

Schedulability Analysis of Serial Transactions

Karim TRAORE
{karim.traore@ensma.fr}

GROLLEAU Emmanuel
{grolleau@ensma.fr}

COTTET Francis
{cottet@ensma.fr}

LISI/ENSMA

Laboratoire d’Informatique Scientifique et Industrielle
École Nationale de Mécanique et d’Aérotechnique

Téléport 2 – BP 40109 F-86961 Chasseneuil Futuroscope Cedex, France

Abstract
1

 On the basis of a concrete real-time application, we

present in this article a new task model called "serial

transaction". This model is a particular instance of the

task model with offsets defined by Tindell and Palencia

and al.. A serial transaction is typically a task reading

serial information (RS232, CAN,…): several instances

are identical and read a unitary part of a serial packet,

these tasks have the same WCET, offset shifting, priority

and relative deadline. In addition, the last task of a

transaction has to deal with the packet, and is typically

longer, but has a longer relative deadline, and a lower

priority. The need for this task model appeared in a real

application, that couldn’t be validated using known

methods on transactions, so we present a less pessimistic

real-time evaluation method dedicated on to this new

model.

1. Introduction
 Several laboratories of Poitiers (ENSMA and
University) are developing together a mini UAV
(Unmanned Air Vehicle) (see Figure 1). The LISI is in
charge of developing and validating the system
(embedded and ground station). The embedded
processing unit is a microcontroller (Freescale/Motorola
MPC555) connected via serial port to a GPS receiver
and a modem used in order to communicate with the
ground station. The measurement of the attitude of the
UAV is done by an IMU (Inertial Measurement Unit)
connected to the microcontroller via a CAN network.

In the development of a real-time application like this
one, two techniques of scheduling can be used : the on-
line scheduling, with a fixed [LL73, LW82, Aud91] or
variable allocation of priorities of the tasks in the tasks
set [Der74, Lab74, DM89] and off-line techniques which
use a sequence whose correctness was proved [XP92,
Gro99]. The real-time RTOS (Real-Time Operational
System) OSEKTurbo OS/MPC5xx [OSM1, OSM2], in

1 This work was supported by ONERA/DGA

conformity with standard OSEK/VDX [Osek1, Osek2],
selected for this application, allows only fixed priorities.
We thus used an on-line approach with fixed priority
technique.

Figure 1: the AMADO

After the definition of the software architecture and
the temporal parameters of the various tasks, one of the
most important phases is the temporal validation which
consists in proving that whatever happens, all the tasks
meet their temporal constraints. RTA (Response Time
analysis) methods are used to bound the worst case
response time of the tasks of an application. Tindell
[Tin94] proposed a method for calculating an upper
bound of the worst-case response time which is less
pessimistic than classic RTA (considering that a critical
instant consists in a simultaneous release of all the tasks)
in a context of tasks with offsets.

Palencia and Harbour [PG98] extended Tindell’s
work with dynamic offsets, and formalized his work as
transactions. Lastly, [TN04b][MS03] introduced the
concept of “imposed” interference differing from
“released for execution” interference used by Tindell.
However, for now the exact calculation methods used to
determinate the exact worst-case response time rely on
calculating every combination of the tasks of the
transactions; it thus remains exponential in time.

In order to validate the control system of the UAV,
we had to deal with tasks with offset which are particular
instances of transactions: these tasks are activated by
peripherals connected on serial and CAN ports. Section
2 presents the case study. Section 3 recalls some general
results about transactions. Section 4 presents some new
results obtained, allowing us to analyse the interference
of a serial transaction in a pseudo polynomial time for a
subset of the tasks of the task system. Section 5 applies
these new results in order to validate our case study.
2. Presentation of the Application

The project, named AMADO, is a UAV with a
wingspread of 55 cm, using a delta shaped wing with
two symmetrical drifts for a total weight (including the
control system) of 930 grams. The main objective is to
create an autonomous plane embedding a camera, and to
be able to follow dynamically defined waypoints. The
UAV is connected to a ground station thanks to a
wireless modem, allowing it to receive high level orders
during a mission. The critical parts of the flight control
are embedded.

2.1 Hardware architecture

Figure 2: main architecture of the AMADO

The Figure 2 shows two parts: the ground station, and
the embedded station. The ground station can
communicate thanks to a half duplex modem with the
embedded system, and the traditional radio emitter is
kept as an emergency control in case of general failure of
the embedded system. The main role of the ground
station is video displaying/recording, flight instruments,
and high level commands (either waypoints flight, or
assisted flight).

The embedded system heart is a Freescale/Motorola
MPC555 [MPC1] connected to the actuators (3 servo-
commands and the speed-variator, refreshed every 20
ms), an IMU [IMU1], a GPS receiver [GPS1], a
traditional radio receiver and a modem. The MPC555 is

a 32 bits PowerPC with a frequency of 40MHZ, 448KB
of flash memory and 26KB of RAM.

Two sensors are used in order to calculate the position
and attitude of the UAV: the GPS receiver and the IMU.
The Inertial Measurement Unit sends information about
angular speed and accelerations, which, once treated,
give the roll and the pitch of the UAV. This IMU is
connected on a CAN port and delivers information at a
frequency of 50Hz and a throughput of 1Mbps. A frame
of the IMU is compound of 3 blocks of 6 bytes. In order
for the system to get a complete frame, since there is no
possible memorisation of the blocks, each block must be
read before the next arrives. Once the system has 3
blocks, it can constitute the frame, and handle it to
calculate the roll and the pitch.

The GPS receiver is used to get the speed (direction
and module) and the absolute 3Dimensional position of
the UAV. The GPS Receiver sends data to the controller
at a frequency of 4Hz and delivers information with a
throughput of 57600bps. As a RS232 communication,
the information is sent byte after byte; the number of
bytes sent during one period (frame) of the GPS can
reach 120 bytes. As in the case of the IMU, the system
must recover each byte and arrange it before the arrival
of the next byte, under penalty of losing the complete
frame.

Finally the modem connected to the microcontroller
on the serial port is bi-directional and communicates
with the microcontroller at a throughput of 115kbps. The
length of the frame transmitted to the microcontroller by
the modem can reach 10 bytes. The requirements are the
same as in the case of the GPS receiver. In the
presentation of this architecture, we omitted voluntarily
the video circuit that does not have any impact on the
real-time aspects of this application.

2.2 Software architecture of the application

We have chosen the real-time executive OSEKTurbo

OS/MPC5xx of Metrowerks for our application. This
RTOS is conforming to the standard OSEK/VDX;
standard defined for applications with limited resources
[OSM3]. The OSEK/VDX executives are light because
they are based on a static description of all the system
using the OIL (OSEK Implementation Language).

Apart the initialisation task, there are 12 tasks in the
control system (see Table 1). The priorities of the tasks
have been assigned following a Deadline Monotonic
policy [LL73]. Note that the value L=120 (resp. L=3,
L=10) corresponds to the number of times the task has to
be activated in order to acquire a frame.

This kind of application can’t be validated easily if
the offsets are not taken into account. Indeed, it appears
clearly that task TreatGPS is released when the whole
GPS frame has been received; it cannot thus be released
at the same time as the task Acq GPS; it is the same case
for task TreatIMU and the task Acq IMU; the same
situation occurs for the task TreatInstruction and the task
Acq Instruction.

µcontroller

Numerical

Modem

RC

transmitter

RS232

Servomoteurs

IMU GPS

RC receiver Numerical

Modem

RS232CAN

µcontroller

Numerical

Modem

RC

transmitter

RS232

Servomoteurs

IMU GPS

RC receiver Numerical

Modem

RS232CAN

Numerical

Modem

RC

transmitter
Numerical

Modem

RC

transmitter

RS232

Servomoteurs

IMU GPS

RC receiver Numerical

Modem

RS232CAN

RS232

Servomoteurs

IMUIMU GPSGPS

RC receiver Numerical

Modem

RS232CAN

Tasks Period WCET deadline Priority

 (in microsecond)

Monitoring (1) 200000 60 200000 1

Acq PWM (2) 20000 24 10000 7

Transmit Grd (3) 50000 3360 30000 5

Deliver Cmd (4) 20000 40 10000 6

Navigation (5) 250000 560 140000 2

ReguleAttitude (6) 60000 32400 60000 4

Acq GPS (7) 250000 100 L=120 160 11

Acq IMU (8) 20000 96 L=3 720 10

Acq Instruction(9) 100000 12 L=10 80 12

TreatGPS (10) 250000 3000 5000 9

TreatIMU (11) 20000 900 7500 8

TreatInstruction
(12) 100000 900 70000 3

Table1: task system of the UAV

The Figure 3 presents a model of a serial transaction,

Li instances of the acquisition of a part of a frame are
separated by a duration corresponding to the arrival rate
of the packets (Acq GPS, Acq IMU, Acq Instruction),
and a longer task is used to handle the whole frame
(TreatGPS, TreatIMU, TreatInstruction). In a serial
transaction, the acquisition tasks are usually short,
because they only have to bufferize the packets until the
whole frame is built, while the treatment tasks are longer
since they have to deal with the full frame. Moreover,
the first release of the serial transaction is not known
precisely because serial transaction is activated by an
external peripheral.

Figure 3 : pattern of serial transaction

In order to define a serial transaction as a particular

case of a transaction, let us first give a survey of
definitions and results found in [Tin94][TN04a][PG98].

3. Transactions

The model of tasks with offsets was proposed by
Tindell in order to reduce existing pessimism of the
schedulability analysis when the critical instant for a task
occurs when it is released at the same time as all the

tasks of higher priority. Indeed, certain tasks can for
example have the same period and be bound by relations
of offsets i.e. they can never be released at the same
time. A set of tasks of the same period bounded by offset
is called a transaction. A task system is compound of a
set of transactions [PG98][TN04a]:

Γ := {Γ1, Γ2,… Γk}
 A transaction (see Figure 4) iΓ contains |Γi| tasks

having the same period iT : Γi := <{τi1,…, τi|Γi|},Ti>.

A task is defined by τij := <Cij, Oij, Dij, Jij, Bij, Pij> where

ijC is the worst-case execution time (WCET), Oij is the

offset (minimal time between the release of the
transaction and the release of the task), in order to
simplify the analysis, we will consider a reduced task
offset ijΦ which is always within 0 and Ti: ijΦ = Oij%Ti.

Dij is the relative deadline, Jij the maximum jitter (giving
t0 the release date of an instance of the transaction iΓ ,

then the task ijτ is released between t0+Oij and

t0+Oij+Jij), Bij maximum blocking due to lower priority
tasks, and Pij the priority. Without loss of generality, we
consider that the tasks are ordered by increasing offsets

ijΦ ; in our case, we define the response time as being

the time between the release of the task and the
completion of the task. In the table 3, we have
represented all the transactions of the UAV application.

Let us note also)(uaihp τ the set of indices of the

tasks of iΓ with a priority higher than the priority of a

task uaτ i.e. j∈hpi(τua) if and only if Pij>Pua.

1iΦ

2iΦ

3iΦ

3iD

1T

1iτ 2iτ 3iτ 1iτ 2iτ 3iτ

1T

Figure 4: model of tasks with offsets

The RTA method is to be applied on each task of the
transactions. The task under analysis is usually noted

uaτ . Tindell showed that the critical instant of uaτ is a

particular instant when it is released at the same time as
one task of higher priority in each transaction (its own
transaction being handled separately). The main
difficulty is to determine what is the critical instant
candidate icτ of a transaction iΓ that initiates the

critical instant of uaτ . An exact calculation method

would require to evaluate the response time obtained by

1 Li 2 1 Li 2

Din pi

Ti

Ci Cin

Transactions Period tasks WCET Offset deadline Priority
“Release for execution” worst-

case response time

1 200000 11 200000 0 200000 1 56156

2 20000 21 10000 0 10000 7 11332
3 50000 31 30000 0 30000 5 23784

4 20000 41 10000 0 10000 6 11672
5 250000 51 140000 0 140000 2 56096

6 60000 61 60000 0 60000 4 54636

7i(i=1,…,120) 100 160*)1(7 −= iO i 160 11 124
7 250000

7121 3000 120*160 5000 9 3408

81 - 82 - 83 96 0 – 720 - 2*720 720 10 468
8 20000

84 900 3*720 7500 8 10720

9i(i=1..10) 12 80*)1(9 −= iO i 80 12 12
9 100000

911 900 10*80 70000 3 55416

Table 2 : representation of all the tasks of the
configuration using the symbolism of
transaction and values of worst-case response
time with “release for execution” method

carrying out all the possible combinations of the tasks of
priority higher than uaτ in each transaction and to

choose the task icτ in each transaction that leads to the

worst response time. This exhaustive method has an
exponential complexity and is intractable for realistic
task systems; several approximation methods giving an
upper bound of the worst-case response time have been
proposed.

Upper bound method based on the interference

“released for execution”

[Tin94][PG98] Let us note icτ the task of iΓ that

coincides with the critical instant of uaτ . Let us note

 t), (uaicW τ the interference of iΓ on the response time of

uaτ during a time interval of length t.

∑













⋅











=

∈)(i

*

T

t
 t),(

uaihpj
ijuaic

CW
τ

τ

iicijij

ij
*

T mod)O - (O),(

),(

=

−=

ic

ic

phase

phasett

ττ
ττ

*t represents the time during which τij can interfere with
τua.

 t), (max t), , (A note usLet iua uaic
ic
W ττ

Γ∈
=Γ

 The upper bound of the response time is obtained by

iteration : C R ua
0
ua =

).R, , A(C R n
uai

kua

1)(n
ua

i

Γ+= ∑
Γ∈Γ

+ τ

The value of uaR is thus obtained by a classic fix-point

iteration lookup.

The interference that a transaction imposes on a task
can be represented by a periodic and static pattern.
[TN04a] proposed an optimisation of the computation of
the interference. This technique consists in storing in a
table the parameters of the interference function of a
transaction on a task of lower priority. This approach
reduces the computation time but this method does not
reduce the difference between the real worst-case
response time and the upper bound obtained. Therefore,
we couldn’t validate our system with the general method
because the tasks (2), (4) and (11) have a worst-case
response time greater than their relative deadline; while
the real worst-case response time of all the tasks of the
set could in fact be lower than their deadline. (see
Table2).

We thus present a method given in [TN04b] giving a
tighter upper bound.

Upper bound method based on the “imposed”

interference

This method has been proposed in [TN04b]. It
removes the unnecessary overestimation taken into
account in the computation of the interference created by
a task on a lower priority one. This overestimation does
not have any impact in the case of tasks without offset
but has a considerable effect in the approximation of the
worst-case response time when we are in the presence of
tasks with offsets. This method consists in calculating

the interference effectively imposed by a task jτ on a

task uaτ with a lower priority during a time interval of

length t; the idea is that the interference cannot exceed
the interval of time t.

dt

dt

dt

tjncedInterfére
≤

)(

In order to calculate this “imposed” interference,
[TN04b] subtracts a parameter x (see Figure 5) from the
original interference formula:

()













































≥
=

=
−=

∑ ∗+=
∈

 0for t)T mod t(- C 0,max

0
)(

T mod)O -(O),(

),(

)(x- 1 t),(

*
i

*
ij

iicijij

ij
*

)(
icj

*

tx

phase

phasett

tC
T

t
W

icj

ic

ic

uaihpj
ij

i
uaic

ττ
ττ

τ
τ

)(tx
icj

 corresponds to the part of the task ijτ that

cannot be executed in the time interval of length t; since
this interference is not effectively imposed in this
interval, it is not taken into account.

Example: this transaction has 4 tasks with period 50=iT

Figure 5: “imposed” interference

 3)00()00()34()02()5(,1 =−+−+−+−=uaiW τ

For determining the upper bound of the response-time,
we use this function :

 t),(max),(
)(

uai ic
ua

ihpcua
WtW ττ

τ∈
=

With the value of each),(tW uai τ , the response time

uaR of uaτ can be calculated.

),()1(n
uaua

i

i
n
ua RWCR ua τ∑

Γ∈Γ

+ += . uaR is obtained by fix-

point iteration starting with uaua CR =0 . Let us execute

this method on the example (Figure6)

Figure 6.Example for imposed interference

In the transaction iΓ , we have five tasks. Let us consider

a lower priority task uaτ with 5=uaC . Let us calculate

the response-time. We present at first the details of
iteration number 2:
Iteration 2:

3)00()00()00()12()02()5,(1 =−+−+−+−+−=uaiW τ

3)00()00()12()02()00()5,(2 =−+−+−+−+−=uaiW τ

3)00()12()02()00()00()5,(3 =−+−+−+−+−=uaiW τ

3)34()02()00()00()00()5,(4 =−+−+−+−+−=uaiW τ

4)04()00()00()00()00()5,(5 =−+−+−+−+−=uaiW τ

4)0,(=uaiW τ 9=uaR

We give the values obtained in the different iterations :

Iteration t 1iW

2iW

3iW

4iW

5iW

iW

uaR

1 0 0 0 0 0 0 0 5
2 5 3 3 3 3 4 4 9
3 9 5 5 5 6 5 6 11
4 11 6 6 7 6 6 7 12
5 12 6 6 8 6 6 8 13
6 13 7 7 8 7 7 8 13

Consequently, the value of uaR is equal to 13.

4- Contribution to RTA of transactions

4.1 Transactions without jitters

In this section, we first simplify the way to compute
the interference [PG 98] for general transactions with no
jitter.

according to [PG98] the interference of a transaction for
a task τic candidate to coincide with the critical instant is
given by:

()∑
∈∀

+=
)(

)(21),(

uaihpj

t
Set
ijcI

Set
ijcItuaicW

τ
τ with

ijC
iT

ijcijJSet
ijcI











 Φ+
=1 , ijC

iT

ijct
Set
ijcI











 Φ−
=2 , and

iTicJicOijOiTijc))%((+−+=Φ

By assumption, the jitter is null, so the interference
is written :














 −+−







+







 −+
= ∑

∈∀

ij
i

iiciji

hpj

ij
i

iiciji
uaic

C
T

TOOTt

C
T

TOOT
tW

uai

)%(

)%(
),(

)(τ
τ

By definition, iTiTicOijOiT <−+)%(therefore

∑
−+−

=
∈∀ 












)(

)%(
),(

uaihpj
ijC

iT

iTicOijOiTt
tuaicW

τ
τ

Which is equivalent to

∑
Φ−Φ+−

=
∈∀ 












)(

)%(
),(

uaihpj
ijC

iT

iTicijiTt
tuaicW

τ
τ

 Let us note k1, k2,…, k|hpi(τua)| the indices ordered by
offset of hpi(τua) (i.e. p<q => Φikp≤Φikq). Since the offsets
are assumed to be lower than the period, (Ti+Φij-Φic)%Ti
correspond to Φij-Φic if Φic≤Φij and (Ti+Φij-Φic) if
Φij<Φic. Hence, separating the formula between tasks

{ } >=<Γ 50 , ,,, :
4321 iiiii ττττ

>=< 4 , 0 , 0 , 4 , 0 , 2:1iτ
>=< 2 , 0 , 0 , 8 , 4 , 4:2iτ
>=< 3 , 0 , 0 , 5 , 11 , 2:3iτ
>=< 1 , 0 , 0 , 15 , 16 , 4:4iτ

 t)(21 txi

released before and after the critical instant candidate
τikp, we have :

∑

∑

≥
∈

<
∈











 Φ−Φ−

+










 Φ−Φ+−
=

pj

uaij

j

pj

pj

uaij

j

pj

p

kk

hpk

ik

i

ikik

kk

hpk

ik

i

ikiki

uaik

C
T

t

C
T

Tt
tW

)(

)(

)(

)(
),(

τ

τ
τ

so ∑
∈ 










 Φ−Φ−
=

)(

)(
),(1

1

uaij

j

j

hpk

ik

i

ikik

uaik C
T

t
tW

τ
τ

∑
≥
∈ 










 Φ−Φ−

+






 Φ−Φ+−
=

2

2

1

21

2

)(

)(

)(
),(

kk

hpk

ik

i

ikik

ik

i

ikiki

uaik

j

uaij

j

j

C
T

t

C
T

Tt
tW

τ

τ

And so on. Therefore

∑
≥
∈ 




















 Φ−Φ−
−






 Φ−Φ−

+



















 Φ−Φ+−
−






 Φ−Φ−

=−

2

)(

)()(

)()(

),(),(

21

1

2111

21

kjk
uaihpjk

j

jj

ik

i

ikik

i

ikik

ik

i

ikiki

i

ikik

uaikuaik

C
T

t

T

t

C
T

Tt

T

t

tWtW

τ

ττ

Let us analyze now, how we can determine efficiently
the differences between the interference function when
comparing the first task as the critical instant candidate
comparing to another task :

1

21
)(

ik

i

ikiki

i

C
T

Tt

T

t




















 Φ−Φ+−
−







is always

equal to 0 or Cik1 because Φij<Ti.
The difference is Cik1 if and only if :

0)(%0%
21

≤Φ−Φ+−> ikikiii TTtandTt ,

equivalently]..0]%
21 ikikii TTt Φ−Φ+∈

For the other tasks interference (i.e. other part of the
sum) :

j

jj

ik

i

ikik

i

ikik
C

T

t

T

t

























 Φ−Φ−
−










 Φ−Φ−)()(
21 is

always equal to 0 or -Cikj because Φij<Ti.
The difference is equal to –Cikj if and only if :

0)(%0)(%
21

>Φ−Φ−≤Φ−Φ− ikikiikiki jj
TtandTt

equivalently if :

]..]%
12 ikikikiki jj

Tt Φ−ΦΦ−Φ∈

We can thus calculate),(),(
21

tWtW uaikuaik ττ − testing

|hpi(τua)| intervals.
We will now calculate the difference

),(),(,),(
11 tWtWkkhpk uaikuaikpuaip p

τττ −≠∈∀ :

∑

∑

≥
∈

<
∈





















 Φ−Φ−
−






 Φ−Φ−

+




















 Φ−Φ+−
−






 Φ−Φ−

=−

pj

uaij

j

pjj

pj

uaij

j

pjj

p

kk

hpk

ik

i

ikik

i

ikik

kk

hpk

ik

i

ikiki

i

ikik

uaikuaik

C
T

t

T

t

C
T

Tt

T

t

tWtW

)(

)(

)()(

)()(

),(),(

1

1

1

τ

τ

ττ

The first sum has a value ≥0 whereas the second has a
value ≤ 0. We have :
Difference of +Cikj for kj<kp if

]..]%
1 pjj ikikiikiki TTt Φ−Φ+Φ−Φ∈ (1)

Difference of -Cikj for kj≥kp if
]..]%

1ikikikiki jpj
Tt Φ−ΦΦ−Φ∈ (2)

Example : transaction of period=19 with 3 tasks (Fig. 7)

Figure 7.calculation with intervals

 i2i1 WW − i3i1 WW −

]]0;13]]0;6]]6;11]]0;8]]6;14]]0;11

If I ∈t 1iC 2iC− 3iC− 1iC 2iC 3iC−

If I ∉t 0 0 0 0 0 0

Evaluation of),(tW uai τ with t=14

0000)14,()14,(21 =++=− uaiuai WW ττ

200)14,()14,(231 =++=− iCWW uaiuai ττ

Thus 9)14,()14,(1 == uaiuai WW ττ

With this method, it is sufficient to evaluate only
one value of),(tW uaic τ

4.2 Serial transaction

Let us introduce the definition of a serial transaction:

Definition1: A serial transaction is a transaction with the
following constraints:
Let ΓI be a serial transaction,
• null jitter: ∀i/τij∈Γi, Jij=0
• regular arrival pattern pi: ∀j∈[1..|Γi|], Φij=(j-1)pi.
• there are two kinds of tasks :

o the Li=|Γi|-1 acquisition tasks such that :
τij,j∈[1..Li] := <Ci, (j-1)pi, pi, 0, Bij, Pi>;

o the treatment task τi|Γi|:=<Cin,Lipi,Din, 0, Bij, Pin>

19=iT

>=< 1,0,0,6,1,41iτ
>=< 2,0,0,5,7,22iτ
>=< 3,0,0,6,12,33iτ

• with Cin>Ci, Din>pi, Pin<Pi and

iniiniii
CpCpLT −>+⋅−)(. This means that the

treatment task is longer than the acquisition tasks,
but is provided a longer deadline and a lower
priority.

Example of serial transaction : (Figure 6)

Definition2 : a task uaτ is an intermediate priority task

for a serial transaction iΓ if the priority of uaτ is lower

than acquisition tasks of iΓ but higher than the treatment

task of iΓ .

Definition3 : a task uaτ is a lower priority task for a

serial transaction iΓ if the priority of uaτ is lower than

all the tasks of iΓ .

The next result relies on the intervals defined in

section 4.1, let us define Eikj as the shift between two
successive tasks of higher priority than the task under
analysis (Figure 8). Let)(21 , ,,

uaihp
kkk τ the elements

of)(
uaihp τ . We assume that)(

uaihp τ is ordered by

offsets values increasing i.e
)1(+

Φ≤Φ
jj ikik

 for

)(uaihpj τ<

jj ikikijE Φ−Φ=
+)1(

 for)(uaihpj τ< and

)()(i 1
E

uaihp
ikikihp

T
uai ττ Φ−Φ+=

Figure 8. Illustration of

ijE and theorem 1

Theorem 1 shows that for specific patterns of
transactions without jitters where the WCET of tasks are
decreasing and the shifts between successive offsets are
increasing, the critical instant of a task always coincides
to the first instance of the transaction. The acquisition
tasks of a serial transaction follow this kind of pattern,
therefore the critical instant of a task of an intermediate
priority (lower than acquisition tasks but higher than
treatment task) always coincides with the first
acquisition task.
Theorem 1 : let iΓ be a transaction, uaτ a task under

analysis. If the jitters are null and if the tasks of iΓ are

such that their WCET are decreasing, i.e. Cij≥Cik
∀(j≤k)∈hpi(τua), and offset shifting are increasing i.e.

)1(+≤ jiij EE for)(uaihpj τ< , then the critical instant of

τua coincide with the release of the first task of hpi(τua) .

Proof : the proof is based on the interferences.

According to the definition of ijE , iij TE =∑ . For this

proof, we use the method of calculation presented in
section 4.1. In this section we have shown that the
difference of interference between a candidate kp and the
candidate k1 was obtained for every kj∈hpi(τua) by :
Difference of +Cikj for kj<kp if

]..]%
1 pjj ikikiikiki TTt Φ−Φ+Φ−Φ∈ (1)

Difference -Cikj for kj≥kp if

]..]%
1ikikikiki jpj

Tt Φ−ΦΦ−Φ∈ (2)

Let us analyze these intervals in the context Cij
decreasing and Eij increasing ; let us compare the
candidates k1 and k2 :
kj=k1 Difference +Cik1 for

]..0]%
21 ikikii TTt Φ−Φ+∈

i.e. for]..0]%
1ikii ETTt −∈ ,

let us note Iik2k1 this interval
kj=k2 Difference of –Cik2 for

]..0]%
12 ikikiTt Φ−Φ∈ i.e. for

]..0]%
1iki ETt ∈ ,

let us note Iik2k2 this interval
kj=k3 Difference of –Cik3 for

]..]%
1323 ikikikikiTt Φ−ΦΦ−Φ∈ ,

]..]%
212 ikikiki EEETt +∈ ,

let us note Iik2k3 this interval
kj=kn Difference of –Cikn for

]..]%
12 ikikikiki nn

Tt Φ−ΦΦ−Φ∈ i.e. for

]...

.....]%

1321

132

−

−

++++

+++∈

n

n

ikikikik

ikikiki

EEEE

EEETt
,

let us note Iik2kn this interval
We will prove now that with our constraints, the

intersection of the intervals giving a negative difference
is empty, i.e. there is at most one negative value for any
value of t%Ti; and then if t%Ti is in an interval giving a
negative value, in such a case we are in an interval
giving a positive value. Therefore, we will prove that
either there is not any difference of interference (neither
negative nor positive) or there is at most one negative
value but in this case there is a positive difference that is
greater or equal to the negative difference (since its value
is Cik1). In the proof, an interval I is < (lower) than an
interval J if any value of I is lower than any value of J.
Iik2k2< Iik2k3 because Eik1≤Eik2
Iik2k3<Iik2k4 because Eik1+Eik2≤Eik2+Eik3 because Eik1≤Eik3
…
Iik2kn-1<Iik2kn because
Eik1+Eik2+…+Eikn-2≤ Eik2+Eik3+…+Eikn-1 because
Eik1≤Eikn-1
Consequently, the intersection of the negative intervals is
empty.

Finally, we will prove that if t is in one of the
intervals Iik2kp, p∈2.kn, then it is in the interval Iik2k1 .

 Let us suppose that t%Ti∉ Iik2k1, this means
t%Ti∈]Ti-Eik1..Ti[∪{0}.

1iE 2iE 3iE 4iE

If t%Ti=0, then t is not element of any interval
In the case t%Ti∈]Ti-Eik1..Ti[, we will prove that Ti-

Eik1 is greater than any other interval Iik2kj,j=2..kn. It is
sufficient for this proof, since the intervals are
increasing, to prove that Ti-Eik1≥Eik1+Eik2+…+Eikn-1. So,
we have to prove that Ti ≥ 2Eik1+Eik2+…+Eikn-1; since by
definition Ti=Eik1+Eik2+…+Eikn, therefore we have to
prove that Eik1+Eik2+…+Eikn-1+Eikn≥ 2Eik1+Eik2+…+Eikn-

1, this is true because Eikn≥Eik1.
Let us generalize to a task kp of the serial transaction:

kj=k1 Difference +Cik1 for

]..0]%
1 pikikii TTt Φ−Φ+∈ i.e. for

)]...(..0]%
121 −

+++−∈
pikikikii EEETTt

 since Ti=ΣEij
)].....0]%

1 npp ikikiki EEETt +++∈
+

 let us note Iikpk1 this interval
kj=k2 Difference +Cik2 for

]..]%
212 pikikiikiki TTt Φ−Φ+Φ−Φ∈

i.e. for
)]...(..]%

121 −
++−∈

pikikiiki EETETt

since Ti=ΣEij
.....]%

111 npp ikikikikiki EEEEETt ++++∈
+

let us note Iikpk2 this interval
kj=kp Difference of –Cikp for

]..0]%
1ikiki j

Tt Φ−Φ∈ i.e. for

].....0]%
11 −

++∈
pikiki EETt ,

let us note Iikpkp this interval
kj=kp+1 Difference of –Cikp+1 for

]..]%
111 ikikikiki ppp

Tt Φ−ΦΦ−Φ∈ ++

 i.e. for].....]%
1 pp ikikiki EEETt ++∈ ,

let us note Iikpkp+1 this interval
kj=kn Difference of –Cikn for

]..]%
1ikikikiki npn

Tt Φ−ΦΦ−Φ∈

i.e. for

].......

.]%

13211

1

−−

+

+++++

++∈

nn

pp

ikikikikik

ikiki

EEEEE

EETt

,
 let un note Iikpkn this interval

The proof uses the same way as before, except that for
the general case, we show that there are always at least
as many positive interval than negative intervals. Since
the WCET cannot decrease, and since the positive
intervals correspond to the first tasks of the transaction,
the positive difference is always greater or equal than the
negative difference.
• t%Ti∈]0..Eik1] : t%Ti∈Iikpk1 and t%Ti∈Iikpkp, and

∀kq>kp, t%Ti∉Iikpkq because the lower limit of these
intervals is greater than Eikp≥Eik1. So, there is at least
one positive interval (giving a difference of Ci1) and

at most one negative interval (giving a difference of
Cikp) and since Ci1≥Cikp, we obtain Wi1 (τua,
t%Ti∈]0..Eik1])- Wip (τua, t%Ti∈]0..Eik1])≥0

• t%Ti∈]Eik1.. Eik1+Eik2] : t%Ti∈Iikpk2 (positive
intervals), t%Ti∈Iikpkp (negative interval). It is
possible that t%Ti∈ Iikpkp+1 (negative interval), but in
this case, t%Ti∈Iikpk1 (positive interval). On the
contrary, ∀kq>kp+1, t%Ti∉Iikpkq because Eikp+Eikp+1≥
Eik1+Eik2. Since the execution times are
nonincreasing, we have Wi1(τua, t%Ti∈]Eik1..
Eik1+Eik2])- Wip(τua, t%Ti∈]Eik1.. Eik1+Eik2])≥0

• the same reasonning can be lead on the other
possible intervals for t%Ti for every interval of
length Eikj.

5- Validation of the case study

Theroem 1 implies that in order to analyse an
intermediate priority task, it is sufficient to test its
response time when it’s released at the same time as the
first task of the serial transaction to obtain its tight worst-
case response time with a classic response time analysis.
Note that this theorem cannot be applied to a lower
priority task, because the condition “decreasing WCET”
is not satisfied in this case.

Let S be a set of transactions.
Let uaτ be a task of S under analysis with execution

time equal to uaC .

Let us note)(uahp τ the set of serial transactions in S

such as uaτ is a lower priority task. Let us note)(uait τ

the set of indices of serial transactions in S such as uaτ is

an intermediate priority task .
By applying Theorem 1, the interference applied by

the serial transactions whose indices belong to)(uait τ in

a time interval of length t does not need any specific
study related to transactions. It is given (tight upper
bound) by:

jj
j

j

itj

j
j

CL
p

Tt
L

T

t

ua

⋅







































+⋅












∑

∈

,
%

min
)(τ

In this formula,












jT

t
 represents the number of

periods jT completed in the time interval of length t ;

and

























j

j

j
L

p

Tt
,

%
min represents the number of

acquisition tasks activated in the remaining time(jTt%).

We still need to use the technique defined in [TN04b] in
order to study the interference of the serial transactions
whose indices belong to)(uahp τ , leading to a

pessimistic upper bound, but allowing us to validate the
case study (see Table 3). This application is valid

because in the table 3, we can see that for all the tasks,
the worst-case response time is lower than the deadline.

 Tasks Period deadline Priority
Worst-case

response time
1 200000 200000 1 56156

2 20000 10000 7 6532

3 50000 30000 5 15532

4 20000 10000 6 6572

5 250000 140000 2 56096

6 60000 60000 4 54636

7 250000 160 11 124

8 20000 720 10 468

9 100000 80 12 12

10 250000 5000 9 3408

11 20000 7500 8 5620

12 100000 70000 3 55416

Table 3: Worst-case response time
calculated with serial transaction method

6– Conclusion
In this article, we have presented a new task model:

the serial transaction. A serial transaction Γi is
compound with Li short but urgent acquisition tasks
activated each time a serial packet is received, and a less
urgent but longer treatment task activated when a whole
frame is received.

The number of acquisition tasks can be important
(more than 120 in a real case study) and makes the exact
calculation of response time intractable. Moreover,
overestimating the worst-case response time of the
urgent acquisition tasks wouldn’t allow the validation of
a task system.

After simplifying the way to evaluate the interference
of a transaction and finding the critical instant candidate,
we have shown that for tasks of intermediate priority, the
critical instant always coincides with the release of the
first task of the transaction (Theorem 1) . This new result
allows us to calculate an exact worst-case response time
for intermediate priority tasks (usually most tasks of a
system), while we still use the method proposed in
[TN04b] for the tasks of lower priority than a whole
serial transaction. Our future work is generalizing the
theorem 1 to a larger case of transactions called
monotonic transactions. Moreover, an extension of this
theorem taking jitters into account is investigated.

References

[Aud91] N.C. Audsley, Optimal priority assignment and

feasibility of static priority tasks with arbitrary start
times, Tech. Report YCS-164, University of York,
nov. 1991.

[Der74] M.L. Dertouzos, Control robotics : the procedural
control of physical processors,
Proc. of IFIP Congress, 1974, pp. 807-813.

[DM89] M.L. Dertouzos, A.K. Mok, Multiprocessor on-line
scheduling of hard real-time tasks, IEEE Transactions
on Software Engineering 15(12), Déc. 1989, 1497-
1506.

[GPS1] TIM-LC, TIM-LF, TIM-LP System Integration
Manual, http://www.u-blox.com

[Gro99] E. Grolleau, Ordonnancement temps réel hors-ligne
optimal à l'aide de réseaux de pétri en environnement
monoprocesseur et multiprocesseur, thèse, ENSMA -
Université de Poitiers, nov. 1999.

[IMU1] Crista Inertial Measurement Unit (IMU) Interface /
Operation Document, May
2004, http://www.cloudcaptech.com.

 [Lab74] J. Labetoulle, Un algorithme optimal pour la gestion
des processus en temps réel, Revue Française
d'Automatique, Informatique et Recherche
Opérationnelle (Fév.1974), 11-17.

[LL73] C.L. Liu and J.W. Layland, Scheduling algorithms
for mutltiprogramming in real-time environnement,
Journal of the ACM 20(1) (1973), 46-61.

[LW82] J. Leung and J. Whitehead, On the complexity of
fixed-priority scheduling of periodic, real-time tasks,
Performance Evaluation (Netherland) 2(4) (1982),
p.237-250.

[MPC1] MPC555/MPC556 User's Manual October 2000,
http://e-www.motorola.com

[MS03] J. Mäki-Turja and M. Sjödin, Improved Analysis for
Real-Time Tasks With Offsets –Advanced Model.
Technical Report MRTC no. 101, Mälardalen Real-
Time Research Centre(MRTC), May 2003

[Osek1] OSEK/VDX operating system specification 2.2.2
July 2002, http://www.osek-vdx.org.

[Osek2] OSEK/VDX System Generation OIL : Osek
Implementation Langauge version 2.5, Juillet 2004,
http://www.osek-vdx.org.

[OSM1] OSEKturbo OS/MPC5xx v2.2.1 Technical
Reference, Juin 2003, http://www.metrowerks.com.

[OSM2] OSEKturbo OS/MPC5xx User's Manual, Juin 2003,
http://www.metrowerks.com.

[OSM3] OSEKturbo performance information,
http://www.metrowerks.com

[PG98] J.Palencia Gutierrez and M.Gonzalez Harbour.
Schedulability Analysis for Tasks with Static and
Dynamic Offsets. In Proc. 19th IEEE Real-Time
System Symposium (RTSS), December 1998

 [Tin94] K. Tindell, Addind Time-Offsets to Schedulability
Analysis, Technical Report YCS 221, Dept of
Computer Science, University of York, England,
January 1994

[TN04a] J.Mäki-Turja and M.Nolin. Faster Response Time
Analysis of Tasks with Offsets. In Proc. 10th IEEE
Real-Time Technology and Applications Symposium
(RTAS), May 2004

[TN04b] J.Mäki-Turja and M.Nolin. Tighter Response Time
Analysis of Tasks with Offsets. In Proc. 10th
International conference on Real-Time Computing
and Applications (RTCSA’04), August 2004

[XP92] J. Xu and D.L. Parnas, Pre-run-time scheduling of
processes with exclusionrelations on nested or
overlapping critical sections, Phoenix Conference on
Computers and Communications (Phoenix, USA),
Apr. 1992,pp. 6471-6479.

