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Abstract
1
 

 
 On the basis of a concrete real-time application, we 

present in this article a new task model called "serial 

transaction". This model is a particular instance of the 

task model with offsets defined by Tindell and Palencia 

and al.. A serial transaction is typically a task reading 

serial information (RS232, CAN,…): several instances 

are identical and read a unitary part of a serial packet, 

these tasks have the same WCET, offset shifting, priority 

and relative deadline. In addition, the last task of a 

transaction has to deal with the packet, and is typically 

longer, but has a longer relative deadline, and a lower 

priority. The need for this task model appeared in a real 

application, that couldn’t be validated using known 

methods on transactions, so we present a less pessimistic 

real-time evaluation method dedicated on to this new 

model. 
 

1. Introduction  
 Several laboratories of Poitiers (ENSMA and 
University) are developing together a mini UAV 
(Unmanned Air Vehicle) (see Figure 1). The LISI is in 
charge of developing and validating the system 
(embedded and ground station). The embedded 
processing unit is a microcontroller (Freescale/Motorola 
MPC555) connected via serial port to a GPS receiver 
and a modem used in order to communicate with the 
ground station. The measurement of the attitude of the 
UAV is done by an IMU (Inertial Measurement Unit) 
connected to the microcontroller via a CAN network. 

In the development of a real-time application like this 
one, two techniques of scheduling can be used : the on-
line scheduling, with a fixed  [LL73, LW82, Aud91] or 
variable allocation of priorities of the tasks in the tasks 
set [Der74, Lab74, DM89] and off-line techniques which 
use a sequence whose correctness was proved [XP92, 
Gro99]. The real-time RTOS (Real-Time Operational 
System) OSEKTurbo OS/MPC5xx [OSM1, OSM2], in 
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conformity with standard OSEK/VDX [Osek1, Osek2], 
selected for this application, allows only fixed priorities. 
We thus used an on-line approach with fixed priority 
technique. 

 
Figure 1: the AMADO 

After the definition of the software architecture and 
the temporal parameters of the various tasks, one of the 
most important phases is the temporal validation which 
consists in proving that whatever happens, all the tasks 
meet their temporal constraints.  RTA (Response Time 
analysis) methods are used to bound the worst case 
response time of the tasks of an application. Tindell 
[Tin94] proposed a method for calculating an upper 
bound of the worst-case response time which is less 
pessimistic than classic RTA (considering that a critical 
instant consists in a simultaneous release of all the tasks) 
in a context of tasks with offsets. 

Palencia and Harbour [PG98] extended Tindell’s 
work with dynamic offsets, and formalized his work as 
transactions. Lastly, [TN04b][MS03] introduced the 
concept of “imposed” interference differing from 
“released for execution” interference used by Tindell. 
However, for now the exact calculation methods used to 
determinate the exact worst-case response time rely on 
calculating every combination of the tasks of the 
transactions; it thus remains exponential in time. 



In order to validate the control system of the UAV, 
we had to deal with tasks with offset which are particular 
instances of transactions: these tasks are activated by 
peripherals connected on serial and CAN ports. Section 
2 presents the case study. Section 3 recalls some general 
results about transactions. Section 4 presents some new 
results obtained, allowing us to analyse the interference 
of a serial transaction in a pseudo polynomial time for a 
subset of the tasks of the task system. Section 5 applies 
these new results in order to validate our case study. 
2. Presentation of the Application 

The project, named AMADO, is a UAV with a 
wingspread of 55 cm, using a delta shaped wing with 
two symmetrical drifts for a total weight (including the 
control system) of 930 grams. The main objective is to 
create an autonomous plane embedding a camera, and to 
be able to follow dynamically defined waypoints. The 
UAV is connected to a ground station thanks to a 
wireless modem, allowing it to receive high level orders 
during a mission. The critical parts of the flight control 
are embedded.  

 
2.1 Hardware architecture 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: main architecture of the AMADO 
 

The Figure 2 shows two parts: the ground station, and 
the embedded station. The ground station can 
communicate thanks to a half duplex modem with the 
embedded system, and the traditional radio emitter is 
kept as an emergency control in case of general failure of 
the embedded system. The main role of the ground 
station is video displaying/recording, flight instruments, 
and high level commands (either waypoints flight, or 
assisted flight). 

The embedded system heart is a Freescale/Motorola 
MPC555 [MPC1]  connected to the actuators (3 servo-
commands and the speed-variator, refreshed every 20 
ms), an IMU [IMU1], a GPS receiver [GPS1], a 
traditional radio receiver and a modem. The MPC555 is 

a 32 bits PowerPC with a frequency of 40MHZ, 448KB 
of flash memory and 26KB of RAM.  

Two sensors are used in order to calculate the position 
and attitude of the UAV: the GPS receiver and the IMU. 
The Inertial Measurement Unit sends information about 
angular speed and accelerations, which, once treated, 
give the roll and the pitch of the UAV. This IMU is 
connected on a CAN port and delivers information at a 
frequency of 50Hz and a throughput of 1Mbps. A frame 
of the IMU is compound of 3 blocks of 6 bytes. In order 
for the system to get a complete frame, since there is no 
possible memorisation of the blocks, each block must be 
read before the next arrives. Once the system has 3 
blocks, it can constitute the frame, and handle it to 
calculate the roll and the pitch.  

The GPS receiver is used to get the speed (direction 
and module) and the absolute 3Dimensional position of 
the UAV. The GPS Receiver sends data to the controller 
at a frequency of 4Hz and delivers information with a 
throughput of 57600bps. As a RS232 communication, 
the information is sent byte after byte; the number of 
bytes sent during one period (frame) of the GPS can 
reach 120 bytes. As in the case of the IMU, the system 
must recover each byte and arrange it before the arrival 
of the next byte, under penalty of losing the complete 
frame. 

Finally the modem connected to the microcontroller 
on the serial port is bi-directional and communicates 
with the microcontroller at a throughput of 115kbps. The 
length of the frame transmitted to the microcontroller by 
the modem can reach 10 bytes. The requirements are the 
same as in the case of the GPS receiver. In the 
presentation of this architecture, we omitted voluntarily 
the video circuit that does not have any impact on the 
real-time aspects of this application. 

 
2.2 Software architecture of the application 

 
We have chosen the real-time executive OSEKTurbo 

OS/MPC5xx of Metrowerks for our application. This 
RTOS is conforming to the standard OSEK/VDX; 
standard defined for applications with limited resources 
[OSM3]. The OSEK/VDX executives are light because 
they are based on a static description of all the system 
using the OIL (OSEK Implementation Language).  

Apart the initialisation task, there are 12 tasks in the 
control system (see Table 1). The priorities of the tasks 
have been assigned following a Deadline Monotonic 
policy [LL73]. Note that the value L=120 (resp. L=3, 
L=10) corresponds to the number of times the task has to 
be activated in order to acquire a frame.  

This kind of application can’t be validated easily if 
the offsets are not taken into account. Indeed, it appears 
clearly that task TreatGPS is released when the whole 
GPS frame has been received; it cannot thus be released 
at the same time as the task Acq GPS; it is the same case 
for task TreatIMU and the task Acq IMU; the same 
situation occurs for the task TreatInstruction and the task 
Acq Instruction.  
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Tasks Period  WCET deadline  Priority  

  (in microsecond)   

Monitoring (1) 200000 60   200000 1 

Acq PWM (2) 20000 24   10000 7 

Transmit Grd (3) 50000 3360   30000 5 

Deliver Cmd (4) 20000 40   10000 6 

Navigation (5) 250000 560   140000 2 

ReguleAttitude (6) 60000 32400   60000 4 

            
Acq GPS (7) 250000 100 L=120 160 11 

Acq IMU (8) 20000 96 L=3 720 10 

Acq Instruction(9) 100000 12 L=10 80 12 

            
TreatGPS (10) 250000  3000   5000 9 

TreatIMU (11) 20000  900   7500 8 

TreatInstruction 
(12) 100000  900   70000 3 

 
Table1: task system of the UAV 
 
The Figure 3 presents a model of a serial transaction, 

Li instances of the acquisition of a part of a frame are 
separated by a duration corresponding to the arrival rate 
of the packets (Acq GPS, Acq IMU, Acq Instruction), 
and a longer task is used to handle the whole frame 
(TreatGPS, TreatIMU, TreatInstruction). In a serial 
transaction, the acquisition tasks are usually short, 
because they only have to bufferize the packets until the 
whole frame is built, while the treatment tasks are longer 
since they have to deal with the full frame. Moreover, 
the first release of the serial transaction is not known 
precisely because serial transaction is activated by an 
external peripheral.  

 
 
 
 
 

 
Figure 3 : pattern of serial transaction 
 
In order to define a serial transaction as a particular 

case of a transaction, let us first give a survey of 
definitions and results found in [Tin94][TN04a][PG98]. 
 

3. Transactions 
 

The model of tasks with offsets was proposed by 
Tindell in order to reduce existing pessimism of the 
schedulability analysis when the critical instant for a task 
occurs when it is released at the same time as all the 

tasks of higher priority. Indeed, certain tasks can for 
example have the same period and be bound by relations 
of offsets i.e. they can never be released at the same 
time. A set of tasks of the same period bounded by offset 
is called a transaction. A task system is compound of a 
set of transactions [PG98][TN04a]: 

Γ := {Γ1, Γ2,… Γk} 
 A transaction (see Figure 4) iΓ  contains |Γi| tasks 

having the same period iT  : Γi := <{τi1,…, τi|Γi|},Ti>. 

A task is defined by τij := <Cij, Oij, Dij, Jij, Bij, Pij> where 

ijC  is the worst-case execution time (WCET),  Oij is the 

offset (minimal time between the release  of the 
transaction and the release of the task), in order to 
simplify the analysis, we will consider a reduced task 
offset ijΦ which is always within 0 and Ti: ijΦ = Oij%Ti. 

Dij is the relative deadline, Jij the maximum jitter (giving 
t0 the release date of an instance of the transaction iΓ , 

then the task ijτ  is released between t0+Oij and 

t0+Oij+Jij), Bij maximum blocking due to lower priority 
tasks, and Pij the priority. Without loss of generality, we 
consider that the tasks are ordered by increasing offsets 

ijΦ ; in our case, we define the response time as being 

the time between the release of the task and the 
completion of the task.  In the table 3, we have 
represented all the transactions of the UAV application. 

Let us note also )( uaihp τ  the set of indices of the 

tasks of iΓ  with a priority higher than the priority of a 

task uaτ  i.e. j∈hpi(τua) if and only if Pij>Pua. 
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Figure 4: model of tasks with offsets  

The RTA method is to be applied on each task of the 
transactions. The task under analysis is usually noted 

uaτ . Tindell showed that the critical instant of uaτ  is a 

particular instant when it is released at the same time as 
one task of higher priority in each transaction (its own 
transaction being handled separately). The main 
difficulty is to determine what is the critical instant 
candidate icτ  of a transaction iΓ  that initiates the 

critical instant of uaτ . An exact calculation method 

would require  to evaluate the response time obtained by  

 

1 Li 2  1 Li 2  

Din pi 

Ti 

Ci Cin 



Transactions Period tasks WCET Offset deadline Priority 
“Release for execution” worst-

case response time 

               

1 200000 11 200000 0 200000 1 56156 

2 20000 21 10000 0 10000 7 11332 
3 50000 31 30000 0 30000 5 23784 

4 20000 41 10000 0 10000 6 11672 
5 250000 51 140000 0 140000 2 56096 

6 60000 61 60000 0 60000 4 54636 

7i(i=1,…,120) 100  160*)1(7 −= iO i  160  11 124 
7 250000 

7121 3000 120*160  5000  9 3408 

81  -  82  -   83 96 0 –     720  -   2*720  720  10 468 
8 20000 

84 900 3*720  7500  8 10720 

9i(i=1..10) 12 80*)1(9 −= iO i   80  12 12 
9 100000 

911 900 10*80  70000  3 55416 

 
Table 2 : representation of all the tasks of the 
configuration using the symbolism of 
transaction and values of worst-case response 
time with “release for execution” method 
 
carrying  out all the possible combinations of the tasks of 
priority higher than uaτ  in each transaction and to 

choose the task icτ in each transaction that leads to the 

worst response time. This exhaustive method has an 
exponential complexity and is intractable for realistic 
task systems; several approximation methods giving an 
upper bound of the worst-case response time have been 
proposed.  
 
Upper bound method based on the interference 

“released for execution” 

[Tin94][PG98] Let us note icτ  the task of iΓ  that 

coincides with the critical instant of uaτ . Let us note 

 t), ( uaicW τ  the interference of iΓ  on the response time of 

uaτ  during a time interval of length t. 
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*t represents the time during which τij can interfere with 
τua. 
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 The upper bound of the response time is obtained by 

iteration :  C  R ua
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The value of  uaR  is thus obtained by a classic fix-point  

iteration lookup. 

The interference that a transaction imposes on a task 
can be represented by a periodic and static pattern. 
[TN04a] proposed an optimisation of the computation of  
the interference. This technique consists in storing in a 
table the parameters of the interference function of a 
transaction on a task of lower priority. This approach 
reduces the computation time but this method does not 
reduce the difference between the real worst-case 
response time and the upper bound obtained. Therefore, 
we couldn’t validate our system with the general method 
because the tasks (2), (4) and (11) have a worst-case 
response time greater than their relative deadline; while 
the real worst-case response time of all the tasks of the 
set could in fact be lower than their deadline. (see 
Table2). 

We thus present a method given in [TN04b] giving a 
tighter upper bound.  
 
Upper bound method based on the “imposed” 

interference 

This method has been proposed in [TN04b]. It 
removes the unnecessary overestimation taken into 
account in the computation of the interference created by 
a task on a lower priority one. This overestimation does 
not have any impact in the case of tasks without offset 
but has a considerable effect in the approximation of the 
worst-case response time when we are in the presence of 
tasks with offsets. This method consists in calculating 

the interference effectively imposed by a task jτ  on a 

task uaτ  with a lower priority during a time interval of 

length t; the idea is that the interference cannot exceed 
the interval of time t. 

dt

dt
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In order to calculate this “imposed” interference, 
[TN04b] subtracts a parameter x (see Figure 5) from the 
original interference formula: 
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 corresponds to the part of the task ijτ that 

cannot be executed in the time interval of length t; since 
this interference is not effectively imposed in this 
interval, it is not taken into account. 

 
Example: this transaction has 4 tasks with period 50=iT  

 
 
 
 
 

Figure 5: “imposed” interference 
 

 
 
 
 
 
 
 
 3)00()00()34()02()5( ,1 =−+−+−+−=uaiW τ  

For determining the upper bound of the response-time, 
we use this function : 
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+ += . uaR  is obtained by fix-

point iteration starting with uaua CR =0 . Let us execute 

this method on the example (Figure6)  
 
 
 
 

Figure 6.Example for imposed interference  

In the transaction iΓ , we have five tasks. Let us consider 

a lower priority task uaτ  with 5=uaC . Let us calculate 

the response-time. We present at first the details of 
iteration number 2: 
Iteration 2: 

3)00()00()00()12()02()5,(1 =−+−+−+−+−=uaiW τ  

3)00()00()12()02()00()5,(2 =−+−+−+−+−=uaiW τ  

3)00()12()02()00()00()5,(3 =−+−+−+−+−=uaiW τ  

3)34()02()00()00()00()5,(4 =−+−+−+−+−=uaiW τ  

4)04()00()00()00()00()5,(5 =−+−+−+−+−=uaiW τ  

4)0,( =uaiW τ  9=uaR  

We give the values obtained in the different iterations : 
 
Iteration  t 1iW

 
2iW

 
3iW

 
4iW

 
5iW

 
iW

 
uaR  

1 0 0 0 0 0 0 0 5 
2 5 3 3 3 3 4 4 9 
3 9 5 5 5 6 5 6 11 
4 11 6 6 7 6 6 7 12 
5 12 6 6 8 6 6 8 13 
6 13 7 7 8 7 7 8 13 

Consequently, the value of uaR  is equal to 13. 

 
4- Contribution to RTA of transactions  

 
4.1 Transactions without jitters 

In this section, we first simplify the way to compute 
the interference [PG 98] for general transactions with no 
jitter. 
 
according to [PG98] the interference of a transaction for 
a task τic candidate to coincide with the critical instant is 
given by: 
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By assumption, the jitter is null, so the interference 
is written : 
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 Let us note k1, k2,…, k|hpi(τua)| the indices ordered by 
offset of hpi(τua) (i.e. p<q => Φikp≤Φikq). Since the offsets 
are assumed to be lower than the period, (Ti+Φij-Φic)%Ti 
correspond to Φij-Φic if Φic≤Φij and (Ti+Φij-Φic) if 
Φij<Φic. Hence, separating the formula between tasks 

{ } >=<Γ 50 , ,,, :
4321 iiiii ττττ

>=< 4 , 0 , 0 , 4 , 0 , 2:1iτ  
>=< 2 , 0 , 0 , 8 , 4 , 4:2iτ  
>=< 3 , 0 , 0 , 5 , 11 , 2:3iτ  
>=< 1 , 0 , 0 , 15 , 16 , 4:4iτ  
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released before and after the critical instant candidate 
τikp, we have : 
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And so on. Therefore 
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Let us analyze now, how we can determine efficiently 
the differences between the interference function when 
comparing the first task as the critical instant candidate 
comparing to another task : 
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always equal to 0 or -Cikj because Φij<Ti. 
The difference is equal to –Cikj if and only if : 
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We can thus calculate ),(),(
21
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|hpi(τua)| intervals. 
We will now calculate the difference 
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The first sum has a value ≥0 whereas the second has a 
value ≤ 0. We have : 
Difference of +Cikj for kj<kp if 

]..]%
1 pjj ikikiikiki TTt Φ−Φ+Φ−Φ∈  (1) 

Difference of -Cikj for kj≥kp if 
]..]%

1ikikikiki jpj
Tt Φ−ΦΦ−Φ∈                                     (2) 

 
Example : transaction of period=19 with 3 tasks (Fig. 7) 

 
 
 
 

Figure 7.calculation with intervals  

  i2i1 WW −  i3i1 WW −  

   ] ]0;13   ] ]0;6  ] ]6;11    ] ]0;8   ] ]6;14   ] ]0;11  

If I ∈t   1iC   2iC−   3iC−   1iC   2iC   3iC−  

If I ∉t    0     0     0    0   0     0 
 

Evaluation of  ),( tW uai τ  with t=14 

0000)14,()14,( 21 =++=− uaiuai WW ττ  

200)14,()14,( 231 =++=− iCWW uaiuai ττ  

Thus  9)14,()14,( 1 == uaiuai WW ττ  

With this method, it is sufficient to evaluate only 
one value of  ),( tW uaic τ  

 
4.2 Serial transaction 
 

Let us introduce the definition of a serial transaction: 
 
Definition1: A serial transaction is a transaction with the 
following constraints: 
Let ΓI be a serial transaction, 
• null jitter: ∀i/τij∈Γi, Jij=0 
• regular arrival pattern pi: ∀j∈[1..|Γi|], Φij=(j-1)pi. 
• there are two kinds of tasks : 

o the Li=|Γi|-1 acquisition tasks such that : 
τij,j∈[1..Li] := <Ci, (j-1)pi, pi, 0, Bij, Pi>; 

o the treatment task τi|Γi|:=<Cin,Lipi,Din, 0, Bij, Pin> 

 
19=iT

>=< 1,0,0,6,1,41iτ  
>=< 2,0,0,5,7,22iτ  
>=< 3,0,0,6,12,33iτ



• with Cin>Ci, Din>pi, Pin<Pi and 

iniiniii
CpCpLT −>+⋅− )( . This means that the 

treatment task is longer than the acquisition tasks, 
but is provided a longer deadline and a lower 
priority. 

Example of serial transaction : (Figure 6) 
 

Definition2 : a task uaτ  is an intermediate priority task 

for a serial transaction iΓ  if the priority of uaτ  is lower 

than acquisition tasks of iΓ  but higher than the treatment 

task of  iΓ . 

 
Definition3 : a task uaτ  is a lower priority task for a 

serial transaction iΓ  if the priority of uaτ  is lower than 

all the tasks of iΓ . 

 
The next result relies on the intervals defined in 

section 4.1, let us define Eikj as the shift between two 
successive tasks of higher priority than the task under 
analysis (Figure 8). Let )(21  ......., ,,

uaihp
kkk τ  the elements 

of )(
uaihp τ .  We assume that )(

uaihp τ  is ordered by 

offsets values increasing i.e 
)1( +

Φ≤Φ
jj ikik
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)( uaihpj τ<  
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+ )1(

 for )( uaihpj τ<  and 
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ikikihp

T
uai ττ Φ−Φ+=  

 
 
 
 
 
Figure 8. Illustration of 

ijE and theorem 1 

Theorem 1 shows that for specific patterns of 
transactions without jitters where the WCET of tasks are 
decreasing and the shifts between successive offsets are 
increasing, the critical instant of a task always coincides 
to the first instance of the transaction. The acquisition 
tasks of a serial transaction follow this kind of pattern, 
therefore the critical instant of a task of an intermediate 
priority (lower than acquisition tasks but higher than 
treatment task) always coincides with the first 
acquisition task.  
Theorem 1 : let iΓ  be a transaction, uaτ  a task under 

analysis. If the jitters are null and if the tasks of iΓ  are 

such that their WCET are decreasing, i.e. Cij≥Cik 
∀(j≤k)∈hpi(τua), and offset shifting are increasing i.e. 

)1( +≤ jiij EE  for )( uaihpj τ< , then the critical instant of 

τua coincide with the release of the first task of hpi(τua) . 
 
Proof : the proof is based on the interferences. 

According to the definition of ijE , iij TE =∑ . For this 

proof, we use the method of calculation presented in 
section 4.1. In this section we have shown that the 
difference of interference between a candidate kp and the 
candidate k1 was obtained for every  kj∈hpi(τua) by : 
Difference of +Cikj for kj<kp if 

]..]%
1 pjj ikikiikiki TTt Φ−Φ+Φ−Φ∈  (1) 

Difference -Cikj for kj≥kp if 

]..]%
1ikikikiki jpj

Tt Φ−ΦΦ−Φ∈  (2) 

Let us analyze these intervals in the context Cij 
decreasing and Eij increasing ; let us compare the 
candidates  k1 and k2 : 
kj=k1 Difference +Cik1 for 

]..0]%
21 ikikii TTt Φ−Φ+∈   

i.e. for ]..0]%
1ikii ETTt −∈ ,  

let us note Iik2k1 this interval 
kj=k2 Difference of –Cik2 for 

]..0]%
12 ikikiTt Φ−Φ∈  i.e. for 

]..0]%
1iki ETt ∈ ,  

let us note Iik2k2 this interval 
kj=k3 Difference of –Cik3 for  

]..]%
1323 ikikikikiTt Φ−ΦΦ−Φ∈ , 

]..]%
212 ikikiki EEETt +∈ ,  

let us note Iik2k3 this interval 
kj=kn Difference of –Cikn for 

]..]%
12 ikikikiki nn

Tt Φ−ΦΦ−Φ∈  i.e. for 

]...

.....]%

1321

132

−

−

++++

+++∈

n

n

ikikikik

ikikiki

EEEE

EEETt
,  

let us note Iik2kn this interval 
We will prove now that with our constraints, the 

intersection of the intervals giving a negative difference 
is empty, i.e. there is at most one negative value for any 
value of t%Ti; and then if t%Ti is in an interval giving a 
negative value, in such a case we are in an interval 
giving a positive value. Therefore, we will prove that 
either there is not any difference of interference (neither 
negative nor positive) or there is at most one negative 
value but in this case there is a positive difference that is 
greater or equal to the negative difference (since its value 
is Cik1). In the proof, an interval I is < (lower) than an 
interval J if any value of I is lower than any value of J. 
Iik2k2< Iik2k3 because Eik1≤Eik2 
Iik2k3<Iik2k4 because Eik1+Eik2≤Eik2+Eik3 because Eik1≤Eik3 
… 
Iik2kn-1<Iik2kn because  
Eik1+Eik2+…+Eikn-2≤ Eik2+Eik3+…+Eikn-1 because 
Eik1≤Eikn-1 
Consequently, the intersection of the negative intervals is 
empty. 

Finally, we will prove that if t is in one of the 
intervals Iik2kp, p∈2.kn, then it is in the interval Iik2k1 . 

 Let us suppose that t%Ti∉ Iik2k1, this means 
t%Ti∈]Ti-Eik1..Ti[∪{0}. 

1iE 2iE 3iE 4iE



If t%Ti=0, then t is not element of any interval 
In the case t%Ti∈]Ti-Eik1..Ti[, we will prove that Ti-

Eik1 is greater than any other interval Iik2kj,j=2..kn. It is 
sufficient for this proof, since the intervals are 
increasing, to prove that Ti-Eik1≥Eik1+Eik2+…+Eikn-1. So, 
we have to prove that Ti ≥ 2Eik1+Eik2+…+Eikn-1; since by 
definition Ti=Eik1+Eik2+…+Eikn, therefore we have to 
prove that  Eik1+Eik2+…+Eikn-1+Eikn≥ 2Eik1+Eik2+…+Eikn-

1, this is true because Eikn≥Eik1. 
Let us generalize to a task kp of the serial transaction: 
 
kj=k1 Difference +Cik1 for  

]..0]%
1 pikikii TTt Φ−Φ+∈ i.e. for 

)]...(..0]%
121 −

+++−∈
pikikikii EEETTt  

 since Ti=ΣEij  
)].....0]%

1 npp ikikiki EEETt +++∈
+

 

 let us note Iikpk1 this interval 
kj=k2 Difference +Cik2 for  

]..]%
212 pikikiikiki TTt Φ−Φ+Φ−Φ∈

i.e. for 
)]...(..]%

121 −
++−∈

pikikiiki EETETt  

since Ti=ΣEij  
.....]%

111 npp ikikikikiki EEEEETt ++++∈
+

let us note Iikpk2 this interval 
kj=kp Difference of –Cikp for  

]..0]%
1ikiki j

Tt Φ−Φ∈  i.e. for 

 ].....0]%
11 −

++∈
pikiki EETt ,  

let us note Iikpkp this interval 
kj=kp+1 Difference of –Cikp+1 for  

]..]%
111 ikikikiki ppp

Tt Φ−ΦΦ−Φ∈ ++  

 i.e. for ].....]%
1 pp ikikiki EEETt ++∈ ,  

let us note Iikpkp+1 this interval 
kj=kn Difference of –Cikn for  

]..]%
1ikikikiki npn

Tt Φ−ΦΦ−Φ∈   

i.e. for 

].......

.]%

13211
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+++++
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nn
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ikikikikik

ikiki

EEEEE

EETt

, 
 let un note  Iikpkn this interval 

The proof uses the same way as before, except that for 
the general case, we show that there are always at least 
as many positive interval than negative intervals. Since 
the WCET cannot decrease, and since the positive 
intervals correspond to the first tasks of the transaction, 
the positive difference is always greater or equal than the 
negative difference.  
• t%Ti∈]0..Eik1] : t%Ti∈Iikpk1 and t%Ti∈Iikpkp, and 

∀kq>kp, t%Ti∉Iikpkq because the lower limit of these 
intervals is greater than Eikp≥Eik1. So, there is at least 
one positive interval (giving a difference of Ci1) and 

at most one negative interval (giving a difference of 
Cikp) and since  Ci1≥Cikp, we obtain Wi1 (τua, 
t%Ti∈]0..Eik1])- Wip (τua, t%Ti∈]0..Eik1])≥0 

• t%Ti∈]Eik1.. Eik1+Eik2] : t%Ti∈Iikpk2 (positive 
intervals), t%Ti∈Iikpkp (negative interval). It is 
possible that t%Ti∈ Iikpkp+1 (negative interval), but in 
this case, t%Ti∈Iikpk1 (positive interval). On the 
contrary, ∀kq>kp+1, t%Ti∉Iikpkq because Eikp+Eikp+1≥ 
Eik1+Eik2. Since the execution times are 
nonincreasing, we have Wi1(τua, t%Ti∈]Eik1.. 
Eik1+Eik2])- Wip(τua, t%Ti∈]Eik1.. Eik1+Eik2])≥0 

• the same reasonning can be lead on the other 
possible intervals for t%Ti for every interval of 
length Eikj. 

 
 
5- Validation of the case study 
 

Theroem 1 implies that in order to analyse an 
intermediate priority task, it is sufficient to test its 
response time when it’s released at the same time as the 
first task of the serial transaction to obtain its tight worst-
case response time with a classic response time analysis. 
Note that this theorem cannot be applied to a lower 
priority task, because the condition “decreasing WCET” 
is not satisfied in this case. 

Let S be a set of transactions. 
Let uaτ  be a task of S under analysis with execution 

time equal to uaC . 

Let us note )( uahp τ the set of serial transactions in S 

such as uaτ  is a lower priority task. Let us note )( uait τ  

the set of indices of serial transactions in S such as uaτ  is 

an intermediate priority task . 
By applying Theorem 1, the interference applied by 

the serial transactions whose indices belong to )( uait τ  in 

a time interval of length t does not need any specific 
study related to transactions. It is given (tight upper 
bound) by: 
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In this formula, 
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periods jT  completed in the time interval of length t ; 
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min  represents the number of 

acquisition tasks activated in the remaining time( jTt% ). 

We still need to use the technique defined in [TN04b] in 
order to study the interference of the serial transactions 
whose indices belong to )( uahp τ , leading to a 

pessimistic upper bound, but allowing us to validate the 
case study (see Table 3). This application is valid 



because in the table 3, we can see that for all the tasks, 
the worst-case response time is lower than the deadline. 
 

 Tasks  Period deadline  Priority  
Worst-case 

response time 
1 200000 200000 1 56156 

2 20000 10000 7 6532 

3 50000 30000 5 15532 

4 20000 10000 6 6572 

5 250000 140000 2 56096 

6 60000 60000 4 54636 

7 250000 160 11 124 

8 20000 720 10 468 

9 100000 80 12 12 

10 250000 5000 9 3408 

11 20000 7500 8 5620 

12 100000 70000 3 55416 

  
Table 3: Worst-case response time 
calculated with serial transaction method 
 

6– Conclusion  
In this article, we have presented a new task model: 

the serial transaction. A serial transaction Γi is 
compound with Li short but urgent acquisition tasks 
activated each time a serial packet is received, and a less 
urgent but longer treatment task activated when a whole 
frame is received. 

The number of acquisition tasks can be important 
(more than 120 in a real case study) and makes the exact 
calculation of response time intractable. Moreover, 
overestimating the worst-case response time of the 
urgent acquisition tasks wouldn’t allow the validation of 
a task system. 

After simplifying the way to evaluate the interference 
of a transaction and finding the critical instant candidate, 
we have shown that for tasks of intermediate priority, the 
critical instant always coincides with the release of the 
first task of the transaction (Theorem 1) . This new result 
allows us to calculate an exact worst-case response time 
for intermediate priority tasks (usually most tasks of a 
system), while we still use the method proposed in 
[TN04b] for the tasks of lower priority than a whole 
serial transaction. Our future work is generalizing the 
theorem 1 to a larger case of transactions called 
monotonic transactions. Moreover, an extension of this 
theorem taking jitters into account is investigated. 
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