
Polynomial Time Approximate Schedulability Tests for Fixed-Priority
Real-Time Tasks: some numerical experimentations

Pascal Richard
Laboratoire d’Informatique Scientifique et Industrielle

ENSMA
1, avenue Cl´ement Ader
Téléport 2 - BP 40109

86961 Futuroscope Cedex (France)
pascal.richard@univ-poitiers.fr

Abstract

Efficient schedulability tests are required for analyz-
ing large task systems or for designing on-line admission
controllers. We next focus on periodic fixed-priority tasks.
For fixed-priority tasks with constrained deadlines (i.e.,
deadlines are less than or equal to periods), no exact poly-
nomial time feasibility test is known. We propose several
polynomial time algorithms with performance guarantees
(with an ijnput accuracy parameter) and compare them
with known exact feasibility tests (running in pseudo-
polynomial time) and a fully polynomial time approxima-
tion scheme (FPTAS). Our main objective is to define the
capabilities of such algorithms according to the system
workload and an accuracy parameter defining the quality
of results to compute.

1 Introduction

Large real-time systems are emerging in many ap-
plications, including industrial automation, defense and
telecommunication. For these systems, the exact work-
load cannot be predicted and there are significant runtime
uncertainties due to the controlled environment or system
resources states. In many case, best effort strategies are
required to admit or reject works. After the admission
control, all admitted tasks must meet their timing require-
ments. Many admission controllers are dedicated to im-
prove some Quality of Service (QoS) metrics or a bene-
fit function. They are usually based on two on-line algo-
rithms: an admission controller that checks if a new task
can be accepted without any consequence on already ad-
mitted tasks and a scheduler that chooses the next task to
run among uncompleted admitted tasks. In many systems,
tasks are assumed to be periodic, but their first release time
is not predictable (i.e., tasks are released over time) and
can be killed due to system mode changes. Due to such
a dynamic arrival of works, these real-time systems must

cope with temporary overloaded conditions (using an ad-
mission controller to regulate admitted workload while
ensuring that task deadlines will be met). Polynomial time
schedulability tests are necessary to define efficient admis-
sion controllers.

Checking the feasibility of a task system is usually
a hard computational problem, that cannot be solved in
polynomial time in the number of tasks. Exact feasibility
tests are known for periodic fixed-priority tasks [10, 11]
and run in pseudo-polynomial time. Furthermore, their
execution times can vary from one execution to another
according to the task parameters [13, 6]. Nevertheless,
there are two ways for defining efficient schedulability
tests that consists on:

� improving initial values of an exact feasibility test
as in [13] or [6]. But, the worst-case computational
complexity of such tests is still pseudo-polynomial,

� defining an approximate schedulability test running
in polynomial time as in [7, 1, 9].

Next, we focus on the second promising way. Approx-
imation algorithms perform a compromise between com-
putational effort to decide the feasibility of task systems
and the quality of taken decisions. If the approximate al-
gorithm concludes that a task system is feasible, then it
will be true at run-time for all possible behaviors of these
tasks. But, if the answer is negative, then we cannot con-
clude that the task system will be infeasible at run-time.

The paper is organized as follows: Section 2 presents
the task model considered in the remaining of the paper.
Section 3 presents known exact feasibility tests and ap-
proximate feasibility tests for periodic fixed-priority tasks.
Section 4 presents some computational complexity results
and new polynomial time feasibility tests for fixed-priority
real-time tasks. Section 5 presents experimental results
based on numerical simulations.



2 The task model

We consider uniprocessor real-time systems running
periodic tasks. A periodic task�� defines a set of jobs.
Every periodic task is known and implemented in the soft-
ware architecture. Thus, job parameters are always known
before starting the system. Every task�� is defined by
three parameters and denoted������ ��� ���. �� is the
worst-case execution requirement of��, �� its the rela-
tive deadline (the time window between its release and
its completion), and�� its period between two succes-
sive releases. We assume that deadlines are constrained:
�� � ��� � � � � �, where� is the number of tasks in
the system.

Every job generated by a periodic task is scheduled us-
ing a fixed-priority. At any time, the highest priority job
is run among available ones. According to such a basic
dispatching policy, the optimal priority assignment can be
performed off-line using the Deadline Monotonic [2] pri-
ority ordering. We assume that task priorities are known
before starting the system (i.e. priority assignment is done
off-line) and tasks are indexed using the priority ordering,
thus�� is the highest priority task.

3 Review of feasibility tests for preemptive
fixed-priority task systems

Three main approaches are used to define schedula-
bility tests: analyzing the system utilization factor (i.e.,��

��� �����), analyzing the processor demand or analyz-
ing worst-case response times of tasks. For fixed-priority
tasks, tests are known for checking a sufficient schedula-
bility condition of tasks having deadlines equal to peri-
ods such as [12]. A necessary and sufficient schedulabil-
ity condition can be computed in pseudo-polynomial time
for systems having constrained-deadlines using a proces-
sor demand analysis or by computing worst-case response
times of tasks. But, no polynomial time algorithm nor
NP-hardness result are currently known for the feasibility
problem related to the studied task model. Next, we only
present results and schedulability tests that will be used in
the remainder of the paper.

3.1 Exact algorithms
For a given task��, the scenario leading to its worst-

case response time�� is achieved when task�� is released
at a critical instant (i.e., simultaneously with all higher
priority tasks) [12]. The processor demand analysis is
based on the total execution time required by a task� � and
can be expressed as of function of time. In a periodic syn-
chronous task system, the total execution time requested
by task�� is (request bound function):

	
����� �

�
�

��

�
�� (1)

Thecumulative request bound function allows to com-

pute the worst-case response time of task��:


���� � �� �
����
���

	
����� (2)

For task��, its exact worst-case response time��� is the
minimal solution to the equation:


���
�

� � � ��� (3)

Joseph and Pandya [10] proposed a recursive algorithm
to solve the previous equation. But an iterative algo-
rithm can be defined using successive approximation of
response times in order to reach the smallest fixed-point
of Equation 3 (this lead to simple recursion formula). The
feasibility test consists on: first, computing worst-case
response times of all tasks, and second, checking that
��� � ��� � � � � �. The corresponding algorithm
is pseudo-polynomial and the number of iterations before
reaching the smallest fixed-point widely varies from one
task system to another and is highly dependent on task
parameters [13, 6].

Lehoczkyet al. [11] provided a processor demand
analysis for checking task feasibility that will lead in prac-
tice to a different feasibility test. Their main result is
stated hereafter:

Theorem 1 [11] In a synchronous task system, task �� is
feasible if, and only if, there exists a time � � ��� ��� such
that 
���� � �.

Such a result defines an alternative way to check fea-
sibility of a task system, without explicitly computing
worst-case response times. The cumulative request bound
function (defined in Equation 2) only changes for a finite
set of values (i.e., when tasks are released). Thus, the
number of time instants to check the feasibility of task� �
in Theorem 1 is defined by the following testing set (for
constrained-deadline task systems):

�� � �
�� �� � � � � � �� 
 � � � � � �������� � ���� (4)

Thus, checking task�� feasibility requires to verify if:

��	
����

�

����

�

�
� � (5)

As a consequence if one instant� � �� satisfies

���� � � then �� is feasible and no more time instant
has to be checked to decide the feasibility of� �. Accord-
ing to Theorem 1, a practical implementation of such a
test usually requires to check only a subset of� �. But,
the computational complexity of this algorithm depends
on the ratio: ����� . As a consequence, the algorithm
runs in pseudo-polynomial time. In [5], an improvement
of this test is presented, but this algorithm is still running
in pseudo-polynomial time.



In practice, the algorithms proposed by [10] and [11]
can lead to a quite different number of iterations. But,
their pseudo-polynomial complexities are not acceptable
to define an on-line admission controller and furthermore,
the numbers of iterations are too dependent on task pa-
rameters.

3.2 Approximation algorithms
An approximation algorithm is a polynomial time al-

gorithm that is used to solve efficiently NP-hard (opti-
mization) problems. There exist several ways to define a
solution in polynomial time with performance guarantees
in comparison with an exact algorithm (always comput-
ing the optimal value of an optimized function). Let�
be an approximation algorithm and��� be an exact al-
gorithm. For any instance, vales returned by� or ���
for a given instance� are respectively denoted���� and
��� ���. The (relative) performance guarantee of the al-
gorithm� is defined by aratio �������� ��� while con-
sidering any possible instance� of a given optimization
problem. The competitive ratio of� is thus defined by:
	� � �	
���� �������� ���, where� is a instance of the
considered problem. Thus, the ratio defines the worst-case
performance guarantee while considering all possible in-
stances of the optimization problem. An approximation
algorithm is a polynomial time algorithm having a ratio
bounded by a constant. Note that an algorithm� is op-
timal (i.e., always leads to the optimal value of the opti-
mized objective function) if, and only if,	� � �.

A approximation scheme is a parametric approxima-
tion algorithm (thus running in polynomial time) that
takes an input problem instance and an error bound� �
� � �. The error bound defines anaccuracy input pa-
rameter. The ratio of an approximation scheme must be
defined as follows:	� � � � �. A Polynomial-Time Ap-
proximation Scheme (PTAS) is an algorithm that runs in
polynomial time in the length of the input. A fully poly-
nomial time algorithm (FPTAS) is a PTAS that satisfies an
additional condition: it is also polynomial in���. That is
the best result that can be achieved to solve an NP-hard
problem. Only few optimization problems admit FPTAS.

Since few years, approximation algorithms gain a great
interest in the real-time research community. To the best
of our knowledge, no approximation algorithm has been
proposed to calculate approximate response times of tasks
with performance guarantees (we shall provide such a re-
sult in the next section). Nevertheless, checking feasibility
is not an optimization problem, but only adecision prob-
lem. As a consequence, approximation algorithm prin-
ciples cannot be exploited without revisiting their defini-
tion. In fact, several frameworks have been proposed to
reuse approximation algorithm concepts and thus defining
several approaches to performapproximate schedulability
analysis:

� Chakrabortyet al. [7] proposed approximation
scheme that always provide the good answer if the

task system is not schedulable, but can give a wrong
answer in the other case with a bounded error� (i.e.,
it returns not schedulable whereas the task system is
feasible).

� Based on the results obtained by [1] for EDF, Fisher
and Baruah [9] proposed another definition: if a task
system is stated as infeasible then it is really not fea-
sible on a slower processor (with speed�	 �).

Even if these two frameworks are different, the per-
formance guarantee of an approximation algorithm is ob-
tained by bounding the error on the exact value of the
function 	
���� and its approximate version. We only
present the function proposed in [9] that is directly linked
(and will be reused) to the problem we cope with in this
paper.

The function	
����� is a non-decreasing step function.
The number of steps is not bounded by any polynomial
function in the size of task parameters. One way to define
an polynomial-time approximation scheme is to consider
a limited number� of steps (polynomially bounded in the
number of tasks in the system) and then to use a linear
function to define an upper bound of	
� ����. The num-
ber of steps that will be considered while computing the
approximate request bound function is defined as follow:

� � 
���� 	 � (6)

Then, the approximate demand bound function	
� ���� is
defined by considering the first� steps of	
�����:

	
� ���� � 	
����� if � � �� 	 ����

� �� � �
��

��
otherwise

Then, theapproximate cumulative request bound func-
tion is defined by:


 ���� � �� �

����
���

	
� ���� (7)

To complete the test, Fisher and Baruah use exactly
the same principle than those proposed by Lehoczky et
al. [11] but defining a testing set, but having a polynomial
number of entries according to the input task system size
and the accuracy parameter (�):

�� � �
�� �� � � � � � �	 �� 
 � � � � � �� � ���� (8)

where� is defined in Equation 6. A basic implementa-
tion of this approximate schedulability test leads to an
������� algorithm [9]. Clearly, if� is closed to 0, then
the number of iterations performed by the algorithm is
quite huge and should not be acceptable into an on-line
admission controller (even if it is a polynomial time al-
gorithm from a theoretical point of view). Thus, numer-
ical experimentations are necessarily required according



to the application in order to define agood value for� for
the considered task systems. Note that such an approx-
imation scheme has been extended to task systems with
arbitrary deadlines in [8] (i.e., periods and deadlines are
not related).

4 New Algorithms

We first present some computation complexity results,
and then, we propose three new polynomial time algo-
rithms for checking the feasibility of fixed-priority tasks
with constrained-deadlines.

4.1 Computational complexity of feasibility prob-
lems

The computation complexity theory classifies decision
problems according to their internal complexity. Check-
ing feasibility of a task system is obviously a decision
problem. Nevertheless, no computational complexity re-
sult is known for the feasibility problem related to the
studied task model. This decision problem is not known
�
-hard, nor belonging to�
. Before defining approx-
imation algorithms, we first state a computational com-
plexity result for fixed-priority tasks, then we recall that
verifying that tasks scheduled under EDF (Earliest Dead-
line First) leads to a very different class of problems in the
computational complexity theory, unless
 equals�
.

Theorem 2 Checking deadlines for synchronous fixed-
priority tasks having constrained-deadlines is a decision
problem belonging to �
.

Proof: In order to show the problem to be in�
, we
have to prove that a task set can be decided feasible us-
ing a polynomial time non-deterministic algorithm. If the
non-deterministic part of such an algorithm ”guesses” a
scheduling point� in the testing set defined in Equation
4 for checking the feasibility of a task��, then a neces-
sary and sufficient condition according to Theorem 1 is:

���� � �. Such a test is done in polynomial time since
the Equation 2 is computable in linear time. Repeating
this principle for every task leads to a polynomial time
test (using a non deterministic algorithm). Thus, the con-
sidered feasibility problem belongs to�
.�

Note that the same feasibility problem will be in co-�

if we consider an EDF scheduler (thus, one can checked
in polynomial time for a given date� that a task system
is infeasible, but checking that a task system is feasible
requires more than a polynomial amount of time [3]).

Theorem 3 [3] Checking deadlines for synchronous
tasks having constrained deadlines, to be scheduled un-
der EDF, is a decision problem belonging to co-�
.

Proof: In order to show the problem to be in�
, we
have to prove that a task set can be decided infeasible
using a polynomial time non-deterministic algorithm. If
one ”guesses” a time instant�, then for checking that

Algorithm 1: Linear Time Approximation Algorithm

Data : �� ���� � � � � ���
��� � ��;
	 � � � �;
for i=2..n do

	 � 	 � ���������;
� � �� ����;
��� � ��� ������	 	�;

end
return � ���� � � � � ���� ;

task �� is not schedulable, it is necessary and sufficient
to check there exist a time instant� such that :�
���� � �
(see [3] for the definition of the demand bound function
�
����). This is done in polynomial time since�
����
is computable in linear time. Thus, a non-deterministic
algorithm can check the infeasibility of a task system in
polynomial time. Thus, the considered feasibility prob-
lem belongs to co-�
.�

Next, we present several polynomial time algorithms
to check the feasibility of fixed-priority tasks with con-
strained deadlines.

4.2 A linear time approximation
Consider the workload function stated in Equation 2

and let��� be the exact worst-case response time of��. In
order compute an approximate worst-case response time
(i.e., an upper bound), one can relax the integral values
of ���� while computing the interference of any higher
priority task�� . That is to say:

��� � �� �
����
���

�
� �

���
��

�
��

For obtaining a lower bound of the worst-case response
time of��:

��� � �� �

����
���

���
��

��

Using the two previous inequations, we obtain:

��

�	
����

���
	�


�

� ��� �

��
��� ��

�	
����

���
	�


�

(9)

We use such an upper bound to approximate the worst-
case response time of��. Then, these upper bounds of
tasks can be used to define a linear time feasibility algo-
rithm (i.e., running in����, where� is the number of
tasks) that computes response time upper bounds��� as
presented in Algorithm 1.

We first establish a negative result concerning the
performance guarantees of Algorithm 1 while consider-
ing any possible task systems with constrained-deadline.
Then, we shall show that under a simple assumption that
Algorithm 1 has a bounded performance guarantee.



Theorem 4 Let ��� be the exact worst-case response of ��
and ��� be the upper bound computed by Algorithm 1, then
the ratio ����

�

� is not bounded (i.e., Algorithm 1 has no
performance guarantee).

Proof : Consider the following task system with two
tasks: ���� 	 �� �� �� and ����������, where� satis-
fies� � � � � and� is an arbitrary integer number such
that� � �. Note that periods are proportional, thus a
necessary and sufficient condition for the task system to
be schedulable under the Rate Monotonic scheduling rule
is����� � ����� � �. The utilization factor is:

� �
��

��
�

��

��
� ��	 �� �

��

�
� �

Thus, the task system is schedulable under Rate Mono-
tonic and the exact worst-case response times and those
obtained by Algorithm 1 are:

��
�

� �� � �	 �

��
�

� � �� �
� � �� 	 ���

�

Thus, the worst-case performance guarantee of Algorithm
1 is obtained while considering��:

���
���

��

��
�

� ���
���

�

��
�

�� 	 ��

�
� ���

���

�

�
��

�

A similar result can be achieved for the performance
guarantee of the lower bound��� that is defined by:
�
��������


�

�

�
�
.

Theorem 5 Let ��� be the exact worst-case response of ��
and ��� be the lower bound computed in Equation 9, then
the ratio ��� �

��� is not bounded (i.e., the lower bound has
no performance guarantee).

Proof : Consider the following task system with two
tasks: ����� ��� ��� and����� ��� ���, where� satis-
fies: � � � � � and� is an arbitrary number such that
� � �. Note that periods are equal. Thus, it is quite easy
to see that the Rate Monotonic scheduling algorithm leads
to a feasible schedule.

The exact worst-case response time for task�� is��
�
�

� � �. And the lower bound defined by Equation 9 is:

��� �
�

�	 �
��

� ��

As a consequence, we verify:

���
���

���
���

� ���
���

� � �

��
� �

As a consequence, such a lower bound has no perfor-
mance guarantee.�

We now prove that if task parameters satisfy a sim-
ple condition, then Algorithm 1 is an approximation al-
gorithm.

Theorem 6 If we assume that there exists a constant �
such that � �

�
��������	� �� for any task system,

then Algorithm 1 has a performance guarantee not greater
than �.

Proof: Starting from equation 9:

��

�	
����

���
	�


�

� ��� �

��
��� ��

�	
����

���
	�


�

Thus,

��

���
�

��
��� ��

��

� �

Thus, under the assumption, Algorithm 1 is a�-
approximation.�

Thus, one can hope that Algorithm 1 is quite interesting
for evaluating task systems having small tasks with sim-
ilar worst-case execution times. For such systems, Algo-
rithm 1 provides an efficient����-time approximation al-
gorithm for computing worst-case response times of tasks.
But, when there are high variations on task lengths, then
the algorithm cannot be efficient, since the constant� can
be a huge number.

Using a similar argument, we define an assumption
such that the lower bound defined in Equation 9 has a per-
formance guarantee in comparison with exact worst-case
response times of tasks.

Theorem 7 If we assume that there exists a constant �
such that � �

�
��������	� �� for any task system, the

lower bound of the worst-case response time defined in
Equation 9 has a performance guarantee not greater than
�.

Proof: As in the previous proof, starting from equation 9
we directly obtain:

���
���

�

��
��� ��

��

� �

�

We investigate next sections, two new approximation
algorithms requiring more computational efforts (i.e., that
are not running in linear time).

4.3 A deterministic approximation algorithm
The algorithm proposed by Joseph and Pandya [10] is

based on computing the smallest fixed-point of Equation
3. The algorithm runs in pseudo-polynomial time since
the number of iterations is not known to be bounded by a
polynomial number in the task system size.

A simple way to achieve a bounded number of itera-
tions is to stop computations at most after� iterations. If
the smallest fixed-point is reached before� iterations then
the algorithm returns the exact worst-case response times.



Algorithm 2: Deterministic Approximation Algo-
rithm

Data : �� ���� � � � � ���, �

���� � � � � ���=Algorithm1��� ���� � � � � ���;
� �

�
�

�

�
	 �;

	 � � � �;
for i=2..n do

� � �;
� � ��;
while (� � 
���� and � � � and � � ��) do

� � � � �;
� � 
����;

end
if � � 
���� then

�� � �;
end

end
return ���� � � � � ��� ;

Otherwise, it returns the upper bound presented in the pre-
vious section (i.e., using Algorithm 1):

�� �

��
��� ��

�	
����

���
	�


�

The number� is a parameter that must be based on an
accuracy constant:�� � � � � �. As Fisher and Baruah,
we define it as follows1:

� �

�
�

�

�
	 �

Algorithm 2 presents the pseudo-code of the determin-
istic approximation algorithm. In order to improve the al-
gorithm efficiency, we first run Algorithm 1 that defines
initial values of approximate worst-case response times.
The algorithm runs in�� �

�

�
� since the workload
���� is

computed in����.
As a direct consequence of the result presented in The-

orem 4, we can establish that Algorithm 2 is an approxi-
mation algorithm under the following condition: there is a
constant� such that� �

�
��������	� �� for any task

system.

Theorem 8 If we assume that there exists a constant �
such that � �

�
��������	� �� for any task system,

then Algorithm 2 has a performance guarantee not greater
than �.

4.4 A randomized approximation scheme
The last proposed algorithm is based on the Lehoczky,

Sha and Ding’s feasibility test. This algorithm checks the
processor demand using a testing set�� for any task��.
The size of such a set is not known to have a polynomial

1We same the same definition of� in order to allow comparisons of
algorithms in the Section dedicated to numerical experimentations.

Algorithm 3: Randomized Approximation Scheme

Data : �� ���� � � � � ���, �

� �
�
�

�

�
	 �;

�� ��
��=True;
� � �;
while � � � and �� ��
�� do

��=False;
� � �;
while � � � and not �� do

Choose randomly a time� � ��;
if 
 ���� � � then

��=True;

end
� � � � �;

end
� � �� �;
�� ��
�� � ��;

end
return Feasible ;

number of items. The feasibility test enumerates the test-
ing set and stops when a time� that verifies
������ � �.
The worst-case behavior of such a test is achieved when
all items in the testing set have been checked. The number

of iterations for analyzing task�� is at most
��

���

�
��


�

	
.

From the implementation point of view, the order in which
items in��’s are enumerated is not important.

A simple way to define an approximation scheme based
on the Lehoczky, Sha and Ding’s exact feasibility test is
to limit the size�� while checking the feasibility of task
��. Once again, we fix such a number using an accuracy
constant�� � � � � � as follows:� � 
 �

�
� 	 �.

In order to ensure the algorithm to be an approxima-
tion scheme we also have to use the approximate work-
load
 ���� (i.e., Equation 7) rather than the exact work-
load 
���� (i.e., Equation 2). If such a function is not
used, we cannot ensure that the algorithm has competitive
ratio bounded by a constant (i.e., to ensure that is an ap-
proximation algorithm). As a consequence, Algorithm 3
is a simple randomized version of the algorithm proposed
in [9].

We define a randomized approximation scheme by
enumerating randomly at most� items in each� � with
the same probability (i.e., a uniform law). While consid-
ering such items if no of them leads to a positive answer,
then we state the task system to be infeasible. The cor-
responding algorithm has a computational complexity of
���

�

�
�. If � tends to 0, then the randomized approxima-

tion scheme has the same behavior than Lehoczky, Sha
and Ding’s exact feasibility test.



Algorithm Names Authors
LSD89 Lehoczky, Sha and Ding, 1989
JP86 Joseph and Pandya, 1986
FB05 Fisher and Baruah, 2005
UB Section 4.2
DET Section 4.3

RAND Section 4.4
Table 1. Algorithm name abbreviations used
in the paper

5 Numerical results

We first describe the simulation environment and then
numerical results.

5.1 Experimentation environment
We compared all presented methods (see Table 1 for

the complete list). Task systems are randomly generated
in order to achieved a given processor workload. The
maximum worst-case execution time is fixed to 100 units
of time and deadlines are constrained for all tasks (i.e.,
�� � ��� � � � � �). The simulator parameters are:

� the processor workload are 0.5 and 0.9,

� the number of tasks are between 2 and 50 tasks in
every task systems,

� considered epsilon values are from 0.01 to 0.46 with
a step 0.05 (Note that if� � ���, then� � 
 �

�
�	 � is

always equal to 1).

For every value of these parameters, 25 task systems
have been randomly generated and all methods have been
run and compared. In the following, algorithms will be
denoted as indicated in Table 1.

We only focus on two output parameters:

� the number of validated task systems,

� the number of iterations performed by the algo-
rithms, which indicate the number of times that the
workload function is computed during the test (i.e.,
Equation 2).

We are aware that simulation environment can have
biasing effects on results [4], nevertheless every simula-
tion results is always valid only within the confine of the
stochastic model defined in the simulator. We note that
results presented in the next section are valid for our sim-
ulation environment, and only for it.

5.2 Simulation Results
Figures 1 and 2 present numerical results for task sys-

tems having a processor utilization equal to 0.5. Fig-
ure 1 gives the number of validated task systems (i.e.,
the output status of the test isfeasible). The algorithm

Number of Validated Task Systems
(Workload = 0.5)

94%

95%

96%

97%

98%

99%

100%

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

epsilon

LSD89

FB05

UB

DET

RAND

Figure 1. Number of validated task systems:
all methods achieved good performances
(Workload 0.5)

Average Iteration Numbers
(Workload = 0.5)

0

50

100

150

200

250

300

350

400

450

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

epsilon

JP86

FB05

DET

RAND

Figure 2. Iteration numbers according to ep-
silon values (Workload 0.5)

LSD89 is used as a reference. As we can see, all meth-
ods achieved good performances. More precisely, Figure
1 shows that LSD89, FB05 and DET have equivalent re-
sults. The randomized algorithm has lower performances
in comparison with DET. The linear time approximation
algorithm (based on the upper bound presented in Section
4.2) leads to acceptable results since in more than 94 per-
cent it achieves a positive result (i.e., the same result than
an exact feasibility test).

The average iteration number of JP86 remains constant
for every epsilon value, because epsilon is not an input
parameter for that algorithm. One can note that algorithm
FB05 requires more iterations than JP86 for task sets when
small epsilon values are considered. But, when epsilon is
up to 0.25, then FB05 needs the same average iteration
numbers than the other approximation algorithms and fur-
thermore achieves better results.

Figures 3 and 4 present the same kink of results for a
processor workload equal to 0.9. Clearly from Figure 3,



Number of Validated Task Systems
(Workload = 0.9)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

epsilon

LSD89

FB05

UB

DET

RAND

Figure 3. Number of validated task systems:
all methods achieved good performances
(Workload 0.9)

Average Iteration numbers
(Workload = 0.9)

10

110

210

310

410

510

610

710

810

910

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50

epsilon

JP86

FB05

DET

RAND

Figure 4. Iteration numbers according to ep-
silon values (Workload 0.9)

FB05 is more competitive in comparison to other approx-
imation algorithms. But, when epsilon is up to 0.25 then
its performance against an exact feasibility test decreases
drastically to 30 percent of positive results. One can note
that the linear approximation algorithm is not competitive
enough when the processor utilization is high.

According to Figure 4, the average iteration numbers
have slopes in comparison with numerical results achieved
for a processor utilization equal to 0.5. Once again, FB05
becomes interesting for values around 0.25 since it re-
quires the same average number of iterations and achieves
better results.

As a conclusion, we must say that FB05 is better than
the proposed polynomial time approximation algorithms
for epsilon values near to 0.25. For optimizing the proces-
sor utilization, we conclude that FB05 is the better algo-
rithm among those proposed here, but the accuracy param-
eter�must be carefully chosen in order to control the qual-
ity of results. When the processor utilization is not high,
then admission control can be efficiently done using the
linear time approximation algorithm (denoted UB), that

has been presented in Section 4.2.

6 Conclusion

Efficient feasibility tests are required for implementing
an admission controller for large real-time systems. We
focused on feasibility tests with a polynomial time com-
plexity for defining efficient admission controllers. We
presented computational complexity results and compared
several approximate feasibility tests. We shown the check-
ing the feasibility of tasks with constrained-deadlines be-
longs to�
 when tasks have fixed-priorities, whereas the
same problem with EDF belongs to co-�
. We proposed
three simple approximate algorithms and compared them
with exact feasibility tests [10, 11] and one existing poly-
nomial time approximation scheme [9].

Numerical results shown that if the processor utiliza-
tion is not high, then admission control can be efficiently
done in linear time. When the processor utilization in-
creases, then we can use the Fisher and Baruah’s fully
polynomial time approximation scheme. According to our
results, it could also interesting to evaluate exact feasibil-
ity tests since in many situations they can be as powerful
than polynomial time approximation schemes even if their
worst-case computational complexities lead to pseudo-
polynomial time algorithms. But, there is still a small
gap between polynomial time admission control and ex-
act tests based pseudo-polynomial time algorithms.

The fully polynomial-time approximation scheme pro-
posed in [9] is to decide if a given task system is feasi-
ble on a unit speed processor. But, it is not the case then
the test ensures that the task system is infeasible upon a
slower processor (the slowdown is related to the accuracy
parameter). Thus, we want to use such techniques in or-
der to define an efficient scheduling algorithm for tasks to
be run upon a variable speed processor for power aware
computer systems.

We must also conclude that the existence of approxi-
mation algorithms (or better approximation schemes) for
computing worst-case response times of tasks is still an
important open issue. Most of known papers do not cope
with any performance guarantee in comparison with exact
values of worst-case response time. Thus, we think that
for most real-world systems validated with such schedu-
lability tests lead to oversizing the real-time system fea-
tures.

References

[1] K. Albers and F. Slomka. An event stream driven approxi-
mation for the analysis of real-time systems.proc. Euromi-
cro Int. Conf. on Real-Time Systems (ECRTS’04), pages
187–195, 2004.

[2] N. Audsley, A. Burns, M. Richardson, and A. Wellings.
Hard real-time scheduling: the deadline monotonic ap-
proach.proc. 8th IEEE Workshop on Real-Time Operating
Systems and Software, Atlanta, pages 127–132, 1991.



[3] S. K. Baruah, R. R. Howell, and L. E. Rosier. Algorithms
and complexity concerning the preemptive scheduing of
periodic, real-time tasks on one processor.Real-Time Sys-
tems, 2:301–324, 1990.

[4] E. Bini and G. Buttazzo. Biasing effects in schedulabil-
ity measures.Euromicro Int. Conf. on Real-Time Systems
(ECRTS’04), 2004.

[5] E. Bini and G. Buttazzo. Schedulability analysis of peri-
odic fixed-priority systems.IEEE Transactions on Com-
puters, 53(11):1462–1473, November 2004.

[6] R. Bril, W. Verhaege, and E. Pol. Initial values for on-line
response time calculations.proc. Int Euromicro Conf. on
Real-Time Systems (ECRTS’03), Porto, 2003.

[7] S. Chakraborty, S. Kunzli, and L. Thiele. Approximate
schedulability analysis. proc. 23rd Int. Symposium on
Real-Time Systems (RTSS’02), 2002.

[8] N. Fisher and S. Baruah. A fully polynomial-time approx-
imation scheme for feasibility analysis in static-priority
systems with arbitrary relative deadlines.proc. Euromi-
cro Int. Conf. on Real-Time Systems (ECRTS’05), pages
117–126, July 2005.

[9] N. Fisher and S. Baruah. A polynomial-time approxima-
tion scheme for feasibility analysis in static priority sys-
tems with bounded relative deadlines.proc. Real-Time and
Embedded Systems (RTS’05), Paris, 2005.

[10] M. Joseph and P. Pandya. Finding response times in a
real-time systems.The Computer Journal, 29(5):390–395,
1986.

[11] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and aver-
age case behavior.proc. Real-Time System Symposium
(RTSS’98), pages 166–171, 1989.

[12] J. C. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in hard real-time environment.Journal
of the ACM, 20(1):46–61, 1973.

[13] M. Sjodin and H. Hansson. Improved response time anal-
ysis calculations.proc. IEEE Int Symposium on Real-Time
Systems (RTSS’98), 1998.


