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ABSTRACT

This paper presents the use of the B technique in its event based definition. We show that it is possible to encode,
using Event B, the models i.e. transition systems associated to a process algebra with asynchronous semantics. The Event
B obtained encoding considers that the Event B model associated to the left hand side of a BNF rule defining the algebra
expressions is refined by a model corresponding to the right hand side of the same rule. The translation rules of each
operator of a basic process algebra are given. Then, an example illustrating each translation rule is given. This approach is
based on a proof technique and therefore it does not suffer from the state number explosion problem occurring in classical
model checking. The interest of this work is the capability to validate user tasks or scenarios when using a given system
and particulary a critical system. Finally, we discuss the application of this approach for validating user interfaces tasks in
the Human Computer Interaction (HCI) area.

Keywords. Event B method, events refinements, process algebra, application to HCI

INTRODUCTION

When performing syntactic analysis of formal languages, the classical approach consists in deriving abstract repre-
sentations from a formal BNF grammar. Usually, these abstract representations are abstract syntax trees. The construction
of an abstract syntax tree consists in applying the derivation rules of the BNF description. A hierarchical derivation tree
is obtained. This tree may be built either ascending (bottom-up approach) or descending (top-down approach). The trees
are augmented by other semantic information. Among this information, one can cite attributes, typing, or code generation
routines and so on.

We claim that it is possible to associate to BNF grammars a hierarchy of Event B models in a top-down approach. The
refinement relationship of Event B is used to encode the hierarchy provided by the abstract syntax tree. Each derivation
rule is represented by a refinement and the obtained hierarchy describes a tree that is augmented by models. Moreover,
these models are enriched by relevant properties (safety, reachability, robustness, ...). Obviously, the interest of such a
transformation is to allow the possibility to perform proofs of these relevant properties associated to these models.

The particular case of a language of processes (a process algebra which looks like CCS) is shown in this paper. A BNF
grammar defining the studied process algebra named CTT (ConcurTaskTrees [32]) is used as an example illustrating how
our approach works. We give a translation rule for each BNF rule. This process algebra is used for the specification and
validation of User Interfaces (UI). Indeed, validation of critical UI usually requires user scenarios which describe different
usages of an UI. Nominal and non nominal scenarios are defined and checked on the designed UI. Moreover, these scenarios
or tasks are checked at the specification and/or design level.

This paper is structured as follows. Next section recalls the basic definitions of the Event B method. Section 3 is the
kernel of our proposal. It gives the principle of the translation of a BNF grammar to a hierarchy of Event B models. It also
shows how this approach works on a BNF of the CTT process algebra and gives a practical example for each basic operator
of this algebra. Section 4 describes the usage of this translation for validating UI. Section 5 discusses the interest of this
approach in comparison with classical model checking.
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THE EVENT B METHOD

Among the increasing number of formal methods that have been described, model oriented methods, such as VDM [15],
Z [35] or B [2] [20], seem to have proved their applicability and efficiency. These methods are based on model description.
They consist in defining a model by variable attributes which characterize the state of the described system, the invariants
and other properties that must be satisfied and the different operations that alter these variables. Starting from this ob-
servation, Z method uses set theory notations and allows to encode the specifications in a structure named schema. Like
VDM, it is based on preconditions and post-conditions [25, 27, 26]. Moreover, VDM allows the generation of a set of
proof obligations. On the other hand, B is based on the weakest precondition technique of Dijkstra [21]. Starting from this
method, J.R. Abrial [2] has defined a logical calculus, named the Generalized Substitution Calculus. Proof obligations are
generated and need to be proved in order to ensure the correctness of developments and refinements.

In the recent years, J.R. Abrial has suggested a new definition of the B method: the Event B method [1]. This method
is adapted to the development of interactive systems as well as sequential systems. Our choice of B is motivated by the
fact that B Method is supported by tools which allow a complete formal development and is adapted to the description of
interactive systems [17].

Event B models

The basic element of any development achieved with the Event B method is the model. A model is defined as a set
of variables, defined in the VARIABLES clause that evolve thanks to events defined in the EVENTS clause. The notion
of Event B model encode a state transition system where the variables represent the state and the events represent the
transitions from one state to another. Moreover, the refinement capability offered by Event B allows to decompose a model
(thus a transition system) into another transition system with more and more design decisions moving from an abstract level
to a less abstract one. Refinement technique allows to preserve the proved properties and therefore it is not necessary to
prove them again in the refined transition system (which is usually more complex). The structure of an Event B model is
given by the following elements.

MODEL nameM
REFINES nameR

. . .
VARIABLES . . .
INVARIANT . . .
ASSERTIONS . . .
INITIALISATION . . .
EVENTS . . .

END

A model nameM is defined by a set of clauses. It may refine another model nameR. Briefly, the clauses mean:

• VARIABLES clause represents the variables of the model of the specification. Refinement may introduce new
variables in order to enrich the described system.

• INVARIANT clause describes, thanks to first order logic expressions, the properties of the attributes defined in the
clause VARIABLES. Typing information and safety properties are described in this clause. These properties shall
remain true in the whole model and in further refinements. Invariants need to be preserved by the initialisation and
events clauses.

• ASSERTIONS are logical expressions that can be proved from the invariants. They do not need to be proved for
each event like for the invariant. Usually, they contain properties expressing that there is no deadlock nor livelock.

• INITIALISATION clause allows to give initial values to the variables of the corresponding clause. They define the
initial states of the underlying transition system.

• EVENTS clause defines all the events that may occur in a given model. Each event is described by a body thanks to
generalized substitutions defined below. Each event is characterized by its guard (i.e. a first order logic expression
involving variables). An event is fired when its guard evaluates to true.
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Semantics of generalized substitutions

The initialisation and the events occurring in a B model are described thanks to generalized substitutions. Generalized
substitutions are based on the weakest precondition calculus of Dijkstra. Formally, several substitutions are defined in B. If
we consider a substitution S and a predicate P representing a post-condition, then [S]P represents the weakest precondition
that establishes P after execution of S. The substitutions occurring in Event B models are inductively defined by the
following expressions [1, 2, 29].

[SKIP] P ⇐⇒ P (1)

[S1 || S2] P ⇐⇒ [S1] P ∧ [S2] P (2)

[ANYvWHEREETHENSEND] P ⇐⇒ ∀ v(P =⇒ [S] P ) (3)

[SELECTETHENSEND] P ⇐⇒ E =⇒ [S]P (4)

[BEGINSEND] P ⇐⇒ [S] P (5)

[x:=E] P ⇐⇒ P (x/E) (6)

P (x/E) represents the predicate P where all the free occurrences of x are replaced by the expression E.

Substitutions 1, 2, 5 and 6 represent respectively the empty statement, the parallel substitution expressing that S1 and
S2 are performed in parallel, the block substitution and the affectation. Substitutions 3 and 4 are the guarded substitutions
where S is performed under the guard E.

In all the previous substitutions, the predicate E represents a guard. Each event guarded by a guard E is fired iff
the guard is true and when it is fired, the post-condition P is established (feasibility of an event). The guards define the
feasibility conditions given by the Fis predicate defined in [2].

Semantics of Event B models

The new aspect of the Event B method, in comparison with classical B, is related to the semantics. Indeed, the events
of a model are atomic events. The associated semantics is an interleaving semantics.

Therefore, the semantics of an Event B model is trace based semantics with interleaving. A system is characterized
by the set of licit traces corresponding to the fired events of the model which respects the described properties. The traces
define a suite of states that may be observed by properties. All the properties will be expressed on these traces.

This approach has proved to be able to represent event based systems like interactive systems. Moreover, decomposi-
tion (thanks to refinement) allows building of complex systems gradually in an incremental manner by preserving the initial
properties thanks to the gluing invariant preservation.

Refinement of Event B models

Each Event B model can be refined. A refined model is defined by adding new events, new variables and a gluing
invariant. Each event of the abstract model is refined in the concrete model by adding new information by expressing how
the new set of variables and the new events evolve. All the new events appearing in the refinement refine the skip event of
the refined model. Each new event corresponds to an ε−transition in the abstract model.

The gluing invariant ensures that the properties expressed and proved at the abstract level (in the ASSERTIONS and
INVARIANTS clauses) are preserved in the concrete level. Moreover, INVARIANT, ASSERTIONS and VARIANT
clauses allow to express deadlock and livelock freeness.

1. They shall express that the new events of the concrete model are not fired infinitely (no livelock). A decreasing
variant is introduced for this purpose.

2. They shall express that at any time an event can be fired (no deadlock). This property is ensured by asserting (in
the ASSERTIONS clause) that the disjunction of all the abstract events guards implies the disjunction of all the
concrete events guards.

Moreover, in the refinement, it is not needed to re-prove these properties again while the model complexity increases.
Notice that this advantage is important if we compare this approach to classical model checking where the transition system
describing the model is refined and enriched.

3



A full simple example [16]

Let us consider below, the specifications of the clock example[16]. The abstract specification Clock uses one variable h
describing the hours of the clock. Two events are described. The first (incr event) allows to increment the hour variable.
The second event is the zero event. It is fired when h = 23 to initialize the hour variable.

MODEL
Clock

VARIABLES
h

INVARIANT
h ∈ 0..23

ASSERTIONS
h < 100

INITIALISATION
h := 13

EVENTS
incr = SELECT h 6= 23 THEN h := h + 1 END;
zero = SELECT h = 23 THEN h := 0 END.

In the refinement specification (ClockWMinute) we introduce a new variable m and a new event ticTac. We
enhance the guards of the incr and zero events in introducing the description of minutes. ASSERTIONS clause allows to
ensure that the new events of the description system can be fired.

REFINEMENT
ClockWMinute

REFINES
Clock

VARIABLES
h, m

INVARIANT
m ∈ 0..59

ASSERTIONS
(h 6= 23) ∨ (h = 23) ⇒ (h 6= 23 ∧m = 59) ∨ (h = 23 ∧m = 59) ∨ (m 6= 59)

VARIANT
59−m

INITIALISATION
h := 13 ‖ m := 14

EVENTS
incr = SELECT h 6= 23 ∧m = 59 THEN h := h + 1 ‖ m := 0END;
zero = SELECT h = 23 ∧m = 59 THEN h := 0 ‖ m := 0END;
ticTac = SELECT m 6= 59 THEN m := m + 1 END.

ENCODING CTT ALGEBRA IN EVENT B MODELS

This section is the kernel of our proposal. It presents the informal BNF translation rule and its application on a
particular language describing a process algebra.

BNF rules translation principle

Our claim is that it is possible to parse BNF grammars into Event B models. The translation principle is defined as
follows.

Each BNF rule of the form T ::= E OP F is translated into two Event B models. The first one is associated with the
left hand side of the rule and contains only one event eventT associated with the non terminal T . The second model is a
refinement of the first one and corresponds to the right hand side of the BNF rule. Two new events eventE and eventF
associated with the non terminals E and F are added in the refinement. These events carry the semantics of the op terminal
and of the right hand side of the BNF rule. The new events are fired and when they are completed, the refined event eventT
is fired.
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The firing order of the events is determined by introducing a decreasing variant. A variant is a natural number which
decreases to zero. When the variant is zero, the events of the described refined model can no longer be fired again. Events of
the abstract model can be fired, this corresponds to a return at the previous level in the decomposition tree. This possibility
to return to the events of the abstract level is offered by the refinement relationship. In practice, this variant corresponds to
a decreasing enumeration of states in a trace thanks to logical expressions. Remember that the events allow to go from an
initial state to a target state defining a trace in the underlying described transition system.

In order to illustrate our approach, let us consider the CTT (ConcurTaskTrees) language which defines a classical
process algebra. This language is widely used by the user interface community for specifying and/or validating user
interfaces. User interfaces tasks are described thanks to this language. We have used this language to validate user tasks on
user interfaces designs expressed with Event B. This point is discussed later in the paper in next section.

The task modelling language CTT

CTT [32] is defined by its authors as a notation for task model specifications to overcome limitations of notations used
to design interactive applications. Its main purpose is to provide with an easy-to-use notation, which permits to describe
tasks expressions combining CTT temporal operators and atomic tasks (atomic events). A CTT task model is based on
a hierarchical structure of tasks represented by a tree-like structure. It requires identification of temporal relationships
between other subtasks of the same tree level.

Below, a potential grammar describing the syntax of the CTT language is given. It presents temporal operators (from
classical process algebra) and task characteristics of CTT.

T ::= T >> T - - Enabling
| T []T - - Choice
| T ||T - - Concurrent
| T |=| T - - Order independency
| [T ] - - Optional process
| T [> T - - Disabling
| T | > T - - Interruption
| T ∗[> T - - Disabling infinite process
| T N - - Finite process iteration
| TAt - - Atomic process

Next sections, we show how the semantics of CTT can be formally described in Event B allowing to translate, in a
generic manner, with generic translation rules, every CTT construction (interruption and disabling included) in Event B.
This approach uses the refinement capability offered by Event B. For all the translation rules presented below, we will note
vari for the state variables, Ti for processes, Gi for event guards and Si for any Event B generalized substitution. Si

corresponds to actions executed by a process Ti. It represents the captured semantics.

Generic rules for the translation of the basic CTT constructions

The rules for translating basic operators (enabling, choice, iteration, concurrency and atomic process) into Event B
models are given below. They will be used to translate the remaining operators.

MODEL T0

INVARIANT
I(vari)

INITIALISATION
Init(vari)

EVENTS
Evt0 =
SELECT

G0

THEN
S0

END;
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For the description of the transformation rules, we will use a process T0 as the root process to be decomposed into
another process expression corresponding to the CTT BNF given in above section. The set vari describes all the useful
state variables that characterize the process T0. Other variables may be added after refinement if it is needed observe new
elements while decomposing T0 in the process tree. S0 is the substitution that expresses, under the guard G0, the state
variables changes due to the process T0. These elements are semantic features and are not represented in the syntax.

Basic illustrating example

The sum Sum of two natural numbers aa and bb will be used to illustrate how these rules work. We will give several
different refinement possibilities to compute the sum of two natural numbers. The first Event B model SumT0 corresponds
to the instantiation of the previous generic model T0. It contains the event Evt0 whose corresponding guard (G0) is
equivalent to true (BEGIN . . . END generalized substitution).

MODEL SumT0

INVARIANT
Sum ∈ NAT ∧ aa ∈ NAT ∧ bb ∈ NAT

INITIALISATION
Sum :∈ NAT ‖ aa :∈ NAT ‖ bb :∈ NAT

EVENTS
Evt0 =
BEGIN

Sum := aa + bb
END;

Here aa :∈ NAT means that aa becomes any natural number.

For the refinement of this example, we will use RSum, AA BB as the new variables of the refinement. They
correspond to refinement variables of the abstract variables Sum, aa and bb respectively. These variables are linked by the
same gluing invariant RSum + AA + BB = aa + bb which guarantees the correctness of the refinement and therefore of
the CTT operators encoding. The variable initialization aa, AA :∈ (aa ∈ NAT ∧ AA = aa) of the refinement ensures
that the variables aa and AA are arbitrarily chosen natural numbers and are equal. The same applies for bb and BB.

Notice that the kernel of the semantic part of the translation consists in finding such an invariant. The other part, is
related to the firing order of events.

Enabling ”>>”

Let us consider T0 ::= T1 >> T2 for the activation of T1 followed by T2 (sequence). The translation to Event B is
given by a model with two events EvtT1 and EvtT2 corresponding to T1 and T2.

The translation uses a decreasing variant StateEna initialized to 2. EvtT1 is fired if its guard G1 is true and so its
substitution S1 is performed, the variant decreases. EvtT2 is fired in sequence if its guard is true and if the variant value is
set to 1 by Evt1.

REFINEMENT RefEnablingT0

REFINES T0

INVARIANT
J(vari, varj) ∧ StateEna ∈ {0, 1, 2}

ASSERTIONS
G0 ⇒ ((StateEna = 2 ∧G1) ∨ (StateEna = 1 ∧G2) ∨ . . .

VARIANT
StateEna

INITIALISATION
StateEna := 2 ‖ . . .

EVENTS
EvtT1 = EvtT2 = EvtT0 =
SELECT SELECT SELECT

StateEna = 2 ∧G1 StateEna = 1 ∧G2 StateEna = 0 ∧G′
0

THEN THEN THEN
StateEna := 1 ‖ S1 StateEna := 0 ‖ S2 S′

0
END; END; END;
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The disjunction of guards is given in the ASSERTIONS clause. The set varj defines the state variables of the
refinement. They are linked to the abstract state variables of the abstract model thanks to the gluing invariant J(vari, varj).
This gluing invariant is defined in all the refinements given below. Notice that the event EvtT0 ends the enabling of the
two processes, it gives the refinement of the event corresponding to process T0.

Example of the use of the enabling operator translation - Let us consider that the sum of aa and bb is performed in a
sequential manner. First the variable aa is added to RSum by event EvtT1 and then the variable bb is added to RSum by
event EvtT2. These two events of the refinement work for EvtT0 which collects the results and refines the event Evt0 of
the abstraction.

REFINEMENT RefEnablingT0

REFINES SumT0

INVARIANT
(RSum + AA + BB) = (aa + bb) ∧ . . .

ASSERTIONS
(AA = 0 ∧BB = 0 ∧ aa + bb ∈ NAT ) ∨ . . .

VARIANT
AA + BB

INITIALISATION
RSum := 0 ‖ Sum :∈ NAT ‖ aa, AA :∈ (aa ∈ NAT ∧AA = aa) ‖ . . .

EVENTS
Evt1 = Evt2 = Evt0 =
SELECT SELECT SELECT

AA 6= 0 ∧BB 6= 0 ∧ . . . AA = 0 ∧BB 6= 0 ∧ . . . AA = 0 ∧BB = 0 ∧ . . .
THEN THEN THEN

RSum := RSum + AA ‖ RSum := RSum + BB ‖ Sum := RSum
AA := 0 BB := 0 END;

END; END;

Variables AA and BB are used to implicitly represent the variant StateEna. The ASSERTIONS clause ensures that
the new events are fired and the variant guarantees the sequential ordering.

Choice ”[]”

Let us consider T0 ::= T1[]T2 defining a non deterministic choice between processes T1 and T2 i.e. either T1 or T2 is
fired. The translation to Event B is given by a model with three guarded events EvtT1, EvtT2 and EvtInitChoice.

The variant StateCho is initialized to 3. According to the guard value of each event, one of Evt1 or Evt2 is fired.
Each event decreases immediately the variant to value 0 forbidding the other events to be fired. The first event to be fired
is arbitrarily chosen by the ANY WHERE THEN substitution. The refined event EvtT0 ends the process T0, it allows to
fire again the event Evt0 of the abstract model T0.

REFINEMENT RefChoiceT0

REFINES T0

INVARIANT
J(vari, varj) ∧ StateCho ∈ {0, 1, 2, 3}

ASSERTIONS
G0 ⇒ ((∃(p).(p ∈ {1, 2} ∧
StateCho = 3)) ∨ (G1 ∧ StateCho = 1) ∨
(G2 ∧ StateCho = 2) ∨ (StateCho = 0 ∧G0))

VARIANT
StateCho

INITIALISATION
StateCho :∈ {1, 2} ‖ . . .

EVENTS
EvtChoiceT1 = EvtChoiceT2 = EvtT0 =
SELECT SELECT SELECT

StateCho = 1 ∧G1 StateCho = 2 ∧G2 StateCho = 0 ∧G′
0

THEN THEN THEN
StateCho := 0 ‖ S1 StateCho := 0 ‖ S2 S′

0
END; END; END;
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Event Evt0 ends the firing of the choice between two processes, it gives the refinement of the event corresponding to
process T0.

Example of the use of the choice operator translation - Let us consider that the sum of aa and bb is performed using a non
deterministic choice. This possibility is offered by the semantics of Event B which allows a non deterministic event firing.

Two events are defined. One EvtChoice1 computes the result RSum = AA + BB and the second EvtChoice2

computes the result RSum = BB + AA. These two events of the refinement are working for the event Evt0 which
collects the results and refines the event Evt0 of the abstraction.

Here the variant is the natural number AA + BB. Notice that the non deterministic choice is performed thanks to the
presence of the variant expression AA 6= 0 ∧ BB 6= 0 in the two events EvtChoice1 and EvtChoice2.

REFINEMENT RefChoiceT0

REFINES SumT0

INVARIANT
(RSum + AA + BB) = (aa + bb) ∧ . . .

ASSERTIONS
(AA = 0 ∧ (BB = 0 ∨BB ∧ aa + bb ∈ NAT ) ∨ . . .

VARIANT
AA + BB

INITIALISATION
RSum := 0 ‖ Sum :∈ NAT ‖ aa, AA :∈ (aa ∈ NAT ∧AA = aa) ‖ . . .

EVENTS
Evt0 = EvtChoice1 = EvtChoice2 =
SELECT SELECT SELECT

AA = 0 ∧BB = 0 ∧ . . . AA 6= 0 ∧BB 6= 0 ∧ . . . AA 6= 0 ∧BB 6= 0 ∧ . . .
THEN THEN THEN

Sum := RSum RSum := AA + BB ‖ RSum := BB + AA ‖
END; AA := 0 ‖ BB := 0 BB := 0 ‖ AA := 0

END; END;

The InitChoice event of the choice translation rule is not needed in this example. It is directly encoded in the
INITIALISATION clause of the refinement.

Iterative process ”T ∗”

Let us consider a loop process T0 ::= T N
1 . The principle of encoding a loop in Event B consists making possible to

fire, N times, the events associated to the process T1. A decreasing variant initialized to N is used. The translation into
a loop encoded in Event B requires three events : a first one EvtInitLoop for initializing the variant StateLoop, a second
one EvtLoop1 for the body of the loop and decreasing of the variant, and a third one Evt0 for ending the loop and returning
to the event of the abstract level.

REFINEMENT RefIterativeT0

REFINES T0

INVARIANT
J(vari, varj) ∧ StateLoop ∈ NAT ∧ Start ∈ {0, 1}

ASSERTIONS
G0 ⇒ Start = 0 ∨ (StateLoop > 0 ∧G1 ∧ Start = 1) ∨ (StateLoop = 0 ∧G′

0 ∧ Start = 1)
VARIANT

StateLoop + Start
INITIALISATION

Start := 1 ‖ . . .
EVENTS
EvtInitLoop = EvtLoop1 = EvtT0 =
SELECT SELECT SELECT

Start = 1 G1 ∧ StateLoop > 0 ∧ Start = 0 G′
0 ∧ StateLoop = 0 ∧ Start = 0

THEN THEN THEN
StateLoop :∈ NAT ‖ StateLoop := StateLoop− 1 ‖ S′

0
Start := 0 SLoop END;

END; END;
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The variant corresponding to the number of iteration is initialized by the EvtInitLoop event and then the EvtLoop1

event is fired StateLoop times. When the loop terminates, EvtT0 is fired. The variant StateLoop decreases from its
arbitrary initial value to 0. The ASSERTIONS clause states that one of the events guards is always true.

The initial value of the variant is arbitrary fixed thanks to the :∈ operator. The advantage of such an approach is the
possibility to encode an arbitrary number of loop steps without increasing the complexity of the proof process. Compared
to model checking techniques, increasing the number of loop steps may lead to the combinatorial explosion problem.

Example of the use of the iterative process translation - Let us consider the sum of two numbers obtained by performing the
sum of aa and bb using a loop operator. The idea consists in first performing RSum := AA and then adding, BB times,
the value 1 to RSum. In this case, the variant will be the variable BB. Therefore, this example does not use an explicit
variable StateLoop to represent the variant.

REFINEMENT RefIterativeT0

REFINES SumT0

INVARIANT
(RSum + AA + BB) = (aa + bb) ∧ . . .

ASSERTIONS
(AA = 0 ∧BB = 0 ∧ aa + bb ∈ NAT ) ∨ . . .

VARIANT
AA + BB

INITIALISATION
RSum := 0 ‖ Sum :∈ NAT ‖ aa, AA :∈ (aa ∈ NAT ∧AA = aa) ‖ . . .

EVENTS
EvtT0 = EvtInitLoop = EvtLoop1 =
SELECT SELECT SELECT

AA = 0 ∧BB = 0 ∧ . . . AA 6= 0 ∧BB 6= 0 ∧ . . . AA = 0 ∧BB 6= 0 ∧ . . .
THEN THEN THEN

Sum := RSum RSum := RSum + AA ‖ RSum := RSum + 1 ‖
END; AA := 0 BB := BB − 1

END; END;

The previous Event B model uses three events. The event EvtLoop1 decreases the variable BB until its value be-
comes 0. When the variant equals to 0, EvtT0 is fired to return to the events of the abstraction.

Concurrency ”||”

Let us consider T0 ::= T1||T2. The semantics of concurrency in interleaving semantics imposes to describe all the
possible behaviors. Therefore, this process is described by all the possible traces. It uses the interleaving underlying
Event B semantics i.e. if two events have their guard to true, they are fired in parallel, in an interleaving manner.

Two events EvtT1 and EvtT2 corresponding to processes T1 and T2 are defined. They can be fired at any time.

REFINEMENT RefConcurrencyT0

REFINES T0

INVARIANT
J(vari, varj) ∧ StateConc1 ∈ {0, 1} ∧ StateConc2 ∈ {0, 1}

ASSERTIONS
G0 ⇒ ((G1 ∧ StateConc1 = 1) ∨ (G2 ∧ StateConc2 = 1) ∨ . . .

VARIANT
StateConc1 + StateConc2

INITIALISATION
StateConc1 :∈ NAT ‖ StateConc2 :∈ NAT1 ‖ . . .

EVENTS
Evt1 = Evt2 = Evt0 =
SELECT SELECT SELECT

G1 ∧ StateConc1 = 1 G2 ∧ StateConc2 = 1 G′
0 ∧ StateConc1 = 0 ∧ StateConc2 = 0

THEN THEN THEN
StateConc1 = 0 ‖ S1 StateConc2 = 0 ‖ S2 S′

0
END; END; END;
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Once the events EvtT1 and EvtT2 are fired, they cannot be fired again. Their variant (StateConc1 and StateConc2

respectively) is decreased from any natural number (:∈) to 0 and the abstract event of the refined model can be fired again
(Evt0).

Example of the use of the concurrency operator translation - For the same example, we have imagined a refinement with
a concurrent operator. Indeed, two concurrent events are defined. EvtT1 adds the value of AA to RSum when the event
EvtT2 adds the value BB to RSum. When these two events are fired, the last event EvtT0 is fired to compute the final
result for the abstraction.

REFINEMENT RefConcurrencyT0

REFINES SumT0

INVARIANT
(RSum + AA + BB) = (aa + bb) ∧ . . .

ASSERTIONS
(AA = 0 ∧BB = 0 ∧ aa + bb ∈ NAT ) ∨ . . .

VARIANT
AA + BB

INITIALISATION
RSum := 0 ‖ Sum :∈ NAT ‖ aa, AA :∈ (aa ∈ NAT ∧AA = aa) ‖ . . .

EVENTS
EvtT0 = EvtT1 = EvtT2 =
SELECT SELECT SELECT

AA = 0 ∧BB = 0 ∧ . . . AA 6= 0 ∧ . . . BB 6= 0 ∧ . . .
THEN THEN THEN

Sum := RSum RSum := RSum + AA ‖ RSum := RSum + BB ‖
END; AA := 0 BB := 0

END; END;

The variant is the sum of variables AA and BB. However, if the model requires not to change AA nor BB then, the
developer could have used explicit variants.

Translation of other CTT constructions

Up to now, >>, ||, [ ] and ∗ operators have been described in Event B models. All the other CTT constructions (order
independency, optional process, disabling, interruption) are described below. Thanks to the interleaving semantics of the
Event B method, the translation of these operators uses the basic operators defined previously.

Order independency ”|=|”

Let us consider T0 ::= T1 |=| T2. In trace based semantics, order independency is interpreted by:

T0 ::= T1 |=| T2 is translated to T0 ::= (T1 >> T2) [] (T2 >> T1) (7)

The enabling and choice basic operators are used for this translation. They define the interleaved traces encoding the
order independency operator.

Optionality ”[Task]”

Let us consider T0 ::= [T1]. The optional process indicates that process T1 may be accomplished. In this case, we
introduce the atomic empty process, namely TSkip. Then, optionality is translated to a choice between the process T1 or
the empty process. We get:

T0 ::= [T1] is translated to T0 ::= T1 [] TSkip (8)

The generalized substitution of the process TSkip is simply skip.
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Disabling ”[>”

Let us consider T0 ::= T1[> T2 where T1 is disabled by T2. Disabling requires a case based processing: either T1 is
atomic (i.e. cannot be refined or decomposed) or not.

Indeed, if T1 is an atomic process, then it means that either T1 is performed or T2 is performed. We get a translation
by a choice operator:

T0 ::= T1[> T2 is translated to T0 ::= T1 [] T2 (9)

When T1 is not an atomic process (i.e. it involves CTT operators defining observable states) disabling can occur in the
trace defined by T1. If T1 is decomposed into T1,1 op1 T1,2 op2 · · · opn T1,n+1, then the disabling translation is defined
by the choice of all the possible traces resulting from the disabling i.e. disabling can occur at each observable state of the
T1 decomposition and shall be propagated in the further decompositions. We get:

T0 ::= T1,1 op1 T1,2 op2 · · · opn T1,n+1[> T2 is translated to

T0 ::= T2

[] T1,1 >> T2

[] T1,1op1T1,2 >> T2 (10)

[] T1,1op1T1,2 · · · opiT1,i+1 >> T2

[] · · · >> T2

[] T1,1op1T1,2 · · · opnT1,n+1

Remark. When disabling occurs, T1 is stopped. The system may be in a corrupted state which may correspond to a
bad state of the system.

When we use the Event B method to encode the disabling operator, it may happen that the proof obligations cannot be
proved. Indeed, since a state is corrupted it does not correspond to a correct process decomposition and the gluing invariant
is not preserved by the refinement which encodes the disabling. The use of Event B allows to generate proof obligations
that cannot be proved. In this case, a repairing event can be added in the disabling decomposition. The repairing event will
artificially repair the system in order to return to a non corrupted state. This event enforces the preservation of the gluing
invariant and provides for a formal debugging.

Let us consider a small decomposition of T0 ::= T1[> T2 where T1 is not an atomic process. We give below a partial
refinement specification of the T0 process.

REFINEMENT
DisablingRef

INITIALISATION
DisablingState := 3 ‖ . . .

EVENTS
EvtT11 = EvtT12 = EvtDisabling =
SELECT SELECT ANY pp

G11 ∧DisablingState = 2 G12 ∧DisablingState = 1 WHERE
THEN THEN pp ∈ 1, 2∧

S11 S12 ‖ DisablingState := 0 ¬DisablingState = 0
END; END; THEN

DisablingState := pp
END;

EvtT1 =
SELECT

G1 ∧DisablingState = 0
THEN

S1
END;

11



Disabling infinite loop process ” ∗[>”

Let us consider T0 ::= T ∗
1 [> T2. In this case, the translation uses the same reasoning as the previous classical

disabling. We use the previous translation to define intermediate disabling in each iteration. We get:

T0 ::= T ∗
1 [> T2 is translated to T0 ::= (T1)

N [> T2 (11)

where N is any arbitrary natural number

Notice that the Event B method allows to define such an arbitrary natural number and to perform proofs on this basis.
This capability represents one advantage on model checking techniques where such a reasoning is not possible.

Finally, if the process T1 is not atomic, then disabling can occur in each observable state of the T1 decomposition as
defined in disabling operator subsection.

Interruption ”|>”

Let us consider T0 ::= T1| > T2. The process T1 is interrupted by the process T2. As for the disabling operator,
interruption translation requires a case based reasoning.

If T1 is an atomic process (not involving CTT operators), then it means that T2 can be performed an arbitrary number
of times (may be 0) and then T1 is performed. In this case, we get:

T0 ::= T1| > T2 is translated to T0 ::= T N
2 >> T1 (12)

When T1 is not an atomic process involving CTT operators the interruption can occur many times in each observable
state of the trace defined by T1. If T1 is written as T1,1 op1 T1,2 op2 · · · opn T1,n+1, then the interruption translation is
defined by the choice off all the possible traces resulting from the interruption. We get:

T0 ::= T1,1 op1 T1,2 op2 · · · opn T1,n+1| > T2

is translated to (13)

T0 :: T N1
2 >> T1,1 >> T N2

2 op1T1,2 · · · >> T
Nn+1
2 opnT1,n+1

Here Ni are arbitrary natural numbers showing that the process T2 associated to interruption can occur zero or several
times. Notice that we have chosen to interpret the interruption operator using this approach. One could have chosen to
activate interruption exactly once (Ni = 1).

APPLICATION FOR THE SPECIFICATION AND VALIDATION OF UI

One of the major aspects, in the User Interface (UI) development activity, is the capability to take into account usability
of the UI. In general, usability is captured a posteriori through experimentation and/or a priori through the description of a
set of tasks representing scenarios of use. The validation of UI in critical systems like plane cockpits or machine factory
interfaces use such scenarios.

The work we have performed with the previously described approach deals with the latter. We have represented tasks
by decomposable processes. We consider that a set of tasks is described using a user task notation and the designed UI shall
meet the requirements expressed within these tasks.

Notations and models for design and validation of HCI

In general, the development of UI is concerned by two important interleaving phases.

1. A design phase which allows to produce the code implementing the suited UI and its link with the functional core
(heart of the application). In this phase, architectural notations, verification, validation, specification, refinement
and programming techniques are used by UI developers. Among the design notations and techniques we can cite
the Seeheim model [33], PAC[18], ARCH[14, 13], hybrid models [24, 22] and so on. Usually this phase allows to
establish robustness properties.
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2. A task validation phase which consists in validating user needs. This phase is not well mastered by UI designers
since most of these validations are issued from non computer scientists like psychologists and ergonomists. A set
of tasks, defining scenarios, is described at the requirements level and shall be supported by the final UI product.
Among the description oriented techniques and notations one can cite MAD [34], XUAN [23] and CTT [31]. This
list is not exhaustive and may be completed. Usually this phase allows to establish validation properties.

Unfortunately, the different models and notations we outlined above do not give enough formal representation to allow
the complete validation and verification, at the specification and design levels, of the UI design with respect to given
properties and user tasks. In general, verification and validation are reported at the testing phase when all the software
development is completed.

Therefore, representing formally both design and tasks, at early stages of the development (abstract levels) will permit
such verification and validation. However, thanks to the possibility of describing formal abstract models provided by formal
techniques, it becomes possible to handle a large amount of validation and verification efforts early at the specification and
design phases.

The proof based techniques we are using help to increase the quality of UI software developments. Indeed, our
approach uses the Event B formal technique for representing, verifying and refining specifications [10, 5] [3] and [4]. In
[5, 6], we presented our approach, based on Event B, handling the design phase.

Applications to Human Computer Interaction area

User requirements validation is performed by way of the validation of a set of user tasks. A task can be seen as a
scenario of use of the interface. It can be validated using several techniques: running a prototype, simulating or animating
a model or model checking or proof techniques.

For validating user interfaces tasks, we have used the CTT (ConcurTaskTrees) process algebra and its representation
in Event B previously presented. Two main applications have been developed : one consists in validating WIMP interfaces
(Windows, Icons, Mouse and Pointers) and the second one deals with multi-modal interfaces. Before describing these two
applications, we overview the way we have represented the dialog controller of an UI which represents the kernel of any UI.

Encoding the dialog controller with Event B

A set of B models is described. They allow to encode all the parts of an UI software from the functional core of the
application to the toolkit, presentation and dialog controller.

The dialog controller contains all the events that can be fired by an user while using the interface. These events are
atomic. In their turn, these events fire other events from the presentation, toolkit or from the functional core. The guards of
these events define their firing order and how these events interleave.

We do not give the details of this approach for the description of the UI in this paper but more details can be found in
[10, 5, 4, 3] and [8].

Application to the WIMP user interfaces[7, 9, 12]

This first application consists in describing the whole CTT operators using Event B models for the WIMP user inter-
faces. Each decomposition of an upper task in the CTT tree corresponds to an Event B refinement. A CTT task is described
by an initial state and a final state. It is refined into a sequence of atomic events which lead from the initial state to the
final state. The refinement preserves all the properties of the initial task. This process is repeated until atomic events, of the
dialog controller are reached in the leaves. When the atomic events of the dialog controller are reached by the refinement,
the validation process is completed.

The previous encoding of CTT in Event B has been experimented on several task models for WIMP applications.
Complete examples may be found in [8]. Moreover, the developed examples have shown that it is possible to have a generic
translation of CTT task trees allowing task validation also for plastic interfaces.

Let us consider our approach on a small WIMP case study which allows to convert euros to dollars and vice-versa. The
user enters, in a textfield component, the value he/she wants to convert then he/she makes the conversion by pushing either
the =C>> $ button component to convert euros to dollars, or $ >> =C button component to convert dollars to euros. The
converted value is displayed thanks to a textfield component.
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The dialog controller - A list of atomic events defining the transition system of the dialog controller of the exchange
currency application is given below.

Event Name Description
EvtExit Click on exit button

EvtExitApplication Close exchange application
EvtInputV alue Input any convert value

EvtReadOutputV alue Updating all views after a conversion
EvtConvertInEuro Click on dollar to euro button

EvtConvertInDollar Click on euro to dollar button

An user task model - A potential user task model, giben below, of the exchange currency application has been experimented
from our encoding CTT. Notice that the leaves of this user task model correspond of the atomic avents of the dialog
controller.

ExchangeApplication = ExchangeTask∗[> EvtExit >> EvtExitApplication

ExchangeTask = EvtInputV alue >> ChoiceOfConversion >> EvtReadOutputV alue

ChoiceOfConversion = EvtConvertInEuro[]EvtConvertInDollar

Application to the multi-modal user interfaces [28, 11]

In this kind of application, several modalities (i.e. Speech, Gesture or Direct Manipulation) are available. They may
be used in order to build an interaction with the system. The building process associated to the interaction is based on a
composition of sub-interactions which are themselves compositions of other sub-interactions and so on, until basic events
(from dialog controller) are reached. Composition operators are needed in order to build such multi-modal interactions. So,
the application to the multi-modal user interfaces consists in applying the whole CTT operators translation of previously
introduced to compose multi-modal interactions. Regarding the WIMP applications, multi-modal applications need to
express and check by Event B method another kind of properties, the CARE (Complementary, Assignment, Redundancy
and Equivalence) properties [19].

As a case study, we have specified and validated the multimodal MATIS (Mulitmodal Airline Travel Information
System) application defined in [30]. This application allows an user to retrieve information about flights schedules using
speech and/or direct manipulation with keyboard and mouse, or a combination of these modalities. This interaction mode
supports individual and synergistic use of multiple input modalities. The information about flights schedules correspond to
the parameters of the request, such as the departure and arrival city names and the min and max departure hours.

The dialog controller - Below the list of the atomic events of the dialog controller MATIS case study is given. It corresponds
to the transition system defining the multi-modal interactive application.

Event Name Description
EvtCityDepartDM Input the departure city thanks to the direct manipulation modality

EvtCityDepartSpeech Input the departure city thanks to the voice modality
EvtCityDepartGesture Input the departure city thanks to the gesture modality
EvtCityDepartDMSG Input the departure city thanks to all the three modalities

EvtCityArrivalDM Input the arrival city thanks to the direct manipulation modality
EvtCityArrivalSpeech Input the arrival city thanks to the voice modality

EvtCityArrivalGesture Input the arrival city thanks to the gesture modality
EvtCityArrivalDMSG Input the arrival city thanks to all the three modalities

EvtResultOfRequest Display the result of request
. . . . . .

An user task model - We have experimented our encoding CTT user tasks model on the MATIS application. A potential
user task model is shown below. This user task model expresses the capability to modify the different parameters before
processing the request (iterative process) and the capability to input parameter values in different orders using a concurrent
interaction mode involving all the three modalities (Speech, Direct Manipulation and Gesture).
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SearchF ly = InputData∗[> EvtResultOfRequest

InputData = CityDeparture||CityArrival||MinHourDepart||MaxHourDepart
CityDeparture = EvtCityDepartDM []EvtCityDepartSpeech []

EvtCityDepartGesture[]EvtCityDepartDMSG

CityArrival = EvtCityArrivalDM []EvtCityArrivalSpeech []
EvtCityArrivalGesture[]EvtCityArrivalDMSG

MinHourDepart = . . .
MaxHourDepart = . . .

USE OF THE EVENT B METHOD. PROOF TECHNIQUE VERSUS MODEL CHECKING TECHNIQUE

The previous translation rules cover the whole CTT language for user tasks modelling and description. These transla-
tion rules give not only a syntactical translation, but also give a formal semantics using the Event B method semantics for
the CTT language. All these rules are implemented and are tool supported. The Atelier B [17] tool is used for this purpose.
We have developped several examples of CTT tasks using this approach.

When a CTT task is defined, the corresponding decomposition tree corresponds to a set of models and refinements
designed using event B. These models contain ASSERTIONS clauses expressing the soundness of events occurrence
thanks to the variant behavior and to the guard disjunction property. In addition to the task model validation provided by
the event B technique, these clauses allow to express other properties and to prove them thanks to the used technique. It
means that it is possible to validate or invalidate properties on the CTT tasks descriptions.

Finally, the use of arbitrary natural numbers in the interruption and disabling operators is possible using the ANY . . .
WHERE . . . THEN. . . END or :∈ event B operators. The possibility of using arbitrary natural numbers allow to deal with
all the possible cases for tasks descriptions and modelling. Moreover, the proving system supported by event B method
allows to prove all the properties expressed in these models. Notice that this is almost impossible in model checking
techniques, where a fixed value for the natural numbers is required. Usually the state number explosion problem arises
when these natural numbers increase.

Nevertheless, we claim that model checking techniques and proof based techniques shall be used in conjunction in
order to get the benefits of both: automatic proving for model checking techniques and state number explosion avoidance
for proof based techniques. Proof based techniques have been used to validate user needs in WIMP (Windows Icons Menus
and Pointers) applications[8] and to express and to check multi-modal properties[11].

CONCLUSION

This paper has presented an approach allowing to translate a BNF grammar to a set of Event B models. The translation
rule we defined consists in associating a first event B model to the left hand side of a BNF rule and a second one to the right
hand side of this rule. The second B model refines the first one. Variants are defined to ensure the correct firing order of
events in these models. The abstract syntax tree describes the hierarchy of refined models. When these models are built, it
is possible to enrich them by defining state variables, transitions and invariants expressing relevant properties. The interest
of such models is to establish properties and to check them a priori allowing early validation/verification. Moreover, we
have applied this translation rule to the BNF grammar defining process algebra expressions. These expressions were used
to describe tasks and scenarios used to validate user interfaces.

Although the proposed approach produced satisfactory results, principally for user interfaces validation, it needs a deep
study. Indeed, there is a need to address the following points :

1. study of other BNF examples and other languages for which useful proofs could be performed. These examples will
improve the translation rule definition;

2. study the theoretical aspects. What are the necessary and/or sufficient conditions that shall be fulfilled by a BNF
grammar to be translatable in Event B models;

3. and finally study and/or develop an automatic (or semi-automatic) tool that allows parsing of BNF grammars to a
hierarchy of Event B models corresponding to an abstract syntax tree.
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