Γi be a transaction and τua a task under analysis; in
order to simplify the notation, we consider that all the tasks
of Γi have a higher priority than the task under analysis τua.
Moreover, we assume that the load of the configuration is
less than 1.

A. Normalisation of the transaction

A similar normalization process has been used in [15],
with a difference because the authors split the tasks when
they can end after the period of the transaction, while we
don’t use the split part. Definition : The transaction Γi is in
normal form if Oij + Cij < Oi(j+1) for 1 ≤ j < |Γi| and
Oi|Γi| + Ci|Γi| < Ti + Oi1

For example the transactions Γ1,Γ2 of Figure 3 and the
transaction Γi of Figure 4 are in normal form. While the
transaction Γi of Figure 9 is not in normal form; indeed, we
have for example Oi3 + Ci3 > Oi4.
Let us suppose that there is a task τij such as Oij + Cij ≥
Oi(j+1) in a transaction Γi; according to theorem 1 of
[10], the busy period starting at Oij contains the busy
period starting at Oi(j+1). Consequently, the task τi(j+1)

cannot initiate the critical instant for the task τua; therefore
it is useless to evaluate Wi(j+1)(τua, t) in the process of
calculation of the worst-case response time. For this reason,
if a transaction Γi is not in normal form, we group the tasks
of Γi in order to obtain a normal form before starting the

iterative lookup of the fix-point.
Let Γ∗i be the normal form of Γi. Γ∗i is obtained as follows:
Γ∗i is first initialized with the value of Γi :

Γ∗i :=< {τ∗i1, τ∗i2, ..., τ∗i|Γi|}, Ti >

with τ∗ij = τij for 1 ≤ j ≤ |Γi|

Process of normalization :
• Step 1 : for 1 ≤ j < |Γ∗i |, if O∗

ij + C∗
ij ≥ O∗

i(j+1) then
merge τ∗i(j+1) into τ∗ij . These two tasks form one task
starting at O∗

ij with a WCET equal to C∗
ij + C∗

i(j+1).
Renumber the tasks of the transaction in increasing
order of O∗

ij because τ∗i(j+1) is deleted

• Step 2 :
– if O∗

i|Γ∗
i
| + C∗

i|Γ∗
i
| ≥ Ti + O∗

i1 then merge τ∗i1
into τ∗i|Γ∗

i
| . C∗

i|Γ∗
i
| = C∗

i|Γ∗
i
| + C∗

i1. Renumber
the tasks of the transaction and start again the step 2

– otherwise it is the end of the process
This process converges, since we cannot merge any task if
there is only one task left. The transaction of the figure 10
is the normal form of the transaction of figure 9.

B. Monotonic pattern

Definition:
Let Γi =< {τi1, τi2, ..., τi|Γi|}, Ti > be a transaction and τua

a task under analysis. Without loss of generality, we consider
that all the tasks of Γi have a higher priority than the one
of τua. Let Γ∗i =< {τ∗i1, τ∗i2, ..., τ∗i|Γ∗

i
|}, Ti > be the normal

form of the transaction Γi. Let us note:
• αij = O∗

i(j+1) − (O∗
ij + C∗

ij) for 1 ≤ j < |Γ∗i |

• αi|Γ∗
i
| = (Ti + O∗

i1)− (Oi|Γ∗
i
| + Ci|Γ∗

i
|)

Note that αij > 0 since Γ∗i is in normal form.
Γi is a monotonic transaction for the task τua if the WCET
of Γ∗i have decreasing values while the phases αij have
increasing values i.e:

• C∗
i(p+1) ≤ C∗

ip for all 1 ≤ p < |Γ∗i |
• αip ≤ αi(p+1) for all 1 ≤ p < |Γ∗i |

Example of monotonic transaction : (see Figure 4) in
this example, the task τua is a lower priority task for all
the tasks of Γi; moreover, Γi is already in normal form:
Γi = Γ∗i . we have Ci1 ≥ Ci2 ≥ Ci3 ≥ Ci4 ≥ Ci5 and
αip ≤ αi(p+1) for all 1 ≤ p < |Γ∗i |. Therefore,
according to the definition of monotonic transaction, Γi is
monotonic for the task τua.

For the transaction Γ∗i :=< {τ∗i1, τ∗i2, ..., τ∗i|Γi|}, Ti >,
there is no difference, regarding the worst interference pat-
tern, to consider the periodic transaction obtained by rotation



Fig. 4. monotonic transaction
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Γi =< τi1, τi2, τi3, τi4, τi5, 34 >

τi1 =< 4, 0, 6, 0, 0, 1 >

τi2 =< 3, 6, 5, 0, 0, 2 >

τi3 =< 3, 12, 4, 0, 0, 3 >

τi5 =< 2, 27, 3, 0, 0, 5 >

τua =< 0, 10, 30, 0 >

consisting in considering the origin of the transaction being
the offset of the task τik:

Γ∗rk
i :=< {τ∗rk

ik , τ∗rk

i(k+1), ..., τ
∗rk

i|Γi|, τ
∗rk
i1 , τ∗rk

i2 , ...., τ∗rk

i(k−1)}, Ti >

where the only difference between the original transaction
Γ∗i and its rotation Γ∗rk

i is the value of the offsets, chosen
such that r∗rk

ij = 0 with respect to the periodic load pattern
of the tasks:

r∗rk
ij = (Ti + (O∗

ij −O∗
ik))%Ti

We can rotate the tasks of the transaction Γ∗i without
modifying the interference imposed by Γ∗i on the tasks
having a lower priority. For this reason, we consider that
Γi is monotonic if we can find a monotonic pattern in Γ∗i by
rotating the tasks of Γ∗i . Looking for a monotonic pattern is
trivial (we know that the first task has the highest WCET),
thus in the sequel, we simplify the notation Γ∗rk

i for the
monotonic pattern of a normalized transaction in writing Γ∗i .

For example figure 10 shows a monotonic pattern starting
from the task τ∗i2; thus, the transaction Γi of the figure 9
is monotonic (the transaction of the figure 10 is its normal
form).

C. Results for monotonic transaction

In this section, we present a simple RTA method used
when a transaction Γi is monotonic for a task under analysis
τua.

Theorem 1: Let Γi =< {τi1, τi1, ..., τi|Γi|}, Ti > be
a transaction and τua a task under analysis. Let Γ∗i be the
monotonic normal form of transaction Γi in regard to a task
under analysis τua. The critical instant of τua occurs when
it is released at the same time as the first task of Γ∗i .

Proof : The main idea of the proof of the theorem is
that the load pattern is higher at the beginning of the

transaction than anywhere else. The details of the proof can
be found in [12].

Corollary: Let τua be a task of a task set. if all the
transactions of the task set are monotonic for the task τua,
then the worst-case response time obtained by supposing
that τua is released at the same time as the first task of each
transaction is exact.

In fact, in the process of fix-point lookup of the
approximation method proposed in [13] [14] [15] [6]
[10], the task that initiates the critical instant may vary
from iteration to iteration, but the interference takes the
maximum function of all the interference functions in order
to avoid an exponential complexity. This situation can lead
to an unrealistic upper bound of the worst-case response
time. In the case of monotonic transaction, the task that
initiates the critical instant does not change from iteration to
iteration; so, there is no pessimism in the fix-point lookup
process and the worst-case response time obtained is exact.

IV. "IMPOSED INTERFERENCE" METHOD ON MONOTONIC
TRANSACTIONS

Figure 5 shows the interference due to the transaction
presented on figure 2 (supposing that all the tasks of the
transaction have a greater or same priority as a task under
analysis): each line represents the interference imposed,
regarding the length of the busy period, on a task under
analysis when it is released at the same time as a task of the
transaction. The approximation methods use the maximum
value of the interference functions. Figure 6 shows the
interference functions of the monotonic transaction of figure
10.
We can see clearly that the task giving the maximum value of
interference depends on the length of busy period (see Figure
5). For example, from 1 to 6, Wi2(τua, t) has the greatest
value and from 6 to 15, Wi2(τua, t) has the greatest value.
For this reason, the worst case candidate in each transaction
changes from iteration to iteration during a RTA. In such an
analysis, some unrealistic cases can be reached, because the
task under analysis could be executed in idle slots between
the release of the tasks of the transactions.
In the particular case of monotonic transactions, the task
that initiates the critical instant is always the same, thus the
maximum interference function corresponds to a single case,
which is always realistic (see on Figure 6 that W ∗

i2(τua, t)
has the greatest value). Therefore, if all the transactions of
a task set are monotonic for a given task τua, the task that
initiates the critical instant doesn’t change from iteration to
iteration; then the worst-case response time calculated with
the method of [15] is exact. The difference between this
method and the method presented in section III-C is the
number of steps in each iteration needed for determining the
worst-case response time (there is no need to compute every
cases, but only to focus on the first task of the monotonic
pattern).



Fig. 5. Representation of interference function
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Fig. 6. interference function in case of Monotonic transaction
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V. COMPARISON WITH THE RESULTS OF THE
MULTIFRAME MODEL

The multiframe model has been proposed in [5] in order
to reduce pessimism in the schedulability conditions when
the WCET is significantly higher than the average-case
execution time of a task.

Definition : A multiframe real-time task is a tuple (Γ,P)
where Γ is an array of N execution times (C0,C1,...,CN−1)
for some N ≥ 1, and P is the minimum separation time,(the
ready times of two consecutive frames must be at least P
time units apart). The execution time of the ith frame of
the task is C((i−1)%N) where 1 ≤ i. The deadline of each
frame is P after its ready time.

A multiframe task Γ is characterized by a finite number of
execution time and by the period of the task. A multiframe
task with N execution time and a period P is noted
Γ = ((C0, C1, ..., CN−1), P ).

Fig. 7. multiframe example
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Example :Let Γ = ((3, 2, 1, 2, 2, 1), 26) be a multiframe
task. We present Γ in the figure 7.

Let us note Cm = maxN−1
i=0 Ci the peak execution

time of task Γ. One of the main result presented by Mok
and Chen in [5] is for the multiframe task presenting a
"Accumulatively Monotonic" pattern.

Definition : Let Cm be the maximum in an array of
execution times (C0, C1, ..., CN−1). This array is said
AM(Accumulatively Monotonic) if

m+j∑
k=m

C(k%N) ≥
i+j∑
k=i

C(k%N), 1 ≤ i ≤ N−1, 1 ≤ j ≤ N−1

A task Γ is said to be AM if its array of execution times is
AM.
The multiframe task presented in the figure 7 is a AM
multiframe.
If Γ is a multiframe task with a AM pattern, we will rotate
the execution time of Γ such as C0 be the peak execution
time.

Result for AM pattern [5] :
Let Γ be a AM multiframe task and τua a classical task
under analysis. Let us suppose that the priority of τua is
lower than the priority of each instance of Γ; then the
critical instant of τua occurs when τua is released at the
same time as the first instance of Γ.

We can see that the multiframe model is a particular in-
stance of the tasks with offsets. One of the main particularity
is that

Oi+1 −Oi = P for 1 ≤ i < N and Ti −ON = P

If this particularity is not satisfied for a task with offsets,
we cannot apply the result(for AM pattern) presented in the
previous section. For example, figure 8 shows a task with
offset Γi.
Γi =< {τi1, τi2, τi3, τi4, τi5, τi6}, 30 >
τi1 =< 3, 0, 5, 0, 0, 1 >
τi2 =< 2, 6, 10, 0, 0, 2 >
τi3 =< 1, 11, 15, 0, 0, 3 >
τi4 =< 2, 15, 16, 0, 0, 4 >
τi5 =< 2, 18, 17, 0, 0, 5 >
τi6 =< 1, 21, 18, 0, 0, 6 >
The execution times in Γi are the same as for Γ in the figure

7.
In the transaction Γi, the difference between the releases of



Fig. 8. modification of multiframe
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two consecutive tasks is not constant.

∃ i such as Oi+1 −Oi 6= Oi+2 −Oi+1 1 ≤ i < 5

Let τua be a task under analysis with a WCET Cua = 3
with a lower priority than Γi. We can see that the critical
instant of τua does not coincide with the release of the first
task of the transaction Γi. The critical instant of τua occurs
in this case when it is released at the same time as the
fourth task of Γi.

So, it is clear that we cannot apply directly the results found
for "AM multiframe" on the general model of tasks with
offsets without taking into account the values of offsets
between the tasks of a transaction. Monotonic transaction
does this consideration and appears like an analog result
to the one presented for multiframe model. Note that the
multiframe model does not provide suitable results for serial
transactions [11] either.

VI. APPLICATIONS OF THE METHOD

In this section we apply the method of monotonic trans-
action on an example. Let

Γi = {< τi1, τi2, τi3, τi4, τi5, τi6, τi7, τi8 >, 50}

be a transaction. The tasks of Γi are defined as (see Figure
9):
τi1 =< 2, 1, 10, 0, 0, 11 >
τi2 =< 5, 9, 10, 0, 0, 12 >
τi3 =< 5, 19, 10, 0, 0, 13 >
τi4 =< 7, 23, 10, 0, 0, 14 >
τi5 =< 1, 34, 10, 0, 0, 15 >
τi6 =< 8, 35, 10, 0, 0, 18 >
τi7 =< 5, 47, 10, 0, 0, 17 >
τi8 =< 1, 48, 10, 0, 0, 18 >

Let τua be a task under analysis with a WCET Cua = 8
and a lower priority than all the tasks of Γi.

The application of the "imposed interference" method
gives the table 2.

Table 2 : "Imposed Interference" method
Iter
#

Wi1 Wi2 Wi3 Wi4 Wi5 Wi6 Wi7 Wi8 Wi Rua

0 8
1 2 5 9 7 8 8 8 3 9 17
2 7 13 14 13 15 15 13 8 15 23
3 11 17 20 16 17 16 14 14 20 28
4 19 20 21 21 19 19 20 16 21 29
5 19 21 22 23 20 20 21 17 23 31
6 19 23 25 24 22 21 23 19 25 33
7 19 25 28 24 22 21 25 20 28 36
8 22 26 29 24 23 23 25 20 29 37
9 23 26 29 25 24 24 25 21 29 37

Now, we compute the worst-case response using the
monotonic transactions characteristics.
Steps of the application of the method:

Step 1: We group the tasks of Γi in order to obtain
a normal form and we obtain the transaction shown on
Figure 10:

Γ∗i = {< τ∗i1, τ
∗
i2, τ

∗
i3, τ

∗
i4 > 50}

τ∗i1 =< 5, 9, x, 0, 0, x >
τ∗i2 =< 12, 19, x, 0, 0, x >
τ∗i3 =< 9, 34, x, 0, 0, x >
τ∗i4 =< 8, 47, x, 0, 0, x >
(see Figure 10)

Step 2:Looking for a monotonic pattern We have :

C∗
i2 ≥ C∗

i3 ≥ C∗
i4 ≥ C∗

i1

and α∗i2 ≤ α∗i3 ≤ α∗i4 ≤ α∗i1

A monotonic pattern starts from task τ∗i2. Consequently,
the critical instant of the task τua coincides with the
release of the task τ∗i2. We apply the iterative fix-point
lookup with the method presented in this article(see Table 3).

Table 3 : New method
Iter # I12 Rua

0 8
1 12 20
2 21 29
3 29 37
4 29 37

Let us note that Ii2(τua, t) is the value obtained with a
classical RTA method.

Ii2(τua, t) =
|Γ∗i |∑
j=1

(⌈
t∗

Ti

⌉
· Cij

)
With our method, we only have to calculate Ii2(τua, t)

at each iteration instead of calculating eight values of
Wij(τua, t) at each iteration. Moreover, for the calculation
of each Wij(τua, t) it is necessary to evaluate |Γi| times
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the value of xijc(t). This evaluation is no longer necessary
with the new method. The number of steps in the fix-point
lookup is significantly lower. Finally, let us note that RTA
analysis is exact.
A concrete example of application of monotonic transaction
can be found in the intermediate priority tasks in a serial
transaction in [11].

VII. CONCLUSION

In a general context of tasks with offsets, the RTA methods
are intractable because they are exponential in time. This
article focuses on monotonic transactions (which could be
compared, in the model of transactions, to the AM class
of multiframe tasks). For this class, there is an exact and
pseudo-polynomial RTA method which requires less steps
than the known approximation methods for the general case.
This method consists in grouping at first the tasks of the
transaction in a normal form. If the normal form presents a
monotonic pattern, the critical instant occurs when the task
under analysis is released at the same time as the first task of
the pattern. We noted also that the test proposed in [15] gives
an exact result too in the case of monotonic transactions.

In our future work on tasks with offsets, we will investi-
gate new classes in order to find less pessimistic schedula-
bility conditions with a lower complexity. Moreover, we will
try to extend this method to transactions with jitters.
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