Bridging the gap between formal and
experimental validation approaches in HCI
systems design: use of the event B proof based
technique.

Y. AIT-AMEUR and M. BARON

LISI - ENSMA and University of Poitiers
BP 40109, 86961, Futuroscope Cedex, France
{yamine,baron}Q@ensma.fr

Abstract The development of User Interfaces (UI) needs validation and
verification of a set of required properties. Different kinds of properties
are relevant to the Human Computer Interaction (HCI) area. Not all
of them may be verified using classical software engineering validation
and verification tools. Indeed, a large part of properties is related to the
user and to usability. Moreover, this kind of property usually requires an
experimental validation. This paper addresses the cooperation between
formal and experimental HCI properties validation and verification. This
paper focuses on a proof based technique (event B) and a MBS (Model
Based System) based technique (SUIDT). Moreover, this paper tries to
bridge the gap between both approaches in order to reduce the semantic
heterogeneity they lead to.

Keywords: formal methods, interaction properties verification and val-
idation, user task modelling and validation, event B method, CTT (Con-
curTaskTrees) language.

1 Introduction

Due to their wide class of possible application domains and to their presence in
a big number of systems, the development of User Interfaces (UI) involves more
and more methods, models, techniques, and processes leading to heterogeneous
developments. When designing a given UI, these methods and techniques are
set up at different development levels: design, specification, maintenance, etc.
with different objectives: validation, verification, testing, etc. The resulting ac-
tivities may be time consuming, inaccurate, cost effective and heterogeneous.
The usual development process consists first in building, at a given development
level, a model of the UI and second in performing validation, verification, test-
ing, experiments, etc. on this model. Techniques are used to express both the
model and the validation and verification procedure. Each technique is applied
where it is the most efficient. For example formal techniques are useful for formal
verification, proof, exhaustive testing by model checking etc. while experimen-
tal techniques are useful for testing, validation of user behavior, validation of
ergonomic properties, etc.

The use of different techniques lead to different models and modelling pro-
cesses and to a strongly heterogeneous development. At this stage, it becomes
quite impossible to assert that for given Ul requirements R, a property P es-
tablished on a model M of an Ul issued from R, is also valid on a model M’ of
an UI issued from the same R on which other properties may have been estab-
lished. There is a need of relating M and M’, and this relation cannot be defined
if M and M’ are not formally represented. For example, when M and M’ are
formalized, this relation can be identity, refinement, simulation, bi-simulation,
abstraction, etc. The problem of heterogeneity is more or less studied when the
techniques are formal techniques. Approaches based on category and institution
theories or on synchronisation of logics have been studied by the formal methods
community.

Nevertheless, in the HCI area, a crucial validation is the experimental vali-
dation. Indeed, this kind of validation is based on the user which plays a central
role. Other actors like ergonomists or psychologists are involved in this validation
activity. To perform such experiments, several experimental models have been
developed to conduct these experiments. Model Based Systems (MBS) are one
of the techniques which give an operational behavior to a Ul in order to perform
experimental Ul validation. Again, we are facing the problem of heterogeneity.

This paper suggests a general approach allowing to bridge the gap between
formal techniques and experimental techniques. Currently, these two techniques
are used in parallel or in a concurrent way in the development process but, they
are not based on a common formal model and therefore, there is no guarantee
that the results issued from formal verification on a formal model apply to the ex-
perimental model and vice versa: there is no guarantee that the results obtained
from experiments on an experimental model are valid on the formal model. One
solution is to use the final UI program as a central model and perform both for-
mal verification (e.g. reverse-engineering) and an experimental validation (e.g.
testing with user). This approach is heavy and costly since it requires to provide
the final application before performing validation.

~«——Formal Valid; Design and 7

| |
Formal
CTT user Tasks Description {—Generation M"g;'s"zi‘sed Verlicaton &l CTT user Tasks
; Techniques ;
! 7
Refinement.
Revision,
Abstraction,
Extension,

1 L]

|
| |
. Formal .
CTT user Tasks |«¥ieon &l pescription | —cenersion—s] MOJ€! Based | pveriicaion &, o1 yser Tasks
Viin | Dese System aiton
i echniques ;
| -~ |

Figure 1. Formal and experimental validation of HCI properties approach.

Our approach consists in performing both formal and experimental validation
earlier in the development process, see figure 1. By earlier we mean at any stage of

the development. The only necessary condition is to provide a formal constructive
model of the Ul to be developed.

This paper is structured as follows. Next section presents a brief overview of
the development of UL It focuses on both formal and experimental approaches.
Section 3 presents our approach for design and architecture using a formal ap-
proach based on event B. The formal and experimental validations and their
cooperation are discussed in section 4. A simple case study is used to illustrate
this approach. Finally, we conclude and give some future issues to this work.

2 Development of Ul

In general, two different development scenarios leading to different development
processes can be defined. Either (1) a set of properties is provided and the
specification and design conforming this property are built or (2) a construc-
tive specification is provided and the properties shall be checked on the built
specification. In both cases, properties validation is a fundamental activity. The
properties shall be validated by any specification or design that claim confor-
mance to the original requirements.

2.1 Design and architecture

As for classical program developments, the area of HCI software development
has seen a growing number of design and description techniques and notations.
Moreover, the involvement of different competencies like software engineering,
ergonomy and psychology has made these notations heterogeneous. Most of these
techniques are semi-formal and the graphical support is one of their important
characteristics since it represents the only integrated notation. We have chosen
to divide these techniques and notations into two parts:

- Design oriented notations and techniques allow to express the static structure
of the software implementing the described UI. These techniques and nota-
tions separate the UI from the core application. Examples of such techniques
are: PAC [Cou87], ARCH [BPR"91] and hybrid models [Gui95].

- Description oriented notations and techniques allow to describe the user needs
in terms of usability of an UI. They are usually issued from non computer
scientists (ergonomy and psychology for example). The majority of these
notations are user centered. The user needs are expressed by a set of tasks
that allow to reach a given goal from an input state. Examples of such
techniques are: MAD [SPG89], XUAN [GEM94] and CTT [PMGO1].

2.2 Properties in HCI : verification and validation

In the HCI development area, two categories of properties' have been distin-
guished by several authors [DFAB93] [DH95].

! Notice that in terms of UI developers, the words defining properties do not have
the same meanings like the ones used by formal methods users. These properties are
used to characterize the quality of UI software.

- Behavioral properties characterize the behavior of the UI about the user. In
this category of properties, we can distinguish completeness (achievement
of an objective in different manners), flexibility for information representa-
tion, task achievement (multiple users, state reachability, non preemptive
tasks), flexibility for information representation, properties related to time,
psychological and ergonomic aspects, and so on.

- Robustness properties are related to the reliability of the UI in particular and
of the system in general. Among these properties, we find properties related
to visualisation like observability, insistance and honesty.

The classical properties issued from software engineering are checked using the
well known verification techniques, but there is a need of experimental techniques
to check some of the user related properties. Moreover, the software engineering
techniques and the experimental techniques shall remain consistent with respect
to the specification and design of the system.

In the remaining of this paper, we focus on formal validation techniques for
the software engineering properties and on the MBS based techniques for the
experimental ones.

2.3 Formal approaches in HCI area

Among the several used formal description techniques in software engineering,
model oriented approaches play a major role in the HCI area. These methods are
based on the description of the model by a set of variables which are modified by
the operations and events of the model. Generally, these techniques are divided
into two categories: automatic proving by model checking and proof systems.
Both of these two techniques have been applied to interactive systems [CHI7].

The first category is based on the evaluation of logical properties on the
state transition system which is obtained from the evolving variables. Among
these techniques, we can find temporal logics, Petri nets and so on. In the area
of interactive systems, these techniques are assumed to have been used first
in formal verification of interactive systems [CH97]. For example, [PF92] uses
LOTOS to write interactors specifications, and analyses translated finite state
machines using ACTL (Action-based Temporal Logic). Model checking is also
used by [PBS95] who model user and system by the way of object-oriented Petri
nets ICO. More recently, [D’A98] used the Lustre dataflow language for the
automatic validation of user interface systems.

The second category is based on proof systems where the model is described
by variables, operations, events, temporal properties and invariants. The opera-
tions must preserve these invariants and a set of other properties (safety, liveness,
deadlock freeness etc.). To ensure the correctness of these specifications a set of
proof obligations are generated and shall be proved. According to its implemen-
tation, the proof system can achieve some of the proofs automatically. Among
these techniques, we can find Z, based on set theory [Spi88], VDM [Bjo87], based
on preconditions and postconditions calculus [Hoa69], and B, based on the weak-
est precondition calculus [Abr96] [Dij76]. In the HCI field VDM and Z have been
used for defining atomic structures like interactors [DH93a| [DH93b].

2.4 Experimental approaches in HCI area

Human computer interaction tools for building interactive software are numer-
ous. On the one hand, GUI-Builders? and tools like Visual Basic® or JBuilder®
do not support any kind of external model. On the other hand, Model-Based
tools® [Pue96| deal with models, but are not usable for actual software develop-
ment. MBS are the evolution of primitive User Interface Management Systems
(UIMS). [Sze96] gives a generic overview of architectural description of MBS
components.

First, the model is the most important component of MBS environments.
It represents all the different views of the interactive application and may be
decomposed into sub-models such as the domain, the dialog, and/or the presen-
tation models. Three abstraction layers are identified. (1) The higher layer is
made of the domain and task models. (2) The intermediate layer, the abstract
specification layer, may involve abstract interaction objets and abstract data. Fi-
nally, (3) the lower layer describes the concrete specification. Interaction objets
are concrete widgets that come from toolkits.

The second category of components of MBS environments is a set of tools
able to manage the different models. Modelling tools help the designer to edit
the models as MASTERMIND[SSC*95], or more user-centered, such as forms in
MECANO[Pue96]. Automatic design tools are able to complete and/or to con-
cretize some abstract specifications in order to produce new and more concrete
specifications as JANUS[BHKN96|. Implementation tools allow direct produc-
tion of code from the models as MOBI-D[PE98|. Validation tools are the re-
ally added value of MBS compared from non MBS approaches. Reasoning upon
model is easy, and enforcing properties through interactive systems is much
more easy when external models are available. A new tendency incorporates
formal approaches into MBS in order to get the benefits of formal validation.
PETSHOP[Nav01] and our suggested approach push forward this tendency.

2.5 Conclusion and our proposal

The problem of cooperation between formal and experimental approaches re-
main unsolved. Indeed, on the one hand formal approaches use abstract models
of the UT system and allow to check properties of this abstract model and/or
supports its refinement to code, abstraction, extension, etc. On the other hand,
experimental techniques use rapid prototyping approaches through MBS sys-
tems that allow to animate a given UI system. At this level of the paper, we can
conclude that:

1. usually the semantics of the formal and experimental techniques may be
different and therefore, there is no guarantee that the properties formally
checked apply on the developed MBS for experimentation and vice versa.
We are facing a classical problem of semantic heterogeneity in system devel-
opment: horizontal heterogeneity.

2 Graphical User Interfaces Builders
3 currently called MBS for Model Based System

2. the level of application of these techniques (either experimental or formal) are
different. While formal techniques may be applied at any allowed abstraction
level (due to their possibility to express different abstract models), experi-
mental techniques based on MBS systems usually require a more concrete
level near to programming level and toolkits. We are facing another kind of
heterogeneity related to the level of abstraction: vertical heterogeneity.

Our objective is to reduce the gaps resulting from these heterogeneities and
we suggest to use a common central formal model of the UT system. All the formal
and experimental validations are performed on this central model. Proceeding
this way contributes to reduce both vertical and horizontal heterogeneities. So,
our proposal consists in designing a central model for representing the core of
the UI system to be validated. We have chosen the B event based technique to
represent this central model of the system. Then, starting from this common
formal representation, we extract two models for formal (CTT with event B)
and experimental (CTT with SUIDT) validation (see figure 1).

2.6 The case study

We illustrate our proposal on a small case

study : French francs to euro conversion. Fig- =laix
ure 2 shows a potential user interface. The NFPE | oo vaiue
user enters in the left textfield component N { 7—‘

(tag 1) the value he/she wants to convert,
he/she makes the conversion by pushing either
the F' >> E button component (tag 2) t0 Fjgure 2. A potential UI for the
convert in euro, or £ >> F' button compo- (550 study.

nent (tag 3) to convert in French francs. The

converted value is displayed thanks to the right textfield component (tag 4).

3 Design and architecture.

This section reviews the use of the formal and experimental approaches applied
to design the UI to be validated later.

3.1 Formal approach

We use the B formal method to show that it is possible to handle a complete
UI formal development. This approach permits specifying, verifying and refining
the formal B specifications. Particularly, programs written in Ada/Tk have been
generated within this technique, demonstrating that our approach may be used
in real size systems [AAGJ98||AABGO03] [AABG™04].

The B approach. We use the B method [Abr96] in its event based definition.
It allows to describe distributed, parallel, multi-model, reactive and interactive
systems.

An event B model is composed of a set of atomic events described by partic-
ular generalized substitutions (assignment, ANY, BEGIN and SELECT). Each
event Ewv is fired if the guard P associated to this event is true. For the purpose
of this paper, we will only use the SELECT substitution Fv = SELECT P
THEN S END. The event FEv is fired and S is executed when P is true.
Moreover, a B model contains a set of properties i.e invariants, liveness, safety
and reachability properties which can be proved during the development thanks
to the embedded proof system associated to B and to the B tool supported by
Atelier B[Cle97]. Finally, B models can be refined into other B models which can
be enriched by new events and new properties. The refinement process leads a
developer to the final Ul design after finite refinement steps which provide differ-
ent abstract levels. The associated semantics is a trace based semantics where the
events are interleaved. Thus, there is no parallel firing of events (asynchronous
modelling).

Design and architecture with B. A set of events is described to define a
transition system that allows to represent the dialog controller of the UI to be
specified. In the case, of an interactive application described by several systems,
our approach uses the refinement technique to introduce the events of the com-
posed automata. Each system is then described progressively by refinements in
an incremental way. Robustness and reachability properties were expressed and
checked according to the B method.

The event B technique is applied for the design of the whole case study. We
do not describe this development in this paper, it can be found in [Bar03]. We
focus on the dialog controller which contains the set of events that are fired while
using the UI and do not present events related to other parts. A list of events
defining the automaton of the dialog controller of our case study is given below.

[Event Name | Description]

EvtciickQuitButton |Click on exit button
EvtciickQuit Application |Close exchange application
Evtrpputvaiue |Input any convert value
EvtpisplayVvaiue |Updating all views after a conversion
EvtciickEuro |Click on franc to euro button
EvtciickFranc|Click on euro to franc button

Below the ExzchangeController model obtained at a given refinement level is
described. It represents the decomposition of the whole application into a set of
events. The obtained model is sufficient to perform task validations presented in
this paper.

REFINEMENT

VARIABLES
but__quit_event, textfield input event, but_convert_event, but_euro_event,
but__ franc_event, exit_state, focus_state, convert_state, view_ state,
input_value, output_walue, intput_wvalue_display, output_value_display, ...

INVARIANT ...

ASSERTIONS ...

INITIALISATION ...

The first five variables (but quit _event, ..., but_franc_event) are used
to identify the user interactions which occur. For example, if but _ franc__event

is TRUE, the user has clicked on £ >> F button component. view _state is
used to know if the user interfaces are notified about modifications from the
functional core. The conversion state (no conversion, French franc conversion or
euro conversion) is returned by convert state variable. We are able to know
which user interface owns the current focus (exchange application or another
application). Finally, exit _state allows to know if the exchange application is
running or not.

The INVARIANT clause represents robustness properties and the AS-
SERTIONS clause ensures that the new events of the composed automata can
be fired (no deadlock). Their description can be found in [AAB04|[Bar03].

EVENTS
EUtClick‘QuitButton = EvtclickQu'itApplication =
SELECT SELECT

but quit event = TRUE A

focus__state = convertappl A

exit_state = FALSE A ...
THEN

but quit event := FALSE ||

exit_state := TRUE || ...
END;

but quit event = FALSE A
focus__state = convertappl A
exit_state = TRUE A ...

THEN
convert state := no_conversion ||
exit_state := FALSE | ...

END;

EUtDisplayValue =
SELECT

EUtInputValue =
SELECT

text field input event = TRUE A
input_value_display = FALSE A
but__convert_event = FALSE A

text field input event = FALSE
output _walue_display = FALSE
A view_state = TRUE A ...

THEN
view state := FALSE || ...
output_wvalue_display := TRUE ||
value__output :€ NAT ||
input_value_display := FALSE || ...
END;

view_state = FALSE N ...

THEN
output_wvalue_display := FALSE ||
textfield _input_event := FALSE ||
input_value_display := TRUE ||
input_value :€ NAT || ...

END;

EvtclickFrane =

SELECT
convert_state € {euro, franc} A
but euro event = FALSE A
but_franc_event = TRUE A
view_state = BOOL A

THEN
but euro event:= FALSE ||
but franc_ event := FALSE ||
convert_state := franc

END;

EvtclickBuro =

SELECT
convert_state € {euro, franc} A
but euro event = TRUE A
but_ franc_event = FALSE A
view_state = TRUE A

THEN
but euro event:= FALSE ||
but franc event := FALSE ||
convert__state := euro

END;

For example, EvtciickQuitButton is fired if but_quit_event is TRUE and
when the user clicks on quitbutton. This event modifies exit state value in
order to fire the Fvt_ ClickQuit Application which permits to close application.

EvtciickEuro and Evtciick Frane are fired when the user clicks on franc to
euro (but_euro_event = TRUEA...) or euro to franc (but_ franc_eventA...)
button.

3.2 Experimental approach

The experimental approach starts from a formally developed functional core
(FC). However, we do not expect that the user of the experimental tool becomes
a formal method specialist. The SUIDT environment hides most of the formal
aspects. We assume that the FC and the dialog controller, which has been spec-
ified and generated thanks to the formal approach, delivers the same services

through an API*. Indeed a get zzz and set zzz and run_evt API is built. Tt
is possible to automatically link such a B model to a tool that exploits function
signatures and formal specifications to help building interactive software.

In figure 3, we can see a screen capture of some SUIDT elements. On the
left (tag 1), the animator consists in a fully generated interface that allows
to interactively run the functional core. Every function and/or event of the
functional core is usable through button activation. When function parameters
(variables) are required, a dialog box appears to allow the user to enter them.
Functions are textually described and current state of the functional core can be
estimated through the result of all functions.

ENEENEILY

Figure 3. Experimental approach : SUIDT design point of view.

SUIDT covers the entire cycle of interactive development. It allows to in-
teractively build graphical user interfaces through a GUI-Builder to which it is
connected. Nowadays, it is related to the functional core through the domain
model. In the right part of the figure 3 (tag 2), we can see the GUI-Builder
view, where widgets can be dropped to build the concrete user interface. In the
center, as in any GUI-Builder, we can see a property window. It allows the user
to concretize the presentation. The last window associates events to functions
from the functional core and/or dialog controller.

Two major advantages can be outlined. First, at any time, we can switch
from design mode to test mode. The events of functional core can be fired from
the presentation or from the animator. Second, the system is based on formal
proved specifications to ensure that event firing are correct.

4 Validation and verification

This section shows how formal and experimental validations are performed on
the design presented section.

4.1 Formal approach

Our approach consists in describing the whole CTT operators using event B
models. Each decomposition of an upper task (a node) in the CTT tree corre-
sponds to an event B refinement. A CTT Task is described by an initial state

4 Application Program Interface

and a final state. It is refined into a sequence of basic events which lead from
the initial state to the final state. The refinement preserves all the properties of
the initial task. This process is repeated until basic events, present in the design
are reached. When the basic events of the dialog controller are reached by the
refinement, the validation process is completed. The full description of the CTT
language by event B models can be found in [AAB04]|[Bar03]. Two validation
aspects are addressed at this point. First, the final sequence of events shows
that there exists a sequence of basic elements implementing the upper abstract
task (the root task in the CTT tree). This is a task validation aspect. Second, if
one of the basic events of the dialog controller is not present and/or some proof
obligation related to the basic events cannot be proved, in the B models of the
design, then, we can assert that some of basic events are missing and/or wrongly
specified and therefore, the design shall be updated and/or completed. This is
a design and architectural decomposition validation aspect.

Application to the case study. In order to illustrate our approach, let us
develop an example of a generic task model described using CTT and built with
the CTTE tool [PMGO1] (figure 4). From a textual point of view, the hierarchical
decomposition of task T can be written as:

To =T7[> (T2 >> Tj)
T =Ty >>T5 >> 1Tk
Ts = Tr[|Tx

It uses three decomposition levels corresponding to three refinements. The
leaves of the task model are represented by the tasks Ty, 17, Ty, T and T35 and
they correspond to events of the dialog controller (see figure 4). To illustrate this
decomposition process, we give below the first refinement level for task Tj.

REFINEMENT T,
REFINES Main
INVARIANT
StateDesTy € (0..3) A StateLoopTy € NAT A StartTy € {0,1} A ...
ASSERTIONS
)
INITIALISATION
StateDesTy := 3 || StartTy :=0]| ...
EVENTS
Evtg = EvtrnitLoopl = Evtroopt =
SELECT SELECT SELECT
G('J A StateDesTy =3 A StateDesTy = 3 A
StateDesTy = 0 StartTy =0 StateLoopTy > 0 A
THEN THEN GrLoop N StartTy =1
S(') StateLoopTy :€ NAT THEN
END; || StartTy :=1 StateLoopTy := StateLoopTy — 1 || Sroop
END; END;
Evt) = Evty = FEvtg =
SELECT SELECT SELECT
Gy A StartTo =1 AN Ga A Gs A
StateDesTy = 3 A StateDesTy = 2 StateDesTy = 1
StateLoopTy = 0 THEN THEN
THEN S5 Ss |
StateDesTy := 2 || || StateDesTy :=1 StateDesTy := 0
S, END; END; ...
END;

The S; event B substitutions and the whole properties in the invariant and
assertions clauses are not given to keep this paper short enough. The variable
StateDesTy plays the role of a variant ensuring the right events firing order. The
expression StateLoopTy :€ NAT allows to initialize the loop variant with any
natural number corresponding to the arbitrary iteration (7).

This CTT task model is translated into B event in a set of property preserving
refinements. Three refinement steps which correspond to each level of the tree
task model are necessary. The first B model describes Tj. The first refinement
decomposes this task into (77)[> T> >> T3 and the second refinement describes
the refinement of (T1)* by task (T3 >> Ty >> T5)*. Finally the last refinement
describes the refinement of Ty by Ts[|T7.

Notice that we could immediately de-

. .. Exchange ication
scribe only one decomposition level for Tj. T
This decomposition of Ty is the one we O—r—F—>—%

. . . an: * Exit Exit Application
could describe in formal techniques that T
do not support hierarchical structuring nor [> o > x
oy Input Value to Convert Choice of Conyersion Read Quput Value

refinement nor decomposition operators. T4
As a consequence, dealing with such com- E 0 B
plex expressions makes the proof hard. How- ConvertinBure Convert it Franc

ever, one could also use a binary decompo-
sition following the structure of the CTT
operator, but it will need more refinements
steps.

Figure4. Exchange application’s
CTT task model.

4.2 Experimental approach

User validation with the experimental approach leans on the formal specification
issued from the previously defined formal approach. SUIDT incorporates task-
based analysis into our system by the way of a two level task model based on
the CTT language. These two levels correspond to the intermediate and to the
lower levels of the generic MBS architecture. They allow to take into account
the user needs and to realize a successive validation in two steps.

Functional Validation. The intermediate level of a task model allows to val-
idate the user point of view on the functional core features. In fact, in SUIDT,
this validation level corresponds to higher level models and allows modelling the
goals of the user over the interactive application. More concretely, SUIDT links
together the domain model and the task model.

The dynamics of the task model is based on precedence constraints (temporal
operators), on the guards (playing the role of pre-conditions) of the functional
core functions and on the task post-conditions which permit to modify the state
of the functional core expressed at the leaves of the task model.

At this intermediate level of the task model, two main results are obtained.
On the one hand, it is possible to test the functionalities of the functional core
in order to evaluate if the user needs are satisfied at any abstraction level of
specification. On the other hand, it is possible to record scenarios for further
tests of integration.

User Interface Validation. In a second step, a graphical interface, designed
thanks to a classical GUI-Builder, is associated with the intermediate task model
level in order to obtain a lower level model. This model is a refinement of the
state of the previous task model, where every interactive or application task of
the CTT is described in terms of concrete interaction or application objects.
Refinement of a state consists in adding other state variables related to interac-
tion (the event B dialog controller of section 3.1). Since we deal with a single
environment, it becomes possible now to relate these interactive or application
tasks of the CTT to the concrete GUI level.

Figure 5. Experimental approach : SUIDT validation and verification point of view.

As result of the SUIDT approach, every model is an executable model since
the functional core plays a central role. In fact, every model is related to the
functional core, which allows to run an actual program each time the task model
is run. Thus, the running context (during test phase) is not re-initialized or lost
when the designer switches to the design mode. So, it is easier for him/her to
validate the prototype. Moreover, as for tools like MASTERMIND or Petshop,
our application allows to test the program under construction.

In figure 5, we can see a view of the simulation tool. On the tag 1, the
simulator tool permits to animate the task model in concordance with the user
interface (tag 2). The designer can directly test the interactive application either
by interaction on user interface (tag 2) or by animation of the task model (tag 1).

Application to the case study. To illustrate our experimental approach for
the validation and verification process, the SUIDT approach is applied on the
case study. In the first place, the SUIDT approach allows to check some of the
properties available in the formal approach. We can verify with a simulator tool
(available on the SUIDT tool) the correctness of the task model (reachability
for example). More concretely, in this case study, thanks to the state of the
conversion button (disabled or not), we can check if the convert interaction is
available or not. The state variables of the dialog controller can be observed.
Meanwhile, this experimental technique is useful for validation of user be-
havior and validation of ergonomic properties. We could have checked the user
behavior by spying the users with a camera device. From the analysis (need of
psychologist expertise) of the recording step, we could updated the UI design

in setting the interface design. The execution of the application makes it possi-
ble to apply different ergonomic criteria [Van94] to check ergonomic properties.
For example verifying if the coma for the euro or French franc digit is satisfi-
able. This kind of properties can not be checked using formal method, therefore
experimental validation is required as well as formal validation.

5 Conclusion

We have shown in this paper that it is possible to perform formal and experimen-
tal UI validation starting from a single and common core (kernel) model. This
model is a formal representation of the dialog controller of an UL The benefits
of this approach can be summarized as follows.

First, the wide spectrum of HCI properties is covered using this approach.
Indeed, not all the properties can be checked using a single approach. The fact
that formal and experimental validation are performed simultaneously and at the
same abstraction level ensures the properties preservation. The use of different
validation techniques contributes towards a consistent cooperation of hetero-
geneous techniques. Moreover, since one single formal model is used for both
formal and experimental validation, there is no doubt about the appliance of
the validation and/or invalidation properties. Indeed, both formal and exper-
imental properties are checked on the central model. The proposed approach
preserves consistency of the set of properties. This result addresses the problem
of horizontal heterogeneity.

Second, the model of the dialog controller may be formalized at different
abstraction levels provided that the modelling language allows these abstrac-
tion levels. This is the case for event B where refinement allows to go from one
abstract level to a less abstract one (may be a program). Validation can be per-
formed at any development stage and particularly at an early development step
allowing savings at development. This result is contribution to solve vertical
heterogeneity.

Finally, this approach is tool supported. Indeed, the Atelier B tool and the
SUIDT model based tool are used to illustrate this approach. We are aware that
the presented case study is simple, but it shows its feasibility, its extensibility
and the possibility to scale up since the developed approach is generic.

This approach can be easily extended in order to handle testing of formal
specification at any abstract level. A first step was described in [AABGT04].
Moreover, when other MBS are used for experimentation, it seems that it is
possible to check the plasticity of Ul and extract sufficient logical conditions, in
the form of properties, that make it possible to use a given Ul presentation that
uses the same dialog controller in place of another one.

References

[AAB04] Yamine Ait-Ameur and Mickagl Baron. Formal validation of ctt user task
models using the proof based formal event b method. Submitted for journal
publication in Interacting with Computers. Journal of Human-Computer
Interaction, 2004.

[AABGO3]

Yamine Ait-Ameur, Mickaél Baron, and Patrick Girard. Formal valida-
tion of hci user tasks. In Al-Ani Ban, Arabnia H.R, and Mum Youngsong,
editors, The 2003 International Conference on Software Engineering Re-
search and Practice - SERP 2003, volume 2, pages 732-738, Las Vegas,
Nevada USA, 2003. CSREA Press.

[AABG"04] Yamine Ait-Ameur, Benoit Bréholée, Patrick Girard, Laurent Guittet,

[AAGJ98]

[Abro6]
[Bar03]

[BHKN96]

[Bjo87]
[BPR'91]

[CH97]

[C1e97]
[Cou87]

[D’A9S]

[DFAB93]

[DH93a]

[DH93b|

[DH95]

and Frangis Jambon. Formal verification and validation of interactive
systems specifications. from informal specitications to formal validation.
In Conference of Human Error, Safety and Systems Development, HESSD,
Toulouse, 8 2004.

Yamine Ait-Ameur, Patrick Girard, and Francis Jambon. Using the b for-
mal approach for incremental specification design of interactive systems.
In Stéphane Chatty and Prasun Dewan, editors, Engineering for Human-
Computer Interaction, volume 22, pages 91-108. Kluwer Academic Pub-
lishers, 1998.

J.R. Abrial. The B Book. Assigning Programs to Meanings. Cambridge
University Press, 1996.

Mickaél Baron. Vers une approche sire du développement des Interfaces
Homme-Machine (Thesis). Thése de doctorat, Université de Poitiers, 2003.
H. Balzert, F. Hofmann, V. Kruschinski, and C. Niemann. The janus appli-
cation development environment-generating more than the user interface.
In Jean Vanderdonckt, editor, Computer-Aided Design of User iterface
(CADUI’96), pages 183-206, Namur, Belgium, 1996. Presse Universitaire
de Namur.

D. Bjorner. VDM a Formal Method at Work. In Springer-Verlag. LNCS,
editor, Proc. of VDM FEurope Symposium’87, 1987.

1. Bass, R. Pellegrino, S. Reed, S. Sheppard, and M. Szezur. The arch model
: Seeheim revisited. In User Interface Developper’s Workshop, 1991.

J.C. Campos and M.D. Harrison. Formally Verifying Interactive Systems:
A Review. In Eurographics Workshop on Design, Specification, and Veri-
fication of Interactive Systems (DSV-15’97), pages 109-124. Springer Ver-
lag, 1997.

ClearSy. Atelier b - version 3.5, 1997.

J. Coutaz. Pac, an implementation model for the user interface. In
IFIP TC18 Human-Computer Interaction (INTERACT’87), pages 431-
436, Stuttgart, 1987. North-Holland.

B. D’Ausbourg. Using Model Checking for the Automatic Validation of
User Interface Systems. In Eurographics Workshop on Design, Specifica-
tion, and Verification of Interactive Systems (DSV-15°98), pages 242-260.
Springer Verlag, 1998.

Alan Dix, Janet Finlay, Gregory Abowd, and Rusell Beale. Human-
Computer Interaction. Prentice Hall, 1993.

D. Duke and M. D. Harrison. Abstract Interaction Objects. In Proceedings
of Eurographics conference and computer graphics forum, volume 12, pages
25-36, 1993.

D.J. Duke and M.D. Harrison. Towards a Theory of Interactors. Tech-
nical report, Amodeus Esprit Basic Research Project 7040, System Mod-
elling/WP6, 1993.

D Duke and M. D. Harrison. Event model of human-system interaction.
IEEE Software, 1(10):3-10, 1995.

[Dij76]

[GEM94]

[Gui95]

[Hoa69]
[Nav01]

[PBS95]

[PE9S]

[PF92|

[PMGO1]

[Pue9s)

[SPG89]

[Spi8s]

[SSCT95]

[Sze96]

[Van94]

E.W. Dijkstra. In A Discipline of Programming. Prentice-Hall Englewood
Cliffs, 1976.

Phil Gray, David England, and Steve McGowan. Xuan: Enhancing the
uan to capture temporal relation among actions. Department research
report 1S-94-02, Department of Computing Science, University of Glasgow,
February 1994. Modifications par rapport &8 UAN : - Aspect symétrique
USER/SYSTEM - Contraintes temporelles - Paramétrisation des taches -
Pré et Post-conditions.

Laurent Guittet. Contribution a l’Ingénierie des Interfaces Homme-
Machine - Théorie des Interacteurs et Architecture H4 dans le systéme
NODAOQO. Doctorat d’université (phd thesis), Université de Poitiers, 1995.
C.A.R. Hoare. An Axiomatic Basis for Computer Programming. CACM,
12(10):576-583, 1969.

David Navarre. Contribution & lingénierie en Interaction Homme-
Machine. Doctorat d’université (phd thesis), Université Toulouse 3, 2001.
P. Palanque, R. Bastide, and V. Sengés. Validating Interactive System
Design Through the Verification of Formal Task and System Models. In
IFIP TC2/WG2.7 Engineering for Human-Computer Interaction, pages
189-212, 1995.

A. Puerta and J. Eisenstein. Interactively mapping task model to interfaces
in mobi-d. In Panos Markopoulos and Peter Johnson, editors, Furographics
Workshop on Design, Specification and Validation of Interactive Systems
(DSV-15798), volume Proceedings, pages 261-274, Abingdon, UK, 1998.
F. Paterno and G. Faconti. On the LOTOS Use to Describe Graphical
Interaction. In Proceedings of HCI, People and Computer, pages 155-173.
Cambridge University Press, 1992.

F Paterno, G Mori, and R Galimberti. Ctte: An environment for analysis
and development of task models of cooperative applications. In ACM CHI
2001, volume 2, Seattle, 2001. ACM/SIGCHI.

Angel Puerta. The mecano project : comprehensive and integrated sup-
port for model-based interface development. In Jean Vanderdonckt, editor,
Computer-Aided Design of User interface (CADUI’96), pages 19-35, Na-
mur, Belgium, 1996. Presse Universitaire de Namur.

D L Scapin and C Pierret-Golbreich. Mad : Une méthode analytique de
description des taches. In Collogue sur ’Ingénierie des Interfaces Homme-
Machine (IHM’89), pages 131-148, Sophia-Antipolis, France, 1989.

J M. Spivey. The Z notation: A Reference Manual. Prentice-Hall Int.,
1988.

P. Szekely, P. Sukaviriya, P. Castells, J. Muthukumarasamy, and
E. Salcher. Declarative interface models for user interface construction
tools : the mastermind approach. In Leonard J Bass and Claus Unger, ed-
itors, IFIP TC2-WG2.7 Working Conference on Engineering for Human-
Computer Interaction (EHCI’95), pages 120-150, Grand Targhee Resort
(Yellowstone Park), USA, 1995. Chapman and Hall.

P. Szekely. Retrospective and challenge for Model Based Interface Devel-
opment, pages 1-27. SpringerComputerScience. Springer-Verlag, Namur,
Belgium, 1996.

Jean Vanderdonckt. Guide ergonomique des interfaces homme-machine,
volume 1. Presses Universitaires de Namur, 1994.

