
On-line minimization of makespan for single batching
machine scheduling problems

Ridouard Frédéric1, Richard Pascal1, and Martineau Patrick2

1 LISI laboratory, France
e-mail: {frederic.ridouard, pascal.richard}@ensma.fr

2 Polytech’Tours - Dpt of Computer Science, France
e-mail: pmartineau@univ-tours.fr

Keywords. single parallel batching machines, on-line scheduling, makespan, competitive
analysis.

1 Introduction

A batching machine (or batch processing machine) is a machine that can process
up to b jobs simultaneously. The jobs that are processed together form a batch.
Two kinds of batching machines can be defined: in a serial batching machine the
processing time of a batch is equal to the sum of processing times of jobs belonging
to it; in a parallel batching machine, the processing time of a batch is the maximum
of the processing times of jobs belonging to it. Next, we only focus on a parallel
batching machine. In particular, such machines are used in semi-conductor and
pharmaceutical industries.
Each instance has n jobs and each job Ji (i ∈ {1, . . . n}) has a processing time pi

and a release date ri. A job cannot start before its release date and the completion
time Ci of each job Ji in a batch is equals to the completion time of the batch itself.
Preemption is not allowed. A scheduling algorithm is said to be conservative if it is
not allowed to postpone the start of an available job. We consider the scheduling
problem in the on-line setting where jobs are released over time: characteristics of
a job is known when it arrives in the system and the number of jobs is known
when the last one arrives. Finally, it can be established that b ≥ n, we deal with
unbounded batch sizes; the batch size is said bounded otherwise.
The objective is to minimize the makespan of the schedule, that is the completion
time of the last scheduled batch.
To study on-line algorithms, we shall use competitive analysis. This approach com-
pares on-line algorithms to an optimal clairvoyant algorithm: the adversary. A good
adversary defines instances of problems so that the on-line algorithm achieves its
worst-case performance. An algorithm that minimizes a measure of performance is
c-competitive if the value obtained by the on-line algorithm is less than or equal
to c times the optimal value obtained by the adversary. We also say that c is the
performance guarantee of the on-line algorithm. An algorithm is said competitive if
there exists a constant c so that it is c-competitive. More formally, given an on-line
algorithm A. Let I be an instance. Then, σA(I) is the makespan obtained by A
and σ∗(I) is the makespan obtained by the optimal clairvoyant algorithm, then A is
c-competitive if there exists a constant c so that σA(I) ≤ cσ∗(I). The competitive
ratio cA of the algorithm A is the worst-case ratio while considering any instance

2 Ridouard Frédéric and al.

I: cA = supanyI
σA(I)
σ∗(I) . The competitive ratio of an algorithm A is greater than or

equal to 1. If cA = 1, then A is an optimal algorithm.
The scheduling of batch processing machines has not been studied until recently
by researchers in deterministic scheduling. For the off-line problem, Lee and Uzsoy
(1999) provide an polynomial algorithm to minimize the makespan for unbounded
batch sizes. When b < n, then the problem has been proved NP-hard by Liu and Yu
(2000). In the on-line setting, these authors also proposed a simple greedy algorithm
leading to a performance guarantee of 2 for the general bounded problem. But for
non-conservative algorithms, Zhang and al (2001) establish a general lower bound
of 1 + α. In the remainder, we note α = −1+

√
5

2 . This result holds for bounded
and unbounded batch sizes. Furthermore, when the size of the batch is unbounded,
Zhang and al (2001) establish the algorithm H∞ with a tight performance guarantee
of 1 + α.
In the following section, we present the results when the processing times of any
task are equals. Section 3 contains outcomes in the general unbounded case.

2 The problem 1|p − batch, ri, pi = p, b = ∞|Cmax

We now consider the special case where the processing of tasks are equals. In Richard
et al (2003), we presented the αH algorithm defined as follows: at any time, let U(t)
be the set of available unscheduled jobs at time t; when the machine is idle and some
unscheduled jobs are available, let Ji be an available job, then the next batch is not
scheduled before ri + αpi and then schedule available unscheduled jobs as many
as possible as a batch. Richard and al (2003) prove that αH is a best possible
deterministic algorithm ((1 + α)-competitive).
We next propose another best possible algorithm called αH2, that is a slight mod-
ification of αH: at any time t when the machine is idle and some unscheduled jobs
are available, let Ji be the available job such as ri + αpi = minJj∈U(t)(rj + αpj),
then the next batch schedules jobs as many as possible at a time t′ after ri +αpi. A
slightly modification of the proof presented for αH in Richard and al (2003) allows
to prove that αH2 is (1 + α)-competitive.
To summarize, at any time, αH waits the time maxJj∈U(t)(rj + αpj) and schedules
the set of available unscheduled jobs as many as possible. αH2 waits minJj∈U(t)(rj+
αpj) and schedules the jobs of U(t) as a batch as many as possible at a time t. Now
if at any time, an on-line algorithm A waits a time a such that a ∈ [minJj∈U(t)(rj +
αpj),maxJj∈U(t)(rj +αpj)] then A is still a best possible algorithm for the problem
1|p− batch, ri, pi = p, b = ∞|Cmax.

3 The problem 1|p − batch, ri, b = ∞|Cmax

In this section, we deal with the case where the capacity of the machines b is
sufficiently large to process all jobs simultaneously in a single batch. But, jobs have
non-equal processing times. Firstly, we prove that αH and αH2 are 2-competitive.
Secondly, we present a best possible algorithm, called αH∞ that inserts less idle
times than H∞ (Zhang et al (2001)).

Abstract Submission 3

3.1 The competitive ratio of αH and αH2

The competitive ratios of αH and αH2 are not better than 2. We use an adversary
argument:
• For αH, we just need to study the instance I such that J1 = (r1 = 0, p1 =

p), J2 = (r2 = αp, p2 = 1), J3 = (r3 = αp+α, p3 = 1), . . . , Jbαpc−1 = (rbαpc−1 =
αp + (bαpc − 1)α, pbαpc−1 = 1) and Jbαpc = (rbαpc = p, pbαpc = 1), where p
is a very large integer. αH schedules J1 as the first batch and {J2, . . . , Jbαpc}
as second batch. The optimal algorithm of Lee and Uzsoy (1999) schedules
{J1, . . . , Jbαpc−1} as the first batch and Jbαpc as second batch. Consequently,
after some arithmetical calculations, σ∗ = 1 + p and σαH = αp + bαpcα + p + 1
and cαH ≥ 2.

• For αH2, if we study the instance, J1 = (r1 = 0, p1 = 1), J2 = (r2 = 0, p2 =
p), J3 = (r3 = α + ε, p3 = p), where p is still a very large integer, then σ∗ =
α + ε + p, σαH2 = α + 2p and cαH2 ≥ 2.

To conclude, αH and αH2 are no better than 2-competitive for the problem 1|p−
batch, ri, b = ∞|Cmax.

3.2 The αH∞ algorithm

We will give a description of the algorithm αH∞. Note that U(t) is the set of avail-
able unscheduled jobs at the time t.

Algorithm αH∞:
STEP 0. Set t = 0.
STEP 1. Find job Jk ∈ U(t) such that pk = max{pj | Jj ∈ U(t)}.
Let γ = rk + αpk and s = max{t, γ}.
STEP 2. In the time interval [t,s], whenever a new job Jh arrives, at the time t’
and if ph > pk then k = h, γ = rh + αph, t = t′, s = max{t, γ}.
To conclude in any case, U(t) = U(t) ∪ {Jh}.
STEP 3. At time s, we schedule in a single batch, the set of available unsched-
uled jobs, U(s). If some new jobs arrive during the execution of the batch then let
t = s + pk else let t be the arrival time of such a job. Go to STEP 1.

Given an instance, we assume that αH∞ generates m batches in total. We in-
dex these batches in non-decreasing order of their completion times. The kth batch
is noted Bk and let sk its starting time. For convenience, in batch k, J(k) denotes
the longest job of Bk (determinated by Step 1). Let p(k) and r(k) be the processing
time and the arrival time of J(k). Note that a batch Bk starts execution either at
time r(k) +αp(k) or immediately after the execution of the batch Bk−1 is finished. If
it starts at time r(k) +αp(k), it is a regular batch else a delayed batch. Furthermore,
by definition of αH∞, p(k) is the processing time of batch Bk.
Now, we present the principle of the proof for the (1 + α)-competitivity of αH∞.
In Ridouard (2003), a whole demonstration is established.

4 Ridouard Frédéric and al.

Theorem αH∞ is (1 + α)-competitive.
Proof:

• For σ∗, we just consider that J(m) must be processed by the optimal algorithm;
therefore σ∗ ≥ r(m) + p(m). Futhermore, we can prove that r(m) occurs between
the start and the completion of Bm−1.

• To calculate σαH∞ , we must determine the makespan achieved by αH∞. We
recall that the makespan is the completion time of Bm. We have only consider
in the schedule, the last sequence of batches without idle-time. Let Bk, . . . , Bm

be such a sequence. Bk is regular, thus its starting time is sk = r(k) + αp(k).
Therefore we conclude calculating σαH∞ adding the processing times of Bk and
of the batches after Bk (because there are delayed). Hence we have σαH∞ =
r(k) + αp(k) +

∑m
i=k p(i).

• We can study all possible inequalities between p(k), p(m−1) and p(m) to obtain
the expected competitive ratio.

To conclude, αH∞ is a best possible algorithm for the problem 1|p− batch, ri, b =
∞|Cmax and it is easy to show to αH∞ introduce less idle-times than H∞.

4 Conclusion and perspectives

An optimal polynomial off-line algorithm is known for the 1|p − batch, ri, b =
∞|Cmax problem. We have studied the on-line scheduling problem of a single
batching machine to minimize the makespan. For this problem, with bounded or
unbounded batch sizes, the lower bound of the competitive ratio of on-line deter-
ministic algorithm is 1 + α. But conservative algorithms cannot be better than
2-competitive. Now, for the problem 1|p − batch, ri, b = ∞|Cmax, if for each in-
stance we have equal processing times then we propose several best possible on-line
algorithms such as αH or αH2. For non-equal processing times, we have proposed
an on-line algorithm αH∞ that inserts less idle-time than H∞ but with the same
performance guarantee.
Works are remaining for the general bounded problem since the best known algo-
rithm is 2-competitive whereas the best known lower bound is equal to 1 + α. In
Zhang et al (2001) is proposed an algorithm and they only conjecture that it is 1+α
competitive.

References

LEE, C.Y. and UZSOY, R. (1999): Minimizing makespan on a single batch processing
machine with dynamic job arrivals. In INT. J. PROD. RES., VOL 37, No. 1, 219–
236

LIU, Z. and YU, W. (2000): Scheduling one batch processor subject to job release dates.
Discrete Applied Mathematics, 105, 129–136

RICHARD, P. and RIDOUARD, F. and MARTINEAU, P. (2003): On-line scheduling on
a single batching machine to minimize the makespan. Proc. Industrial Engineering
and Production Management, (IEPM’03), Porto, 2003.

RIDOUARD, F.(2003): Real-Time scheduling: a single batching machine. Master thesis,
University of Poitiers, (in french).

ZHANG, G. and CAI, X. and WONG, C.K. (2001) : On-line algorithms for minimizing
makespan on batch processing machines

