
A Topological Entity Matching Technique 
 for Geometric Parametric Models 

Dago Agbodan David Marcheix Guy Pierra Christophe Thabaud  
Laboratoire d'Informatique Scientifique et Industrielle (LISI) 

Ecole Nationale Supérieure de Mécanique et d'aérotechnique (ENSMA) 
Téléport 2 — 1 avenue Clément Ader — BP 40109 — 86961 Futuroscope Chasseneuil cedex — France 

(+33/0) 5 49 49 80 63 

{agbodan | marcheix | pierra | thabaud}@ensma.fr 
 
 
 

Abstract 
Nowadays, many commercial CAD systems support 
history-based, constraint-based and feature-based 
modeling. Unfortunately, most systems fail during the 
reevaluation phase when various kind of topological 
changes occur. This issue is known as “persistent 
naming” which refers to the problem of identifying 
entities in an initial parametric model and matching them 
in the reevaluated model. 
We propose in this paper a complete framework for 
identifying and matching any kind of entities based on 
their underlying topology. The identifying method is based 
on the invariant structure of each class of form features 
and on its topological evolution. The matching method 
compares the initial and the reevaluated topological 
histories. For each construction step, the matching 
consists of two phases. In the local phase, two measures of 
topological similarity are computed between any couple 
of entities occurring respectively in the reevaluated model 
and in the initial model. In the global phase, the final 
matching is defined as a binary relation that maximizes 
the topological similarity between the matched entities of 
both models. 
The naming and matching method has been implemented 
using the 3D modeling application development platform 
Open Cascade. 
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1. Introduction 
 

Static solid modeling systems (B-rep, CSG, etc.) largely 
used in the Computer Aided Design (CAD) area are more 
and more replaced by dynamic modeling systems (known 

as history-based, constraint-based and feature-based 
modelers) which allow both to express and to record 
conceptual designs and “design intents”. These dynamic 
modeling systems are often gathered under the term of 
parametric modeling systems. A parametric model is 
composed of a representation of an object, of a set of 
parameters (characterizing the object) and of a list of 
constraints (equations or functions) applied to the object. 
By extension, a parametric modeler is a system for 
geometric design which preserves not only the explicit 
geometry of the designed object (called parametric object 
or current instance), but also the set of constructive 
gestures used to design it (called design process or 
parametric specification). 
This two-fold data structure enables rapid modifying by 
reevaluation. However, when reevaluation leads to 
topological modifications, references (between entities) 
used in the constructive gestures are difficult to match in 
the new context, giving results different from those 
expected. A persistent naming system, robust regarding 
some topological modification, proves useful to preserve, 
from a reevaluation to another, references between 
topological entities. It is the problem known as “persistent 
naming” or “topological naming” [8, 4]. 
This paper is structured as follows. In section two, we 
give a detailed account of the major issues about naming 
in parametric modeling. The third section discusses some 
pre-existing works, essentially two of the main works 
about topological naming. Each of these works only 
partially addresses these issues. We introduce, in section 
four, an alternative approach.  
 

2. Issues 
 

The main problem for parametric reevaluation is to 
characterize geometric and topological entities of a 



parametric model. Characterizing entities consists in 
giving them a name at design time and “finding them” 
again at reevaluation time (i.e. matching entities of the 
initial model with entities of the reevaluated model.) 
Let us take the example of  to illustrate this 
problem. In the example below, the initial model is 
designed by means of a parametric specification 
containing four successive constructive gestures. The 
fourth one consists of rounding edge e. If the initial model 
is saved after this fourth step, the current instance no 
longer contains edge e: it was removed by the rounding 
function. Thus, the rounding function, which has edge e as 
input parameter, cannot any longer be represented in the 
parametric specification part of the model. Therefore, 
“names” are needed to represent entities referenced in the 
parametric specification whether or not they exist in the 
current instance. 

Figure 1

Figure 1: Naming problem 

Moreover each constructive gesture creates a number of 
entities which have to be distinguished and therefore 
named, to be referenced by further constructive gestures, 
even if the same number of entities exist in all possible 
reevaluation (no topological change). Therefore, each 
entity should be named in a non-ambiguous and unique 
way at design time. The problem is even more complex 
for parametric models of which the entities and the 
number of entities change from one evaluation to another.  

Initial
model

swept block      horizontal slot vertical slot  round  edge e

1 2 3 4

2’1’ 3’ 4’

e e1 e2
Re-evaluated
model

 

Let us return to the example above, but this time in the 
reevaluated model. We notice that, at step 3’, the edge e 
has been split into edges e1 and e2. Thus at step 4’ the 
problem is to determine which edge(s) has(ve) to be 
rounded. The problem is to identify, i.e. to match, edge e 
with edges e1 and e2 despite topology changes. Thus, 
when reevaluation leads to topology changes a new issue 
is to match two different structures. The naming 
mechanism should be powerful enough to perform a 
robust matching during reevaluation. 
 

3. Related work 
 

Following the pioneer work of Hoffmann and Juan [6], 
over the last few years several authors have analyzed the 
internal structure of parametric data models, proposing 

some editable representations [6, 10, 14, 11, 9], discussing 
their underlying mathematical structures [10, 12], 
describing the problems, either of the semantic of 
modeling operations [6, 5, 1] or of constraint management 
[3]. Most of them discussed parametric modeling in terms 
of creation (but not reevaluation). Several naming scheme 
and persistent naming mechanisms have also been 
proposed. In particular Kripac [8] and Chen [5] proposed 
solutions to address some of the problems mentioned in 
the previous section. The first essentially developed a 
matching algorithm whereas the second focused rather on 
the unambiguous entity naming. 
 

3.1 Chen’s approach 
 

Chen [5] proposes a model that is composed of two 
representations. For the first one, he uses an editable 
representation, called Erep [6], which is an unevaluated, 
high-level, generative, textual representation, independent 
of any underlying core modeler. It abstracts the design 
operations, contains the parametric specification and 
stores all entities by name. The second representation, 
evaluated and modeler dependent, contains the geometry 
(the current instance). The link between these two 
representations is obtained by a name schema that 
establishes the link between the geometric entities of the 
geometric model and the generic names (persistent) of the 
unevaluated model. 
Chen defines a precise structure for naming entities 
generated by extrusion and revolution operations. Every 
entity generated by extrusion is named by reference to the 
corresponding source entity of the extruded 2D contour 
and the constructive gesture. He also proposes an 
identification technique for collision-generated entities 
based on compositions of topological contexts (more or 
less extended topological neighborhoods) and on feature 
orientations. Each one of these entities is described by its 
origin, either a source entity or an intersection of source 
faces, its smallest unambiguous topological context and its 
local orientation in the Brep model [4] [5]. To also ensure 
uniqueness of names in curved domains, one additional 
information based on geometry is added to the previous 
topological information : the orientation of any edge 
against the extrusion direction of the feature(s) it belongs 
to. The matching of an entity is realized through a local 
comparison of topological neighborhoods. For example, in 
case of faces, the face which must be matched is 
compared with the whole set of faces issued from the 
same invariant face (preliminary set). At each stage of the 
construction, the contingent faces inherit the same name 
of their parent face which makes it possible to construct 
the preliminary set. A grade is associated to each face of 
this preliminary set. The grade for each candidate face is 

 



the number of matched boundary edges. The face is kept if 
this number exceeds a threshold.  
In his study, Chen restricted to three kinds of features: 
sweep (extrusion and revolution), blend and fillet. For 
these features, he showed the feasibility to identify 
unambiguously any topological entities of models defined 
by successive attachment of such features, even when 
faces are curved, in most practical case, i.e., when there 
are not too many symmetries in the model. A matching 
algorithm is also proposed that support some level of 
topological changes in the re-evaluated model. However, 
it is not clear how the reduced context is used in this 
algorithm. Moreover this algorithm uses some thresholds, 
and no precision is given on the choice of these thresholds 
and the rational for the choices. Finally, the matching 
algorithm is local to the entity to be retrieved (see 4.2). In 
case of  for instance, and depending on the 
threshold used, F2 would probably be mapped onto Fx. 

Figure 4

The suggested model represents two major contributions 
in this domain : on the one hand, two main concepts for 
topological identification of entities, i.e. topological 
context and feature orientations which will be used 
thereafter by many of other approaches, and on the other 
hand a very precise study of cases of ambiguity. 
 

3.2 Kripac’s approach 
 

Kripac [8] focuses on the name matching. He proposes an 
API (Application Programming Interface) encapsulating 
its topological identification system and guaranteeing the 
name persistence using a table of correspondence between 
an entity of the initial model and one or more entities of 
the reevaluated model. He proposes an interesting graph 
structure for identification of any topological entities 
based on face history (creations, splits, merges and 
deletions of faces) and a complex name matching 
algorithm. During each reevaluation, all the faces, as well 
as every referenced entity in the parametric specification, 
are matched with the new ones. In addition to the used 
face graph structure, Kripac's approach is innovative 
because the proposed matching mechanism is global. The 
robustness and reliability induced by the global character 
of the matching method imply an overcost both in spatial 
(maintaining of two parallel structures) and temporal 

complexity (more entities to compare). Kripac's model 
does not allow to record that a selected mapping was only 
approximated as it uses a discrete metrics. That strongly 
induces the later mappings and would deserve to be taken 
into account. Moreover, no explanation is given on the 
manner of representing and of using this relation in the 
graphs for the following operations. 
His matching algorithm is very sensitive to the 
subdivision of the topological neighborhood. For example, 
as illustrated , if we call γFi

 the topological 
neighborhood of face Fi, then the topological 
neighborhoods of faces Fa et Fb during the model’s 
construction are: γFa

={F1,F2,F3,F4,F5,F6,F15,F14} and  
γFb

={F7,F8,F9,F10,F11,F12,F13,F16}. During reevaluation, 
the split leads to new faces Fx and Fy which topological 
neighborhoods are: γFx

={F1,F15,F10,F11,F12,F13,F14} and 
γFy

={F2,F3,F4,F5,F6,F7,F8,F9,F16}. The algorithm proposed 
by Kripac tries to match these new faces with the old ones 
by analyzing the topological neighborhoods. The analyze 
consists of finding the longest common face cycle (here 
{F2,F3,F4,F5,F6} and {F10,F11,F12,F13}) in the topological 
neighborhoods.  

Figure 2

Figure 2 : Top view of slot in a block: 
construction and reevaluation 

Unfortunately, as we can take note on this example, faces 
Fa and Fb are respectively matched with faces Fy and Fx 
and not with faces Fx and Fy. A later operation with Fa as 
input parameter, would have Fy as parameter during 
reevaluation. 
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Another important problem of this approach is the “piece 
loss” during reevaluation. The matching algorithm 
consists on a backward-forward search in the graph and a 
cross-analyzis. More precisely, starting from a given face, 
a backward search is done in the reevaluated graph, until 
reaching a face matched with a face of the old graph. 
Then, starting from this common face, a forward search is 
done in the old and new graph, processing all branches 
and retrieving all leaves (faces). A cross-analyzis is done 
on the faces. The matching between the two faces is done 
approximately. Therefore, it is possible not to analyze all 
faces that should be analyzed.  illustrates this 
problem. Matching faces F with T and G with U is done at 
the reevaluation’s fourth step. The cross-analyzis is done 
only between faces coming from G and faces coming from 
U. In particular, in this example, only faces K and L will 
be crossed with faces X and Y. The algorithm “looses” the 
face J which can be considered part of face X 

Figure 3
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Figure 3: Loss of faces during matching (Is J matched 
with X ?) 

Finally, in its approach, Kripac preserves a copy of the 
geometric models at each step of the construction process. 
This speeds up the reevaluation but it would require a 
memory space which is not compatible with the size of the 
real models used in CAD.  
 

4. Principles of our approach 
 

4.1 Naming model 
 

To define robust names allowing solving the precedent 
issues we have proposed to distinguish two types of 
geometric and topological entities [1]: 
• Invariant entities. An invariant entity is a geometric 

or topological entity that can be, completely and 
unambiguously, characterized by the structure of a 
constructive gesture and its input parameters, 
independently of involved values. In Figure 1, 
invariant entities include the end face of the swept 
block, the lateral shell of the horizontal slot with its 
begin and end faces (that may, or not exist), the face 
resulting from the rounding gesture, etc.. To 
characterize, i.e. to “name”, such entities, information 
models are to be defined that relate these entities to 
constructive gestures and to their input parameters. 

• Contingent entities. Beside those invariant entities, 
there exist entities that depend on the context of a 
constructive gesture. We call contingent entity a 
geometric or topological entity that results from an 
interaction between the pre-existing geometric model 
and invariant entities resulting from a particular 
constructive gesture. For example, in Figure 1, the 
number of lateral faces of the horizontal slot in the 

initial model (step 3) and in the reevaluated model 
(step 3’) are not identical. A naming mechanism is 
also required to define how to name these contingent 
entities. 

The method we have developed here is based on the 
model proposed in [1]. This model enables to identify, in a 
single and non-ambiguous way, firstly invariant entities, 
then contingent entities according to the invariant entities. 
 
4.1.1 Face graph 
The goal is to be able to follow the face evolution in order 
to be able, during model design, to identify the involved 
faces, then, during reevaluation, to identify the effective 
faces (in the current instance) corresponding to the 
referenced faces. 
Figure 4

Figure 4

 illustrates a construction example and the 
associated face graph. Each constructive gesture can be 
broken up into two steps. The first step is the specification 
of rough feature. It corresponds to the invariant structure 
(six faces of the first block). This initial invariant structure 
represents the inputs of the face graph. The second step is 
the interaction with the object that produces contingent 
entities. Those entities result from the evolution of the 
initial structure. The face evolution is described by 
historical links. In  we can see the partial graph 
structure associated with two slots on a block. In this 
example, the top face of block is split into two faces by 
the first slot, then into four faces by the second slot. The 
face graph represents the history (creation, split, deletion) 

 



of the top face. Notice that the initial graph and the 
reevaluated graph are not the same. 
 

 

Figure 4 Face graph example. Initial and 
reevaluated objects and their corresponding face 

graph (only the top face). 

Each face is identified by a unique name which is defined 
either by a unique topological entities traversal (invariant 
entities), or by an iterative number (contingent entities) 
(see [2]). Each node represents a face, which exists or has 
existed in the model. All the faces without outgoing 
historical links exist in the geometry. 
 
4.1.2 Entity naming. 
The entity (vertices, edges, paths etc.) identification is 
done by reference to faces. It is thus necessary to be able 
to name these faces in a unique and deterministic way. 
Generally, the identification of an entity is based on 
unchanging elements that characterize it in a unique way. 
In a parametric model, what never changes is the 
construction process (we consider the modification of the 
construction process as a model edition and not as a model 
reevaluation). Therefore, face naming is done by means of 
the construction step number (creation order) and by 
means of another identifier which characterizes each face 

in a unique way. The problem is to define this identifier 
which characterizes them in a unique way within each 
construction step. 
For each construction step, we consider that there are two 
phases. Firstly, the creation of the feature where all faces 
must be named. Secondly, the feature positioning within 
the existing geometry. This interaction with the existing 
geometry leads to modification and deletion of existing 
faces and to creation of new (contingent) faces. These 
contingent faces must also be named. Therefore, there are 
two types of naming to implement: one for invariant faces 
and another for contingent faces. 
4.1.2.1 Invariant faces 
According to the feature taxonomies proposed in [7, 2], 
invariant faces present in the graph are generated by four 
type of features (primitive, transition, extrusion and 
revolution). For the two first cases, the invariant naming 
of the generated faces are ensured by a unique topological 
traversal of the object (see [2]). 
In an extrusion case, the generator contour is swept along 
a director path. Each resulting topological entity 
corresponds to the cartesian product between a topological 
entity of the profile and a topological entity of the path. 
For example in Figure 5, face e1e4 from the extruded 
object corresponds to the cartesian product between the 
director edge e1 of the director path and the generator 
edge e4 of the generator contour. In a similar way, the 
internal face v2f1 comes from v2 (director path) and f1 
(generator contour). Robust naming of each contour entity 
and of each path entity is fundamental to enable robust 
naming of faces in the graph. Therefore a matching is 
done, between contour and path of the initial model and 
contour and path of the reevaluated model, to ensure name 
persistence. Each face name is build as follows: <step 
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Figure 5: Invariant face naming 

 



number, generator entity, director entity>. Matching quality is very relative and depends generally on 
operations on the one hand and on semantic the designer 
wants to express on the other hand. For instance, Face J in 

 may be matched onto two different ways 
according to the semantic given to the operation: 

To simplify writing, the step numbers have been omitted 
in Figure 5. In this example, during reevaluation, the vertex 
between edge e1 and e4 (of the contour) has been moved. 
This modification, as every geometric modification, has 
no influence on topological naming of the generator 
contour, nor the director path, and therefore has no 
influence on invariant entity naming. However topological 
modification of the contour (e.g. split of edge e3) or the 
path (e.g. split of edge e1) should be traced to ensure 
robust naming. The matching table shown in Figure 5 
permit to store relation between the contour and path of 
the initial model and the contour and path of the 
reevaluated model. So, despite geometric deformations 
and topological subdivisions (edges e3 and e1) of the 
contour and the path, face e3e4 is uniquely identified as 
well in construction as in reevaluation. In a similar way 
faces e4e6, e5e6, e4e5 and e5e5 would be identified as a 
subdivision of face e1e3. We obtain an identification 
relation between invariant faces of the face graph 
generated during construction (called AG) and those of 
the face graph generated during reevaluation (called NG) 
(see the end of section  4.2.1.1 for more details). 

Figure 3

• Either one considers that face J is a “part of” face X 
because it has a topological similarity and a common 
invariant ancestor (face A). 

• Or one considers that face J comes from split of face 
F by the fourth slot. Face F is matched onto face T, 
thus J can only be matched onto one face of the faces 
resulting from split of T. Consequently, in this 
example, J would not be matched onto any face. 

 
Our approach consists in using the first semantic that turns 
out to be more general and allows to avoid the tracability 
loss of a face such as J. As we will see it, this tracability 
loss is highly linked with the type of matching which can 
be represented in a model. Thus, choosing a too restrictive 
representation may turn out to be restraining. Indeed, the 
second semantic is more restrictive. Since it does not take 
into account the fact that to match an entity with another 
means that both entities are geometrically and 
topologically similar but not necessarily identical. 

4.1.2.2 Contingent faces 
Contingent face names consist of a step number and an 
iterative number (an arbitrary but unique number for each 
construction step). For contingent faces this names is not 
sufficient to allow an ulterior matching. Therefore, each 
contingent face in the graph is associated with information 
about his topological neighborhood. Thus, contingent face 
names consisting in a step number and an iterative number 
is sufficient to allow an ulterior matching (see section 
 4.2). 

 
Our approach consists in calculating a matching value for 
faces present in the graph. Others entities (edge, vertices) 
are named according to this matching (see section  4.2.2). 
Our face matching method breaks up into two main steps: 
the generic cover calculation which allows to evaluate 
topological covers between faces of AG and faces of NG 
(see section  4.2.1.1), and the real matching calculation 
allowing to calculate a specific matching according to the 
semantic of operation (see section  0). This partition seems 
to be basic because it allows to distinguish the generic and 
specific part of matching methods. Such an approach 
offers numerous interests as for instance the possibility to 
define a system which proposes a default matching the 
user will be able to specialize if it doesn’t suit him. 
Moreover, the cover calculation method is a global 
method of topological matching between two sets of faces, 
which may be used in other fields using “pattern 
matching” as shape recognition, feature recognition and 
extraction, etc. 

 

4.2 Contingent entity matching method 
 

Matching entities consists in associating n entities of the 
initial model with m entities of the reevaluated model in 
order to decide if each of n entities corresponds to one or 
several entities of the reevaluated model, and conversely if 
each of m entities corresponds to one or several entities of 
the initial model. The matching may be realized by using 
the geometry and/or the topological neighborhood of 
entities to be referenced. Topology use allows to get a 
robust matching method in relation to important geometric 
variations and small topological variations. However, in 
some particular cases, when the model contains non-linear 
entities, topological neighborhood, even extensive [8], are 
ambiguous and do not allow characterizing in a unique 
way an entity of this model. Thus, it would be proper to 
use an additional geometric mechanism (feature 
orientation, etc.) allowing to raise this ambiguity [5]. 

 
4.2.1 Contingent face matching 
4.2.1.1 Generic cover calculation 
At the reevaluation step, we calculate a cover that consists 
in evaluating topological matching between p faces of AG 
and q faces of NG. Thus, we speak about “crossing” based 
on each face topological neighborhood. For each face F, 

 



Therefore, we can define, ΓF∩G the set of elements of ΓF 
that are equivalent to an element of ΓG according to our 
relation. This way, ΓF∩G contains all partial sub-paths of γF 
such as there is at least an element of γG of which circular 
list of adjacent faces, in terms of invariant faces, is 
identical. Then, to solve the problem of subdivisions of 
topological neighborhood illustrated on , we 
propose to introduce a coefficient allowing to weight each 
edge influence in the topological neighborhood according 
to the edge length. Thus, we introduce three functions: 

Therefore, we can define, ΓF∩G the set of elements of ΓF 
that are equivalent to an element of ΓG according to our 
relation. This way, ΓF∩G contains all partial sub-paths of γF 
such as there is at least an element of γG of which circular 
list of adjacent faces, in terms of invariant faces, is 
identical. Then, to solve the problem of subdivisions of 
topological neighborhood illustrated on , we 
propose to introduce a coefficient allowing to weight each 
edge influence in the topological neighborhood according 
to the edge length. Thus, we introduce three functions: 

Figure 2

Figure 2

Figure 2

Figure 2

•  π  such that for each edge e, π(e) is the length of e, •  π  such that for each edge e, π(e) is the length of e, 
• Π such that for each circuit γ={ο0, ο1,.. οn}, 

Π(γ)=Σi=0..nπ(οi), 
• Π such that for each circuit γ={ο0, ο1,.. οn}, 

Π(γ)=Σi=0..nπ(οi), 
we note γF={ο0,ο1,..οn} the circuit of oriented edges 
(οi)i=0..n of the boundary of F. The crossing result is a set 
of inter-graphs relationships that may exist between faces 
of AG and faces of NG. of AG and faces of NG. 

• Θ, such that for each element γ of ΓF∩G , Θ(γ)=max{ 
Σi=0..n min(π(οi), π(οi’)) with (οi)i=0..n and (οi’)i=0..n / 
γ=ο0.. οn and ο0.. οn~Adjο0’.. οn’}. 

• Θ, such that for each element γ of ΓF∩G , Θ(γ)=max{ 
Σi=0..n min(π(οi), π(οi’)) with (οi)i=0..n and (οi’)i=0..n / 
γ=ο0.. οn and ο0.. οn~Adjο0’.. οn’}. Let γFag

={ο0, ο1,.. οn} and γFng
={ο0’, ο1’,.. οm’} be the 

circuits associated with faces Fag of AG and Fng of NG. 
We define ΓFag

 and ΓFng
 the sets of the partial sub-paths of 

γFag
 and γFng

; a partial sub-path of a circuit is a sub-path of 
the circuit where some oriented edges have been deleted. 
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circuits associated with faces Fag of AG and Fng of NG. 
We define ΓFag

 and ΓFng
 the sets of the partial sub-paths of 

γFag
 and γFng

; a partial sub-path of a circuit is a sub-path of 
the circuit where some oriented edges have been deleted. 

Θ(γ) can be interpreted as the maximum common weight 
between γ and an equivalent element in ΓG. 
Θ(γ) can be interpreted as the maximum common weight 
between γ and an equivalent element in ΓG. 
Finally, we define σ=max{Θ(γ),γ∈ΓF∩G}. Finally, we define σ=max{Θ(γ),γ∈ΓF∩G}. 
σ is the maximum sum of edge lengths that we can extract 
from the boundaries of Fag and Fng such as the edges 
appear in the same order in the boundaries of Fag and Fng. 

σ is the maximum sum of edge lengths that we can extract 
from the boundaries of Fag and Fng such as the edges 
appear in the same order in the boundaries of Fag and Fng. 

First, one could notice that actually an oriented edge 
cannot appear in two distinct face circuits in an oriented 
model. If an oriented edge appears in the circuit of face F 
and the circuit of face G then it means that F and G have 
opposite orientation: the model is not oriented. So, for 
each oriented edge ο, there is a unique face of which 
circuit uses ο and we call neighbor adjacent face of ο, the 
adjacent face of the edge associated with o that does not 
use o in its circuit. 

First, one could notice that actually an oriented edge 
cannot appear in two distinct face circuits in an oriented 
model. If an oriented edge appears in the circuit of face F 
and the circuit of face G then it means that F and G have 
opposite orientation: the model is not oriented. So, for 
each oriented edge ο, there is a unique face of which 
circuit uses ο and we call neighbor adjacent face of ο, the 
adjacent face of the edge associated with o that does not 
use o in its circuit. 

We calculate two ratios: δ0=σ/Π(γG) and δ1=σ/Π(γF). δ0 is 
the ratio of inclusion of γFag

 in γFng
 and δ1 is the ratio of 

inclusion of γFng
 in γFag

. As shown in Table 2, δ0 and δ1 
range in interval [0,1] according to the similarity of both 
weighted topological neighborhoods. 
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the ratio of inclusion of γFag

 in γFng
 and δ1 is the ratio of 

inclusion of γFng
 in γFag

. As shown in Table 2, δ0 and δ1 
range in interval [0,1] according to the similarity of both 
weighted topological neighborhoods. 
Let us observe example of . We have to cross two 
faces of AG (Fa, Fb) with two faces of NG (Fx, Fy). Table 
1 illustrates one calculation step of δ0 and δ1. 

Let us observe example of . We have to cross two 
faces of AG (Fa, Fb) with two faces of NG (Fx, Fy). Table 
1 illustrates one calculation step of δ0 and δ1. 

In order to quantify topological matching, we define the 
equivalence relation ~Adj between face circuits γ and γ’, 
defined by: γ~Adjγ’ ⇔ ∃(οi)i=0..n and (οi’)i=0..n / γ=ο0.. οn, 
γ’=ο0’.. οn’ and ∀i∈{0..n}, the invariant ancestor face of 
the neighbor adjacent face of οi is also the invariant 
ancestor face of the neighbor adjacent face of οi’. In other 
words, when you come along γ and γ’ and you consider 
only the invariant ancestor of neighbor adjacent faces, you 
get the same circular list of invariant faces around the 
faces of which circuits are γ and γ’. 

In order to quantify topological matching, we define the 
equivalence relation ~Adj between face circuits γ and γ’, 
defined by: γ~Adjγ’ ⇔ ∃(οi)i=0..n and (οi’)i=0..n / γ=ο0.. οn, 
γ’=ο0’.. οn’ and ∀i∈{0..n}, the invariant ancestor face of 
the neighbor adjacent face of οi is also the invariant 
ancestor face of the neighbor adjacent face of οi’. In other 
words, when you come along γ and γ’ and you consider 
only the invariant ancestor of neighbor adjacent faces, you 
get the same circular list of invariant faces around the 
faces of which circuits are γ and γ’. 

Previous calculations allow evaluating in an individual 
way probabilities δ0 and δ1 with mutual inclusion of Fng 
and Fag faces and so topological matching between both 
faces. This very local approach does not take into account 
topological matching of adjacent faces. Once δ0 and δ1 are 
calculated, we have to define a method allowing to 
evaluate in a global way covers between crossed faces. 
This method consists in handling, in an iterative way, the 

Previous calculations allow evaluating in an individual 
way probabilities δ0 and δ1 with mutual inclusion of Fng 
and Fag faces and so topological matching between both 
faces. This very local approach does not take into account 
topological matching of adjacent faces. Once δ0 and δ1 are 
calculated, we have to define a method allowing to 
evaluate in a global way covers between crossed faces. 
This method consists in handling, in an iterative way, the 

Table 1: Crossing 
Initial graph faces 

 
Reevaluated graph faces 

Fa 
F1  F2  F3  F4  F5  F6  F15  F14 
10  8   2   2   2   2  14.1  6 

Fb 

F7  F8  F9  F10  F11  F12  F13  F16 
 8  10  10  2   2     2     2  14.1 

Fx 

F1   F15   F10  F11  F12  F13  F14 
10  18.9  2   2    2    2    8 

F1   F15   F14 
10  14.1   6 

1.46
1.30,9.44

1.30
10 == δδ  

F10  F11  F12  F13 
 2   2     2    2 

1.50
8,9.44

8
10 == δδ  

Fy 
F16   F2  F3  F4  F5  F6  F7  F8  F9 
18.9  6   2   2   2   2  10  10  8 

   F2  F3  F4  F5  F6 
   6   2    2   2   2 

1.46
14,9.60

14
10 == δδ  

F7  F8  F9  F16 
8  10  8  14.1 

1.50
1.40,9.60

1.40
10 == δδ  

Table 2: Inter-graphs relations 

Topological 
neighborhoods δ0 δ1 Graph 

γFag
 is equal to γFng

 1 1 
γFng

 is included in γFag
 1 ]0,1[ 

γFag
 is included in γFng

 ]0,1[ 1 

γFag
 and γFng

 partially overlaps ]0,1[ ]0,1[ 

γFag
 and γFng

 doesn’t overlap 0 0 

Fag
B

C

Fng
Y

Z
 

Partial sub-path of 
circuits of faces Fa 
and Fy maximizing 
σ  

Weighted 
topological 

 



whole table cells in decreasing order of matching 
possibilities. For that, we apply the following process:  
• Find a cell which is not already “handled” of which 

sum δ0+δ1 is maximum (if there exist several cells 
giving this maximum sum, we take any cell of them). 
Let us suppose that this cell corresponds to the 
crossing of faces Fng and Fag.  

• Decrement edge weights for edges in γFag
 and γFng

 
according to the weight of corresponding oriented 
edges in the element o∈ΓF∩G that lead to the 
maximum σ; actually, a temporary weight function 
replaces π that makes edges appear ‘shortened’ since 
some length is no more available for further cell 
computing.  

• For cells which are not already handled, calculate 
numerators σ of δ0 and δ1 with remaining weights. 

• Mark this cell as handled 
• Iterate the process until all cells are marked. 
Note that handling a cell of which coefficients δ0 and δ1 
are equal to zero does not change anything for the table. 
Thus, when a cell has both coefficients equal to zero, it 
can be considered as handled. 
Note also that during the handling, coefficients δ0 and δ1 
only decrease. 
Observe the result of this method on example of . 
We can see, on the second step table, that the grayed cell 
is selected because it is the maximum coefficient sum. 
Edge coefficients (through a temporary weight function) 
of γX and γA are zero because every edge length has been 
totally used. Coefficients of the row and the column are 
recalculated. The result is zero because there is no faces 
which can be used on X or A to identify other faces. 
Coefficients being equal to zero, cells are considered as 
already handled (dashed cells). At third process step, only 
one cell has to be handled. No computing of coefficients 
δ0 and δ1 is needed because all cells of row and column 
are handled. 

Figure 3

Figure 3

Figure 3

At each construction step, how to know which faces 
should be used for the crossing. This problem is 
fundamental because the matching of AG face set with 
NG one is too expensive on the one hand and rough 
matching may generate “piece loss” one the other hand, as 
shown in . 
Covers allow to know at step i of reevaluation, which face 
of AG and NG have to be crossed. These last ones are 
defined according to covers obtained at the previous step. 
At step i, faces to be use in a same crossing are leaves of 
AG and NG appeared up to step i. Leave or father faces 
are connected by cover links higher than a given 
threshold. For that, only covers which appears in NG 

leaves are necessary to know faces it is advisable to cross. 
The threshold named ε∈[0,1] defines the precision of 
covers. At least one coefficient δ0 or δ1 has to be greater 
than ε in order to represent the inter-graph covering link. 
A threshold ε = 0 means that all covers are represented 
and therefore avoid any “piece loss” during the matching. 
Conversely, a threshold close to ε = 1 means that only 
covers close to equality will be represented. 
Let us observe the evolution of different reevaluation 
steps in . We choose in this example ε = 0.15, 
which allows eliminating covers which, are not enough 
significant. The choice of this coefficient depends on the 
topological matching process accuracy that we want to 
implement. Initially, at the first reevaluation step, an 
identification between invariant entities (see section 
 4.1.2.1) exists and is symbolized by the dotted link 
between face A of AG and of NG (see ). Figure 6
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Figure 6: Cover links after reevaluation 

Figure 6

At the second reevaluation step, face A is split into two 
new faces P and Q. Face A of NG, father of both faces, is 
connected by a cover link (identification link in this 
particular case because it is an invariant face) to face A of 
AG of which leaves, appeared up to the second step, are 
faces B and C. Both faces P and Q have to be crossed with 
faces B and C. The crossing of both faces gives the 
following result. 
Coefficients δ0 and δ1 which correspond to the cover 
calculation of faces P and C are less than the threshold ε = 
0.15. As result, the cover link between P and C is not 
represented. Only covers which appeared in NG leaves 
will be necessary to know which faces will be advisable to 
cross at next step. The link between faces A of AG and 
NG is thus eliminated. Cover link obtained after second 
reevaluation step are represented in  by tagged 
links between nodes B, C and P, Q containing values δ0 
and δ1. 
At the third reevaluation step, face Q is split into two new 
faces R and S. Face Q, father of both faces is connected by 
a cover link to face C of AG of which leaves, appeared up 
to the third step are faces D and E. Both faces R and S 

 



have to be crossed with faces D and E. 4.2.1.2 Specific matching calculation 
The previous calculation of topological covers is generic 
in so far as it is only evaluating and quantizing different 
possible matching while leaving to a method more specific 
the choice of a particular matching according to some 
application needs. 

Finally, the whole graph, obtained after the fifth 
reevaluation is shown in . Figure 6

 

Step 1 
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6 7 8 9 10 11 12 1   2  
21 
1 5 2 5  3   5    4  7 10  2 
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2 3 4 5 6 22 
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Both methods presented in this section are examples of 
specific matching calculation methods, based on generic 
covers. 
At each reevaluation step, we calculate, according to 
obtained cover links, the matching of entities generated at 
this step. If we consider the set of tagged cover links 
between the old and the new graph present at this step, we 
get a bipartite graph G={AG, NG, E}. A specific 
matching corresponds thus to the reconstruction of a 
bipartite graph G'={AG, NG, E'} where E’ is a subset of E 
and each link (arcs) of E represents a matching 
relationship between the two nodes.  

 
 

Step 2 
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The method that enables to calculate the links of G which 
should be kept in G' consists in maximizing the sum of the 
coefficients δ0 and δ1 of the tagged links of E'. Indeed, the 
more this sum is high, the more whole matching 
corresponds to exact topological identifications. For that, 
we assign to each node i of G' a coefficient 

∑
=

+=

i  node  toconnected
 links all j

10
jji δδδ . For the node i, this coefficient 

represents the matching quality of its topological 
neighborhood. Then, the graph G' giving the maximum 
sum ∑

=

=Φ

G' graph the
 of nodesi

iδ corresponds to best realizable 

matching. 
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An example of characteristic specific matching is the one 
where G' is built so that each path length is less or equal 
one. That means that each entity will be matched with at 
most one entity. 
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Figure 7: Matching links after reevaluation  
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Another example of characteristic specific matching is the 
one where G' is built so that each path length is less than 
or equal two. From a semantic point of view, that means 
that one face of AG can either be matched on several faces 
of the NG, or merged with others faces of AG and 
matched on a single face of NG. This choice is mutually 
exclusive. Let us use such a matching on the example of 

. For the nodes appeared in the graph at the last 
revaluation step, the maximization of Φ enables us to 
obtain the following G' graph, where the δi coefficients of 
each nodes are represented and where the links in dotted 
lines represent a matching relationship (see ). 
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