Off line Scheduling of Applications with Variable
Duration Tasks

Stéphane PAILLER and Annie CHOQUET-GENIET

LISI, ENSMA
Téléport 2 1 Avenue Clément Ader
B.P. 40109 F 86961 Futuroscope Cedex France
{pailler,ageniet}@ensma.fr

SuPERvVISOR: Annie CHOQUET-GENIET.

KEYWORDS: variable duration, conditional instructions, local scheduling, global
scheduling, scheduling graph, Petri Nets, off-line scheduling.

Abstract. We propose an off-line scheduling methodology for real time
applications including variable duration tasks, the variations coming
from the presence of conditional instructions in the body of the tasks.
After adapting the task temporal model to this context, we model these
applications using autonomous Petri nets functioning under the earliest
firing rule with terminal set marking. We define two concepts of schedu-
lability: the local schedulability and the global ones and we define the
concept of schedulability graph. Then, we show how to obtain a schedul-
ing graph starting from the graph of global schedulability.

1 Research area

We are concerned with the scheduling for real time applications including tasks
with variable durations. These durations being may depend on the state of the
process controlled by the application, of the position of a parameter compared
to a threshold, inducing different processing according to whether it’s located
above or below the threshold. .. Different kinds of imprecise duration tasks were
already studied, quote the multi representation model [CHB79][Che91], which
associates to a task two implementations, one corresponding to an optimal ser-
vice quality, but with a dubious duration, and the other, with a known duration,
but corresponding to a service of less quality, and the incremental model [CLS8S],
where a task is broken up into two parts, an essential part which must absolutely
be carried out, and a secondary part, which aim is to refine the produced results,
which will be computed if the serviceable time is sufficient. The approach which
we adopt is completely different, since we consider duration fluctuations related
to the presence of junctions in the task code. They are thus structural variations,
in opposition to conceptual variations mentioned above.

We consider applications composed of hard periodic tasks. Each task is char-
acterized by four temporal parameters [LL73][SSR98]: its first release time r;,

its period T}, its relative deadline D;(which is the size of the temporal window
inside which each instance of the task must be computed) and its computation
time. This duration is generally supposed to be known and determinist, this
determinism being coming from the consideration of the worst case: for each
task, we consider the processor maximum execution time. However, during the
application life, some task instances may have shorter durations. A first problem
arising from this worst case consideration is the instability of the online classical
scheduling algorithms (Earliest Deadline (ED) [LL73], Rate Monotonic (RM)
[LL73][LSD89], Least Laxity (LL) [MD78]): this means that if critical resources
are used, the worst case in term of schedulability does not correspond to maxi-
mum effective durations. The decreasing of the duration of a task can lead to it
lateness temporal faults. Furthermore, this approach can correspond to a non-
realistic vision of the application. Indeed, a cause of fluctuation of the execution
times is the presence within the task body, of conditional instructions which
have distinct duration branches. The optics of the worst case transforms, from
the temporal point of view, the conditional blocks into fixed duration blocks,
which duration is equal to the longest duration path [Bab96] which moreover
include all real time primitives present in one or the other of the branches. The
specificity of the conditional instructions is thus erased, and the conditional
management of the resources and synchronization is obliterated.

Even if we direct towards off-line scheduling method, which can be preferable
when we consider highly coupled applications, because they are more powerful
[GCGO2], the sight of the worst case can lead to nonrealistic results: produced
sequences do not correspond to effective executions, and the constraints taken
into account are much stronger than the effective ones.

Our objective is to propose a more realistic vision of such applications, while
considering in an explicit way the conditional blocks. We base our methodology
on a Petri nets modelling enlarging the method proposed in [CGC96][GCGO00a]
for applications constituted of fixed duration periodic tasks. This methodology
deals with synchronous (release time are all equal) or asynchronous tasks (the
first release times are not all the same) using critical criticize mono or multi
instance resources, possibly in reader/writer mode, and communicating.

2 Directions of the work

2.1 The temporal model

We consider real time applications compounded of synchronous periodic tasks.
They can use non-preemptive resources and communicate. These tasks consist
of functional blocks written in a high-level language and of real time primitives
(lock and unlock resources, emission/reception of messages). When task duration
are known and fixed (or if we adopt the worst case point of view), the temporal
model consists of four classical temporal parameters r;,C;,D;,T; [LL73].

Our objective is to refine the functional block description in order to take
conditional instructions into account, which requires to modify the temporal

model of tasks.We extend the Liu-Layland model in order to describe all the
durations of the conditional branches: a task is represented by three deterministic
parameters (the date of the first release, the relative deadline and the period) and
by a multi-set D of durations, each one corresponding to a possible behavior
of the task. Let us note that if there is no conditional instruction, the multi-set
D contains a single duration, which corresponds to the usual model.

2.2 Scheduling graph

Considering on line scheduling strategies, the presence of conditional instruc-
tions matters only for the application validation, and so can be used directly.
On the contrary, off line scheduling strategies must be adapted. If we use the
deterministic model, the objective of an off line scheduling strategy is to build
one or more valid schedules. This cannot be used in our case, because the various
choices in conditional instructions will induce different behaviors of the appli-
cation, which could not be described in a single schedule. In order to describe
the behavior of a conditional application, we define the concept of scheduling
graph: it is a graph where each branch corresponds to a schedule of the appli-
cation obtained by considering for each task only one of their paths. We call
split sub-application each of these applications. We introduce two concepts
of schedulability: An application is said to be locally schedulable if each one of
its split sub-application is schedulable, i.e. there is for each one of them a valid
schedule, An application is said to be globally schedulable if there is at least one
valid scheduling graph, i.e. all deadlines are respected whatever the conditional
choices.

An globally schedulable application is locally schedulable. This comes from
the fact that each branch of a scheduling graph is a valid schedule for one split
sub-application.

2.3 Petri Nets modelling

The schedulability analysis methodology which we proposed relies on [CGC96]
[GCGOO0a]. It consists in modelling the application by a constrained marking
colored Petri nets, under the earliest firing rule. The feasible schedules are then
obtained through the construction of the state graph. The model includes two
parts: the task system which is obtained through a classical modelling of the
functional description of the application, and a clock system which models time
(see figure 1). We have adopted a discrete modelling of time [Kop92][Foh94]:An
external clock (RTC) counts the time in each place Time;, which acts as a local
clock used to release periodically the related tasks. Let us note that each transi-
tion corresponds to an action of duration one time unit, and that all transitions
of the task system are in competition for obtaining the processor. It follows that,
according to the earliest firing rule, at each time, one single valid transition is
fired. It results, that only conservative schedules can be produced. But for the
state of scheduling power, we need also to consider non work conserving sched-
ules. For that purpose, we introduce in the task system a further task. This is

called idle task which models the inactivity of the processor. When transitions
of this task fire the processor remains idle, non work conserving are then also
obtained.

External clock

RTC \

 —|

Time, / \ Time,

@ Temporal

Périod E Structure
S N

T=2 =4
Activation Activation
« a» produced for each 2 Task starts if « a »

activation, i.e. all the T; a a
unit time

A single mark in
Time; (t; = 0)

for new activation
and if « b » for

Activ Activ Lo
atb —(411 2 preceding instance
- ending
ath b a+b%
«atb » produced for !
each instance Task S
(simultaneaous b > ask System
starting) L~ Task 1 Task 2
« b » if instance

ending

/

Fig. 1. Petri Nets model for an application of 2 tasks with respective periods 17 = 2
and T = 4.

The computation time of the idle task is P(1-U) (where U is the processor
utilization factor of the application and P is the LCM of the periods of the
tasks). Since, when conditional tasks are involved, the utilization factor U is no
more deterministic, the duration of the idle task becomes also variable. In order
to match the previously used rule (a transition of the task system fires each unit
time), we have adapted our model so that the duration of the idle task could be
modified during the simulation of the Petri Nets (roughly speaking, it’s equal to
its least value in the initial marking and it is incremented each time a choice of
a shorter path is made within a task).

2.4 Off-line analysis

Once the model constructed, we are are interested in its exploitation in order
to obtain valid scheduling graphs. From this Petri net, we build a P depth final
marking graph. We first remove from it all states without successor, of depth
less than P. They correspond to states of the application where fatal scheduling

decisions have been made: temporal faults can no more be avoided. We call
accessibility graph the reduced graph which contains only valid states.

Besides, this graph contains all the valid scheduling graph. In order to extract
them, we first need to purge the marking graph: the basic idea is that each time,
a choice is made of a path in a task, the choice of the other path corresponding
to the other alternative in the conditional instruction, must be possible. Else,
the first path must be removed.

The last step of the analysis consists then in the extraction of the scheduling
graphs (possibly according to some further criteria as the minimization of the
mean responsive time of a subset of tasks or of the jitter...).

3 Results

We have proposed a scheduling methodology for variable duration tasks with
strict temporal constraints. These duration variations result from strict con-
ditional applications, modelled by Petri nets for an off-line analysis. We have
defined two concepts of schedulability, coming directly from the implications of
conditional tasks: local and global schedulability. We have showed that there is
not equivalence between both.

In addition, we have adopted the concept of idle task, because the duration
of this task is closely related to the duration fluctuations of the application
tasks. We have proposed two way of modelling for the idle task allowing on
one hand a production of non work conserving scheduler and on the other an
optimization in the construction of the marked graph (the idle task enables
to reduce considerably the number of non valid states). One of the proposed
modelling will suited to the study of the local schedulability, an other to the
global one.

The next step of this work consists in enlarging our methodology in order to
take into account asynchronous tasks. For that purpose, we will first concentrate
on the number and the location of idle times, and then on the date of the
beginning of the steady running, in the context of conditional tasks [GCGO0b].

An other way is to extend our methodology to sporadic tasks, induced by
conditional blocks within which new tasks are requested. Our methodology must
be adapted in order to take into account this new kind of task model. Our goal
is then, thanks to a efficient idle time managing, to define a mixed scheduler for
both periodic and sporadic tasks.

References

[Bab96] J.P. BABAU,” Etude du comportement temporel des applications temps réel
contraintes strictes basées sur une analyse d’ordonnangabilité”, These de Doctorat,
Universit de Poitiers, July 1996

[CGCY6] A.CHOQUET-GENIET, D.GENIET, F.COTTET ”Exhaustive Computa-
tion of the scheduled Task Execution Sequences of a Hard Real-time Application”,
4th symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
Uppsala, Sweden, LNCS n 1135, p. 246-262, Springer Verlag, September 1996

[CHB79] R.H. CAMPBELL - K.H. HURTON, G.G. BELFORD, ”Simulations of fault-
tolerant real-time deadline mechanisms ”, Proceedings of FCTS’9, p. 95-101, Jan.
1979

[Che9l] H. CHETTO, M. CHETTO, ” An adaptative scheduling algorithm for fault-
tolerant real-time systems”, Software Engineering Journal, p. 179-186, May 1991

[CL88] J.Y. CHUNG, J.W.S LIU, ” Algorithms for scheduling periodics jobs to mini-
mize average error 7, 9th IEEE RTSS, p.142-152, December 1988

[Foh94] G.FOHLER, ”Flexibility in statically scheduled hard real-time systems”, The-
sis, university of Wien , autriche, April 1994

[GCGO02] E.GROLLEAU, A.CHOQUET-GENIET, ”Off-line Computation of Real-
Time Schedules using Petri nets.”, Discrete Event Dynamic Systems, DEDS; vol.
12(4), Kluwer Academic Publishers, pp. 311-333, October 2002

[GCGO00a] E.GROLLEAU, A.CHOQUET-GENIET, ” Off-line computation of real
time schedule by means of Petri nets ”, Discrete events systems, eds. R.Boel et
G. Stremersch, p. 309-316, Kluwer academic Publishers, Wodes 2000, Gent, Au-
gust 2000

[GCGO0b] E.GROLLEAU, A.CHOQUET-GENIET, ”Cyclicité des ordonnancements
de systémes de taches périodiques différées”, RTS, P.216-231, Paris, March 2000

[Gro99] E.GROLLEAU, ”Ordonnancement temps rel hors-ligne optimal Daide de
rseaux de Petri en environnement monoprocesseur et multiprocesseur. ”, Thse de
Doctorat, Universit de Poitiers, September 1999

[Kop92] H. KOPETZ, ”Sparse time versus dense time in distributed real-time sys-
tems”, 12th Int. Conf. On Distributed Computing Systems, p. 460-467, Japan,
June 1992

[LL73] C.L. LIU, J.W. LAYLAND, ”Scheduling algorithms for multiprogramming in
a hard real-time environment”, Journal of the ACM, 20 (1), pp 46-61, 1973

[LSD89] J. LEHOCZKKY, L.SHA, Y. DING ”The rate monotonic scheduling algo-
rithm : exact characterization and average case behavior” Proceedings of the 10th
IEEE real-time systems symposium, pp 166-171, 1989

[MD78] A.K. MOK, M.L. DERTOUZOS, ”Multi processor scheduling in a hard real-
time environment”, 7th Texas conference on computer Systems, 1978

[SSR98] J.A. STANKOVIC, M. SPURI , K. RAMAMRITHAM, G. C. BUTTAZZO,
”Deadline scheduling for real-time systems”, Kluwer Academic Publishers, ISBN
0 7923 8269 2, 1998

