On-line minimization of makespan for single batching
machine scheduling problems

Ridouard Frédéric!, Richard Pascal', and Martineau Patrick?

L LISI laboratory, France

e-mail: {frederic.ridouard, pascal.richard }@ensma.fr
2 Polytech’Tours - Dpt of Computer Science, France
e-mail: pmartineau@univ-tours.fr

Keywords. single parallel batching machines, on-line scheduling, makespan, competitive
analysis.

1 Introduction

A batching machine (or batch processing machine) is a machine that can process
up to b jobs simultaneously. The jobs that are processed together form a batch.
Two kinds of batching machines can be defined: in a serial batching machine the
processing time of a batch is equal to the sum of processing times of jobs belonging
to it; in a parallel batching machine, the processing time of a batch is the maximum
of the processing times of jobs belonging to it. Next, we only focus on a parallel
batching machine. In particular, such machines are used in semi-conductor and
pharmaceutical industries.

Each instance has n jobs and each job J; (i € {1,...n}) has a processing time p;
and a release date r;. A job cannot start before its release date and the completion
time C} of each job J; in a batch is equals to the completion time of the batch itself.
Preemption is not allowed. A scheduling algorithm is said to be conservative if it is
not allowed to postpone the start of an available job. We consider the scheduling
problem in the on-line setting where jobs are released over time: characteristics of
a job is known when it arrives in the system and the number of jobs is known
when the last one arrives. Finally, it can be established that b > n, we deal with
unbounded batch sizes; the batch size is said bounded otherwise.

The objective is to minimize the makespan of the schedule, that is the completion
time of the last scheduled batch.

To study on-line algorithms, we shall use competitive analysis. This approach com-
pares on-line algorithms to an optimal clairvoyant algorithm: the adversary. A good
adversary defines instances of problems so that the on-line algorithm achieves its
worst-case performance. An algorithm that minimizes a measure of performance is
c-competitive if the value obtained by the on-line algorithm is less than or equal
to ¢ times the optimal value obtained by the adversary. We also say that c is the
performance guarantee of the on-line algorithm. An algorithm is said competitive if
there exists a constant ¢ so that it is c-competitive. More formally, given an on-line
algorithm A. Let I be an instance. Then, o4(I) is the makespan obtained by A
and o*(I) is the makespan obtained by the optimal clairvoyant algorithm, then A is
c-competitive if there exists a constant ¢ so that 04 (I) < co*(I). The competitive
ratio c4 of the algorithm A is the worst-case ratio while considering any instance



2 Ridouard Frédéric and al.

I: ca = supg,,; ‘;A((II)) . The competitive ratio of an algorithm A is greater than or
equal to 1. If ¢4 = 1, then A is an optimal algorithm.

The scheduling of batch processing machines has not been studied until recently
by researchers in deterministic scheduling. For the off-line problem, Lee and Uzsoy
(1999) provide an polynomial algorithm to minimize the makespan for unbounded
batch sizes. When b < n, then the problem has been proved NP-hard by Liu and Yu
(2000). In the on-line setting, these authors also proposed a simple greedy algorithm
leading to a performance guarantee of 2 for the general bounded problem. But for
non-conservative algorithms, Zhang and al (2001) establish a general lower bound
of 1 + a. In the remainder, we note o = %\/g This result holds for bounded
and unbounded batch sizes. Furthermore, when the size of the batch is unbounded,
Zhang and al (2001) establish the algorithm H with a tight performance guarantee
of 1+ a.

In the following section, we present the results when the processing times of any
task are equals. Section 3 contains outcomes in the general unbounded case.

2 The problem 1|p — batch,r;, p; = p,b = 0|Chiax

We now consider the special case where the processing of tasks are equals. In Richard
et al (2003), we presented the aH algorithm defined as follows: at any time, let U(t)
be the set of available unscheduled jobs at time t; when the machine is idle and some
unscheduled jobs are available, let J; be an available job, then the next batch is not
scheduled before r; + ap; and then schedule available unscheduled jobs as many
as possible as a batch. Richard and al (2003) prove that «H is a best possible
deterministic algorithm ((1 + «)-competitive).

We next propose another best possible algorithm called «H2, that is a slight mod-
ification of aH: at any time ¢ when the machine is idle and some unscheduled jobs
are available, let J; be the available job such as r; + ap; = miny, cy ) (rj + apj),
then the next batch schedules jobs as many as possible at a time ¢’ after r; +ap;. A
slightly modification of the proof presented for «H in Richard and al (2003) allows
to prove that aH?2 is (1 + «)-competitive.

To summarize, at any time, aH waits the time maxj, cy (s (rj + ap;) and schedules
the set of available unscheduled jobs as many as possible. a2 waits min s, ey (1) (rj+
ap;) and schedules the jobs of U(¢) as a batch as many as possible at a time ¢. Now
if at any time, an on-line algorithm A waits a time a such that a € [mianEU(t)('rj +
ap;), max ey (rj +ap;)] then A is still a best possible algorithm for the problem
1|p — batch,r;, pi = p, b = 00|Craa-

3 The problem 1|p — batch,r;, b = 00|C\raa

In this section, we deal with the case where the capacity of the machines b is
sufficiently large to process all jobs simultaneously in a single batch. But, jobs have
non-equal processing times. Firstly, we prove that aH and aH2 are 2-competitive.
Secondly, we present a best possible algorithm, called aH*° that inserts less idle
times than H> (Zhang et al (2001)).



Abstract Submission 3

3.1 The competitive ratio of aH and aH2

The competitive ratios of «H and «H2 are not better than 2. We use an adversary
argument:

e For aH, we just need to study the instance I such that J; = (r1 = 0,p1 =
p)vJZ = (TZ =ap,p2 = ]-)7J3 = (TB =ap+to,p3 = ]-)7 - ~7J[o¢pj—1 = (T[ozpj—l =
ap + (lap] = 1)a, plapj—1 = 1) and J|ap| = (T|ap] = Ds Plap] = 1), Where p
is a very large integer. af schedules J; as the first batch and {Ja,...,J|ap|}
as second batch. The optimal algorithm of Lee and Uzsoy (1999) schedules
{J1,--+,J|ap)—1} as the first batch and J|,,| as second batch. Consequently,
after some arithmetical calculations, c* = 1+ p and ooy = ap+ |apla+p+1
and cog > 2.

e For aH2, if we study the instance, J; = (r1 = 0,p1 = 1),Jo = (ro = 0,p2 =
p),J3 = (rs = a+ €,ps = p), where p is still a very large integer, then o* =
a+e+p, oag2 =a+2pand cogo > 2.

To conclude, «H and «H2 are no better than 2-competitive for the problem 1|p —
batch,r;, b = 00|Craz-

3.2 The aH®* algorithm

We will give a description of the algorithm aH>. Note that U(t) is the set of avail-
able unscheduled jobs at the time t¢.

Algorithm aH*>:

STEP 0. Set t = 0.

STEP 1. Find job Jy € U(t) such that py = max{p; | J; € U(t)}.

Let v = 1, + apy, and s = max{t,7y}.

STEP 2. In the time interval [t,s/, whenever a new job Jj, arrives, at the time ¢’
and if pp, > pg then k = h, vy =rp + app, t =/, s = max{t,v}.

To conclude in any case, U(t) = U(t) U {J,}.

STEP 3. At time s, we schedule in a single batch, the set of available unsched-
uled jobs, U(s). If some new jobs arrive during the execution of the batch then let
t = s+ py, else let t be the arrival time of such a job. Go to STEP 1.

Given an instance, we assume that aH° generates m batches in total. We in-
dex these batches in non-decreasing order of their completion times. The k" batch
is noted By, and let sy its starting time. For convenience, in batch k, Ji;) denotes
the longest job of By (determinated by Step 1). Let p() and 7(;) be the processing
time and the arrival time of J). Note that a batch By starts execution either at
time 7r(xy +ap(x) or immediately after the execution of the batch By is finished. If
it starts at time r(gy +ap), it is a regular batch else a delayed batch. Furthermore,
by definition of «H*, p() is the processing time of batch By.

Now, we present the principle of the proof for the (1 + a)-competitivity of aH.
In Ridouard (2003), a whole demonstration is established.



4 Ridouard Frédéric and al.

Theorem aH* is (1 4 «)-competitive.
Proof:

e For 0%, we just consider that J(,,) must be processed by the optimal algorithm;
therefore o™ > 7(,) + p(im)- Futhermore, we can prove that r,,) occurs between
the start and the completion of B,,_1.

e To calculate o,~, we must determine the makespan achieved by aH>. We
recall that the makespan is the completion time of B,,. We have only consider
in the schedule, the last sequence of batches without idle-time. Let By, ..., By,
be such a sequence. By is regular, thus its starting time is sp = 7)) + ap,)-
Therefore we conclude calculating o,g~ adding the processing times of By and
of the batches after By (because there are delayed). Hence we have oqpe =
r(k) F OP(k) + 20k Pl

e We can study all possible inequalities between pxy, P(m—1) and p(y,) to obtain
the expected competitive ratio.

To conclude, «H> is a best possible algorithm for the problem 1|p — batch,r;,b =
00|Cinaz and it is easy to show to «H>° introduce less idle-times than H*°.

4 Conclusion and perspectives

An optimal polynomial off-line algorithm is known for the 1|p — batch,r;,b =
00|Cmaz problem. We have studied the on-line scheduling problem of a single
batching machine to minimize the makespan. For this problem, with bounded or
unbounded batch sizes, the lower bound of the competitive ratio of on-line deter-
ministic algorithm is 1 + «. But conservative algorithms cannot be better than
2-competitive. Now, for the problem 1|p — batch,r;,b = 00|Cpaz, if for each in-
stance we have equal processing times then we propose several best possible on-line
algorithms such as aH or aH2. For non-equal processing times, we have proposed
an on-line algorithm aH*° that inserts less idle-time than H°° but with the same
performance guarantee.

Works are remaining for the general bounded problem since the best known algo-
rithm is 2-competitive whereas the best known lower bound is equal to 1 + a. In
Zhang et al (2001) is proposed an algorithm and they only conjecture that it is 1+«
competitive.

References

LEE, C.Y. and UZSOY, R. (1999): Minimizing makespan on a single batch processing
machine with dynamic job arrivals. In INT. J. PROD. RES., VOL 37, No. 1, 219-
236

LIU, Z. and YU, W. (2000): Scheduling one batch processor subject to job release dates.
Discrete Applied Mathematics, 105, 129-136

RICHARD, P. and RIDOUARD, F. and MARTINEAU, P. (2003): On-line scheduling on
a single batching machine to minimize the makespan. Proc. Industrial Engineering
and Production Management, (IEPM’08), Porto, 2003.

RIDOUARD, F.(2003): Real-Time scheduling: a single batching machine. Master thesis,
University of Poitiers, (in french).

ZHANG, G. and CAI, X. and WONG, C.K. (2001) : On-line algorithms for minimizing
makespan on batch processing machines



