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Abstract: We propose a model oriented scheduling methodology for highly coupled
real time applications. We show that variations in the computation times of tasks
may hazard the safeness of the controlled process. For the sake of reliability we take
conditional instructions of tasks’ code explicitly into account, in order to reduce the
potential failures. We fisrt adapt the task’s temporal model to this context, then
we model applications using autonomous Petri nets which run under the earliest
firing rule with terminal marking set. We define two concepts of schedulability:
the local schedulability and the global one and we define the concept of scheduling
graph. Finally, we show how to obtain a scheduling graph from the graph of global
schedulability.
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1. INTRODUCTION

A constantly increasing number of either au-
tonomous or assisted processes (cars, nuclear
power station, plane, space probe) are controlled
by real time systems interacting with their own
environment. Yet these systems are not safe from
failures that may put human beings’ lives in dan-
ger or jeopardize substantial economic value. That
is why, it is necessary to develop methods to
minimize those risks by validating the real time
applications that control the processes. In most
cases, the failures come from disregarded tempo-
ral constraints. Indeed, a real time application
is defined as a multitask application in which
each task is subjected to the inherent temporal
constraints of the controlled processes. Thus, the
main problem will be to choose a scheduling policy
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which would distribute each active job of task on
the processor(s) so that the temporal constraints
are respected. Two techniques can achieve that.
The first one consists in executing a scheduling
algorithm, which aim is to define at every moment
the task to execute: it is the online scheduling.
The second one consists in a previous analysis of
the application and of the computation of valid
schedules of the task executions within a temporal
window of suitable size. Whatever the method, the
schedulability analysis relies on a temporal model
of the task (Liu and Layland, 1973; Stankovic et
al., 1998) allowing to represent each task by its
temporal constraints: Ri, the date of the first ac-
tivation, Di the relative deadline of the execution
of the task, Ti the period and Ci the computation
time of the task calculated on the target hardware.
Many works have made validation tools achievable
by relying on heterogeneous scheduling contexts:
hard and soft temporal constraints, the presence



of real time primitives (resources and synchro-
nizations which make the scheduling problem NP-
Hard (Dertouzos and Mok, Dec. 1989), the reduc-
tion of response time, of jitter etc). Yet, a very few
tools are actually used or usable in the industrial
world. Indeed, the inaccuracy of execution time
due to both the task’s code itself and the processor
that executes it, questions the relevance of the
classic tools of schedulability analysis. It is the
reason why we propose an off-line schedulability
analysis methodology that takes the fluctuations
of duration of tasks into account by relying on
works that deal with the determination of the
worst case of execution times. For that purpose,
we have to extend the temporal model of Liu
Layland in order to take the variations coming
from the conditional instructions of the tasks (an
important cause of variation) into account. We
used the modeling of real time application by Petri
nets (Choquet-Geniet et al., 1996; Grolleau and
Geniet, 2000) to analyze the feasibility of highly
coupled applications (i.e. applications with a lots
of resources and synchronizations) , then we show
how to describe valid behaviors of the application,
by means of scheduling graphs and finally, we
explain how to get those graphs from the analysis
of the Petri Net.

In a first part, we look into the difficulties of
computation time estimation and the scheduling
problems that it generates. Then in a second part,
we introduce a new temporal model of task which
takes the conditional instructions of the code into
account and we reformulate the scheduling prob-
lem according to this new context. In a third part,
we present the modeling of the application by
autonomous colored Petri nets under the earliest
firing rule and we show how to extract a schedul-
ing graph describing a feasible behavior of the
application.

2. SCHEDULING INSTABILITY
PHENOMENA

In most real time applications, to find out a
scheduling policy respecting constraints of the
system proves to be a major issue. As an answer
to that problem, we generally rely on a temporal
model (Liu and Layland, 1973) that describes the
temporal constraints of each task of the applica-
tion in order to find and then validate a scheduling
policy. But among the parameters that model a
task, the execution time is probably the most
complex to estimate. Those durations enable us to
quantify the time allotted to the CPU to process
each job of the tasks. It is thus an upper bound
which is reckoned up from the task’s program code
and the features of the hardware. Each tool of
scheduling analysis being based on a pattern of

the tasks, that upper bound (Worst Case Execu-
tion Time) represents then an input data whose
accuracy of estimation will determine the quality
of the scheduling policy’s validation. Therefore,
researches on the WCET must take the two fol-
lowing preconditions into account (Puschner and
Koza, 1989). First, the reckoned WCET must be
safe, ie. it has to be an upper bound whatever the
execution context may be. Second, the estimation
of WCET has to be as accurate as possible or in-
stability phenomena may occur as shown in figure
1: the reduction of the duration of one of the job
of the task can cause a temporal fault in spite of
the validation of the scheduling policy (Deadline
Monotonic 3 ). This kind of instability phenomena
had been highlighted by (Graham, 1969).
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Fig. 1. An example of a scheduling failure due to a
computation time reduction. If task 3 has an
effective computation time equal to 5 instead
of 6, task 1 can get the resource at time 7
before task 2 is released, causing task 2 to
miss its deadline.

However the current methods of calculation of
WCET do not all take the importance of real time
primitives into account. In a context of highly
coupled application, the traditional estimation of
the WCET does not always correspond to the
paths of execution where all the real time prim-
itives are activated. However, as far as the anal-
ysis of schedulability is concerned, it is necessary
to consider all the real time primitives that can
occur. Consequently it is essential to consider
the estimation of the WCET, to which should
be added every real time primitive that can be
activated in the various paths of the execution of
the task. It seems then obvious that the resulting
temporal model will be strongly over constrained
what reduces the number of potential schedul-
ing and complicates validation. To overcome that
problem we suggest a method that allows to take
the various paths of execution of a same task
into account in order to isolate each real time
primitive. Thus a task will be modeled for the
analysis of schedulability by a set of execution
paths. The existence of these paths is partly due
to the different forms of conditional instructions
present in the source code. That is why we propose
to extend the temporal model of Liu Layland in

3 DM (Deadline Monotonic) refers to the priority alloca-
tion algorithm: the task with the shortest deadline (the
smallest value of D) is assigned the highest priority.



order to explicitly consider the IF THEN ELSE
relevant instructions that is to say those which
make it possible to isolate temporal primitives or
sufficiently different execution times. Thereafter
we will more specifically study the influence of
the conditional tests on the schedulability analysis
while considering that the methods of WCET
analysis allow to obtain our model of conditional
task.

3. CONDITIONAL TASKS AND
SCHEDULING

3.1 The extended temporal model

We consider real time applications compounded of
synchronous periodic tasks (ri = 0). However let’s
point out that our method can take asynchronous
periodic tasks into account, but it does at the cost
of a combinatory explosion as far as the accessibil-
ity graph construction and the scheduling graph
extraction are concerned. Optimization criteria
need to be found to solve the problem.

Our objective is to refine the functional block de-
scription in order to take conditional instructions
into account, which requires to modify the tem-
poral model of tasks. We extend the Liu-Layland
model in order to describe all the durations of
the conditional branches: a task is represented by
three deterministic parameters (the date of the
first release, the relative deadline and the period)
and by a multiset E of durations, each one corre-
sponding to a possible behavior of the task. This
new pattern of tasks is very close to the multi-
frame model of (Mok and Chen, 1996). However,
unlike the later, we don’t need the knowledge of
the series of execution time for each task since
each job of task may be processed with whatever
execution time of the multiset. Let us note that if
there is no conditionals instruction, the multiset
E contains a single duration, which corresponds
to the usual model.

In this temporal model, we have left the associ-
ation between the real time primitives and the
execution times aside. However, this information
is not lost since it will be entirely integrated in
the modeling of the application by Petri nets.

3.2 Scheduling graph

Considering on line scheduling strategies, the
presence of conditional instructions matters only
for the application validation, but most of these
on line algorithms can be used without any adap-
tation even when conditional instructions are in-
volved. On the contrary, off line scheduling strate-
gies must be adapted. Indeed, if we consider tasks

without conditional statements (durations are de-
terministic), the objective of an off line scheduling
strategy is to build one or more valid schedules.
This cannot be used if conditional statement are
involved, because the various choices in condi-
tional instructions will induce different behaviors
of the application, which could not be described
in a single schedule. In order to describe the be-
havior of a conditional application, we introduce
scheduling graphs: a scheduling graph is a graph
where each branch corresponds to a schedule of
the application obtained by considering for each
task only one of their paths. We call split sub-
application each of these applications.

We then reformulate the scheduling problem, and
define two concepts of schedulability:

• An application is said to be locally schedu-
lable if each of its split sub-application is
schedulable, i.e. there is for each one of them
a valid schedule,

• An application is said to be globally schedu-
lable if there is at least one valid scheduling
graph, i.e. all deadlines are met whatever the
conditional choices.

A globally schedulable application is obviously
locally schedulable (but the converse does not
hold if the application uses real time primitives).
This comes from the fact that each branch of a
scheduling graph is a valid schedule for one split
sub-application.

4. MODELLING BY MEANS OF PETRI NETS

The schedulability analysis methodology which we
proposed relies on (Choquet-Geniet et al., 1996;
Grolleau and Geniet, 2000; Grolleau, 1999). It
consists in modeling the application by a con-
strained marking colored Petri nets, under the
earliest firing rule with terminal marking set.
The feasible schedules are then obtained through
the construction of the state graph. The model
includes two parts: the task system which is
obtained through a classical modeling of the
functional description of the application, and a
clock system which models time (see figure 2).
We have adopted a discrete modeling of time
(Kopetz, 1992; Fohler, 1994): an external clock
(RTC ) counts the time in each place Timei, which
acts as a local clock used to release periodically
the related tasks. Let us note that each transition
corresponds to an action of duration one time
unit, and that all transitions of the task system
are in competition for obtaining the processor. It
follows that, according to the earliest firing rule,
at each time, one single valid transition is fired.
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Fig. 2. Petri Nets model for an application of 4 tasks with a conditional task. The links toward processor
are not shown.

It results that only conservative schedules 4 can
be produced. But for the sake of scheduling power
since there is no optimal conservative scheduling
algorithm in a scheduling context with resource
and synchronization, we need also to consider
non work conserving schedules. For that purpose,
we introduce in the task system a further task,
called idle task, which models the inactivity of the
processor. When transitions of this task fire, the
processor remains idle what allows to produce non
work conserving schedules too. The computation
time of the idle task is P(1-U) 5 . Morever, the
knowledge of the number of idle times during the
metaperiod P help us for the detection of temporal
fault during marking graph construction. When
conditional tasks are involved, the utilization fac-
tor U is no more deterministic and the duration
of the idle task becomes variable too. In order
to match the previously used rule (a transition
of the task system fires each unit time), we have
adapted our model so that the duration of the
idle task could be dynamically modified during
the simulation of the Petri Nets. To allow these
time units exchanges, the idle task is represented
by a special place, holding as many tokens as idle
time has been assumed within the metaperiod.
For that purpose, we have chosen a method which
has the advantage to minimize the number of
backtracking operations during the construction
of the accessibility graph. It consists in assuming

4 in a conservative (or work-conserving) schedule, a task
never intentionally waits
5 where U is the processor utilization factor of the appli-
cation and P is the LCM of the periods of the tasks
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Fig. 3. Idle time exchange between the Idle task
and a Conditional task with maximal dura-
tion policy. The multiset of the Conditional
task is E={6,7,5}, so the number of token of
the Idle task is calculated with max(E)=7.
Each computation of the Conditional task
with a different duration increases the num-
ber of idle times.

that the maximal durations are always chosen
within the multiset. Consequently, the duration
of the idle task is assumed to be minimal. When
a conditional task is computed, if the conditional
test doesn’t correspond to the maximum execu-
tion path, the duration of the idle task has to be
increased of the difference between the worst and
effective duration (cf. figure 3).



5. OFF-LINE ANALYSIS

5.1 Construction of global accessibility graph

Once the model constructed, we are interested in
its exploitation in order to obtain valid scheduling
graphs. From this Petri net, we only need to build
a P depth final marking graph since the appli-
cation is cyclic with a period of P (metaperiod).
This means that, we have the same states at
a t-depth and at t+k×P (k>0) in the marking
graph. We then remove from the marking graph
all states without successor, of depth less than
P. They correspond to states of the application
where fatal scheduling decisions have been made:
temporal faults can no more be avoided. We
call accessibility graph the reduced graph which
contains only valid states. This graph contains
all the possible valid schedules for the different
splitted sub-applications. It can thus be used for
studying the local schedulability. For the sake of
global schedulability, the graph must be further
reduced; indeed, we must insure that at each node,
when a edge labelled by one alternative of the
conditional statement exists, the edge labelled by
the other alternative exists too. This means at a
given depth in the graph, if there is a conditional
test then it must exist a succesion of states until
the depth P, corresponding to the metaperiod of
the application, independently of the positive or
negative result of the test. In this case only, the
global schedulability is considered and scheduling
graphs can be extracted. In order to purge the
marking graph from lonely alternative paths, the
basic idea is that each time, a choice is made of
a path in a task, the choice of the other path
corresponding to the other alternative in the con-
ditional instruction, must be possible. Else, the
first path must be removed. This operation can
be made directly during the construction of the
accessibility graph if we chose the construction in
depth methods. The resulting graph is then called
a global accessibility graph.

5.2 Extraction of a scheduling graph

The last step of the analysis consists then in the
extraction of the scheduling graphs. The main
difficulty is to deal with the size of the schedul-
ing graph which depends on the number of the
possible execution paths of the tasks.

Property: We consider n tasks defined by
< ri, Ei, Di, Ti > for 1 < i < n, which do not
use real time primitives, so:
• The number of possibles behaviors in a
scheduling graph is

∏n
i=1(#Ei)

P
Ti ,

• The global accessibility graph which con-
tains all of the possible scheduling graphs
is entirely hold in a hyper-cube which has∑n

i=1(Φ(Ei)) + 1 dimensions,
# represents the number of elements of the mul-
tiset Ei,
Φ(Ei) is the maximum number of interleave con-
ditional tests from all the behaviors of the task
i.

Nevertheless, we can note that in the case of
highly coupled applications, the size of the graph
decreases significantly. For a better result, we can
choose to act in two ways. First, when we build
the global accessibility graph, we can apply some
constraints like successor constraints or define a
threshold for jitter or response time for a task
or a set of tasks (Grolleau, 1999). These kind of
criterion are called a priori constraints and allow
us to reduce the size of the global accessibility
graph which is the most important drawback of
our method. The second method is used to choose
from this reduced graph a optimized scheduling
graph with some precise criterion : the better
response time, the minimum jitter...(cf. figure 4).
Anyway, both methods must be refined in the
case of conditional task. When a task could have
several behaviors, we can choose for example to
only take into account the best response time for
all of the different behaviours or at the opposite
the worse. The result will be surely different. By
default, we have choosen to consider the most
pessimistic way for all the criterion.

Now that we can schedule periodic tasks with vari-
able duration and by that way control the number
of idle time in a scheduling graph, we have the
possibility to optimize their position in the sched-
ule. In the case some aperiodic tasks occur, we
can look into the positionning of each idle time to
simulate the on-line algorithms like Polling Server,
Deferrable Server, Priority Exchange (Lehoczky et
al., 1987)... It can be made by a special criteria
that uses a weighting function (like sinusoidal
function with a period equal to the period of the
simulated server). It forces each idle time to occur
periodically and then may reduce their response
time. We can then extract scheduling graphs that
can be used for mixed scheduler in the case of both
periodic and aperiodic tasks occurrences.

6. CONCLUSION

We have proposed a method for scheduling analy-
sis of highly coupled real time applications which
uses a Petri net modeling. We have shown that the
variations of execution time have to be taken into
account. Indeed, the use of the WCET does not
give inevitably good results. The indeterminism
of the current processors, the use of the optimized
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compilers, the programming with particular in-
structions which increases the number of different
behaviors from each task, makes it impossible to
get an exact measurement of the execution times
(Puschner, 2002). In spite of these difficulties,
the analysis of WCET and schedulability strongly
interests industrialists (Nielsen et al., 2002). It is
the reason why we have to try to benefit from
works on the WCET to integrate in our method
the relevant conditional instructions that can be
found in the code of tasks. After extending the
temporal model of (Liu and Layland, 1973) to
conditional tasks, we have defined two concepts
of schedulability, coming directly from the im-
plications of conditional tasks: local and global
schedulability. We have shown that there is no
equivalence between both. In addition, we have
adopted the concept of idle task, because the
duration of this task is closely related to the dura-
tion fluctuations of the application tasks. We have
proposed a modeling of the idle task that allows
on one hand a production of non work conserving
schedules and on the other an optimization in the
construction of the marked graph (the idle task
enables to considerably reduce the number of non
valid states). We have shown how to extract a
scheduling graph with some optimization criteria
for response time or jitter minimizing. The next
step of this work is to extend our method to spo-
radic tasks, induced by conditional blocks within
which new tasks are requested. Our method must
be adapted in order to take into account this new
kind of tasks model. Our goal is then, thanks to
efficient idle time managing, to define a mixed
scheduler for both periodic and sporadic tasks.
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