
The EBP System : Example Based
Programming System for Parametric Design1

Guy Pierra, Jean-Claude Potier and Patrick Girard
Laboratoire d'Informatique Scientifique et Industrielle - ENSMA
Site du Futuroscope - 86960 FUTUROSCOPE - FRANCE
e-mail pierra@ensma.univ-poitiers.fr

Abstract

This paper investigates the problem of parametrics within the perspective of
generating and exchanging families of cognate products. Two ways are discussed.
A parametric representation gathers together within the same structure the
parametric definition and one specific instance: the current instance. An
EXPRESS model that follows this approach is presented. Its integration within the
STEP Standard would enable the exchange of (simple) parametric designs. The
use of a parametric program, based on a standard API, is a more conventional
approach. We present the EBP system which enables such a program to be
generated through purely graphical interactions. This system provides for all the
constructs required in the target program: variables, expressions, functions, and
control structures. If the API itself supports all these constructs, the parametric
representation may be restored on the receiving system.

1 Workshop on Graphics and Modelling in Science and Technology, Coimbra,
Portugal, 27-28 June 1994

The EBP System : Example Based
Programming System for Parametric Design1

Guy Pierra, Jean-Claude Potier and Patrick Girard
Laboratoire d'Informatique Scientifique et Industrielle - ENSMA
Site du Futuroscope - 86960 FUTUROSCOPE - FRANCE
e-mail pierra@ensma.univ-poitiers.fr

Abstract

This paper investigates the problem of parametrics within the perspective of
generating and exchanging families of cognate products. Two ways are discussed.
A parametric representation gathers together within the same structure the
parametric definition and one specific instance: the current instance. An
EXPRESS model that follows this approach is presented. Its integration within the
STEP Standard would enable the exchange of (simple) parametric designs. The
use of a parametric program, based on a standard API, is a more conventional
approach. We present the EBP system which enables such a program to be
generated through purely graphical interactions. This system provides for all the
constructs required in the target program: variables, expressions, functions, and
control structures. If the API itself supports all these constructs, the parametric
representation may be restored on the receiving system.

1 Introduction

Portability of parts libraries is a major economic concern for Computer Aided
Design (CAD) System users, for component manufacturers, and for CAD system
vendors. Such a portability would enable the level of granularity of the data model
of future CAD Systems to be changed. Besides dealing with points, curves,
surfaces and solids, the data model of these systems will consist of technical
objects like bearings, capacitors or stairs according to their field of application. To
allow such a portability, a whole set of concepts, known as the CAD/LIB
approach, has been developed in Europe [1]. This set of concepts is based on the

1 The research described in this paper was funded partially by EU under project
ESPRIT III # 8984 (PLUS), and partially by the French Ministry of Industry under grant
93.4.930080.

experience gained using proprietary solutions and/or national standards that only
partially fulfilled the end-user needs. These concepts constitute the agreed basis of
both the European and the International standardization work in this area
(CEN/TC310-PR ENV 40004 and ISO/TC184/SC4-ISO 13584).

The question of parametrics is crucial for such a topic, and a lot of effort has
been deployed in order to clarify the concept of parametrization, and its
relationship to the concept of a product. For ISO 13584, parametrization is related
to the concept of product (or part) classes. A product class is a set of products
which are described together, which are assigned a common name, and whose
instances may be distinguished from each other by the values of some numeric-
valued, string-valued or Boolean-valued parameters called product (or part)
identification_attributes. Fixing the identification_attributes within the class fully
identifies the product instance. A representation class is a set of representations
which are described together and whose instances may be distinguished from each
other by the values of some numeric-valued, string-valued or Boolean-valued
parameters called representation_attributes. Fixing the representation_attributes
within the class fully specifies the representation instance. A shape class, also
called a (geometric) parametric model, is only a special case of a representation
class. Each instance is fully defined by its parameter values. Exchanging libraries
of parts requires a capability for generating, for exchanging, and for interpreting
parametric models. The goal of this paper is to present the two innovative
approaches developed within the ESPRIT PLUS project, whose role is to validate
and to improve the CAD/LIB concepts, for parametric model generation and
exchange.

In the next section of this paper, we define the requirements for parametric
modelling in the context of parts library definition and exchange. In the third
section, we investigate the concept of parametrics, and we relate it to the concept
of a program and to the example-based programming paradigm. In the fourth
section, we outline the general framework developed to allow parametric
representation exchange within the context of the emerging Standard ISO 10303
(STEP). This recent proposal [2] is under consideration for insertion within STEP.
In the fifth section, we present the EBP system. Its role is to allow an end-user to
generate a parametric model in the format of a program. The use of such a format
is not quite as old-fashioned as it may appear at first glance. Firstly, as shown in
this paper, this parametric description may be generated by purely graphic
interactions, even for those programs that contain control structures, which is not
usual in parametric or variational systems. Secondly, the interpretation of such
programs may generate a parametric representation on the receiving system, if
this system provides such a facility.

2 Parametrics in the Context of Parts Library

Over the last few years a lot of effort has been made in order to ensure more
flexibility of a designed shape. The different approaches, sometimes grouped
under the name dimension-driven geometry [3], address two very different
problems.

2.1 Declarative Model

Declarative approaches [4], and in particular variational geometry, consist of
geometry problem solving: "given a model with a sufficient number of geometric
constraints and a topological or approximate geometric description, we want the
precise model to be evaluated automatically" [3]. The solution may be unknown
to the user. He or she states the constraints. The role of the system is to compute
the (possible) solution(s).

Mathematically, let P be the set of parameters defined over a domain D ⊂ P
(often P = Rn), and let S (shape) be the set of values (points, curves, numeric
values,...) that describe an explicit instance. S belongs to the set S of all the
possible shapes. A declarative model is an equation :

A(P,S) = 0; P D, S S

where A is an operator which is, generally, neither linear nor convex.
A lot of methods have been used to solve this problem: algebraic approaches,

often based on the Newton-Raphson iterative method [5] [6] [7], inference engine
[4] [8], Buchberger's Gröbner Bases Method [9] [10], constraint graphs [11] [12],
and many others [13]. The popular 2D "sketcher", available on various CAD
systems, corresponds to this approach. Unfortunately, there exist only partial
solutions that address specific problems [14]. There is no declarative modeller, to
our knowledge, able to generate in a deterministic way all the shape instances that
belong to a shape class which represents any families of parts.

2.2 Parametric Model

The imperative approach, discussed in this paper, addresses a very different
problem: "given a class of shapes whose design process is well known and may
be supported by the interface of some CAD systems, we want any instance,
characterized by its parameter values to be generated automatically in a
deterministic way". We call such a structure a parametric model.

Mathematically, using the above notations, a parametric model is a function:

F: D a S; S = F(P)

Where F is the function that defines the instance from its parameter values.
Since the domain D is often non-specified, the function may "fail". This means

that the parameter values do not belong to the domain D. Nevertheless, for all sets
of parameter values that belong to D, the parametric model defines exactly one
instance. In the context of Parts Library we are only interested in the parametric
model.

2.3 Structure of a Parametric Model

The function F is always expressed as a composition of functions (which may
consist of a singleton):

F = fn o fn-1 ... o f1

we call the fi functions the parametric functions.
To provide for parametric modelling and exchange requires a capability for

designing, for exchanging and for restoring this composition of functions.

3 Parametric Representations, Imperative Programs and
Example-Based Programming

The characteristic of the parametric approach is that the class level, in fact the
function , is always designed and represented together with one instance. We call
this instance the current instance. Figure 1 shows a very simple example based on
numeric expression. The values which appear on the tree are the current instance
values. In fact these values play two roles. (1) They explicitly represent the
current instance. (2) These values stand for variables whose types may be
deduced from the values.

(6,5) - ** (9)

(11.0) (4.5) (3) (2)

+ (15,5)

Fig. 1. A (parametric) expression

Provided that the user builds this expression on the display computer of the
CAD system, and provided that the expression itself is recorded, the (implicit)
parametric program is perfectly defined:

real: x, y, z, result
integer: i,l,k
z := x - y;
k := i**l;
result := z + k;

Fig. 2. The corresponding program

One difficulty remains. When the user reintroduces, in a subsequent expression,
the value "15.5" on the display computer, the system is incapable of knowing
whether it is a new "parameter", or whether it is the previously computed value.
Fortunately, this problem does not exist in geometry design. Since the entities are
graphical entities stored in the CAD system database, the values for the current
instance are database pointers. Picking up the same entity refers to the same
database pointer (in the current instance), and therefore to the same variable in
the (implicit) program (Fig. 3).

projection <Point_2>

<Point_1> Intersection <line_3>

<line_1> <line_2>

Line_by

<Point_2> <Point_3>

Fig. 3. A sequence of parametric constructs

When, in the above example, <Point_2> is referred to within the second
construct, the implicit variable is clearly identified.

Since numeric values are largely used in geometric design, the same solution
shall be applied for the numeric values of the current instance. In parametric
design (and in the EBP system), numeric values are considered as database
entities. They are stored in the database and they may be accessed through a
menu. Picking up such a value clearly identifies the (implicitly referenced)
variable.

In the parametric approach the current instance is embedded within the program
(or inversely). Example-Based programming allows us to split it up, should we
want to do so.

The concept of example-based programming shares a lot of commonality with
this approach to parametric design. First analysed in HALBERT's PhD
Dissertation [15], and formalised in MYERS' works [16] [17], the main idea of
example-based environments for program design is to avoid the abstraction level

of variables by permitting the user to deal with a specific value of each variable
(the "example"). In an example-based visual environment, instead of selecting the
functions and picking up the variables to which each function shall apply, the user
(programmer) does the function on values that stand for the program variables.
The difference with parametric design is that, in example-based programming
systems, the (implicit) program is separated from the example (the current
instance). All created values (in the example) stand for implicit variable
declaration (in the program context). All references to values (in the example)
stand for reference to variables (in the implicit program). One main role of these
systems is to manage the context of the program which ensures the indirect link
between example values and program variables [18]. Fig. 4 shows the dynamic
context management of the EBP system presented in section 5.

15.5
9

6.5
2
3

4.5
11.0

11.0
4.5
6.5
15.5

3
2
9

real_1
real_2
real_3
real_4

integer_1
integer_2
integer_3

+ {real_1}

 - {real_3} ** {integer_3}

{real_1} {real_2} {integer_1} {integer_2}
Example Dynamic_context Program

Fig. 4. The dynamic context management of example-based programming
systems

4 A Neutral STEP-Compatible Data Model of Parametric
Representations

STEP is an International Standard for the computer-interpretable representation
and exchange of product data. Its objective is to provide a neutral mechanism
capable of describing product data throughout the life cycle of a product,
independent from any particular system. STEP, which is now being published,
contains a lot of innovative features such as:
– the use of formal methods for data specification,
– the definition of mappings from data models to implementation forms,
– the definition of powerful resources for product modelling, and, in particular,
geometric modelling.

Nevertheless, in its development process STEP focused on explicit product
modelling, and, in particular, on explicit geometry. In STEP a representation is
defined as a set of (explicit) representation_items (e.g., in geometry: points,
curves, surfaces or solids) associated with a representation_context.

ENTITY representation
items: SET [1:?] OF representation_item;
context_of_items: representation_context;

END_ENTITY;

Fig. 5. The STEP data model for representation in EXPRESS

Since the goal of the programs generated by the EBP system presented in
section 5 is to create geometry within the database of any target CAD-systems
(supporting the standardized API), and since more and more CAD-systems
provide proprietary parametric modelling facilities, it appeared necessary to try to
develop a formal model of the database of such systems. The main objective of
this model was to investigate whether or not it was possible, from a parametric
program created by the EBP system, to generate a parametric representation if the
receiving system provided for such modelling facilities. The result of this
investigation, outlined in this section was twofold. (1) It showed that the answer
to this question was positive provided that the numeric entities and the numeric
expressions might be defined by interface functions. (2) It provides a global
framework for the integration of parametric product modelling facilities within
the context of STEP [2].

As discussed in section 3, the basis of this model is to propose to link
systematically a parametric model with one specific instance (the current
instance). We call such a parametric model a parametric representation. This
approach enables us to consider the current instance of a parametric
representation, and therefore the parametric representation itself as a special case
(a SUBTYPE) of a STEP representation. This is shown in Figure 6 using the
EXPRESS-G graphic formalism .

current instance

Explicit instance
e.g., representation

Parametric instance
e.g., Parametric
representation

Explicit item

parameters

items

(SET)

items

depends

defines
and (SET)

from
(SET)

pm_definition_relationship

explicit
instance

level

program
level

Explicit item
(current instance)

(STEP)
(Parametrics)

(LIST)

Fig. 6. The (simplified) data model of a parametric representation

The particularities of this SUBTYPE are two fold. (1) Each representation_item
is referred to by one entity, called a pm_definition_relationship, which provides
its parametric definition and corresponds to the functions fi of clause 2.3. (2)The
set of representation_items is now ordered. The parametric definition of each
entity defines this entity on the basis of some representation parameter and/or
some other representation items but these latter shall precede the referenced entity
in the entity list.

Moreover, a (parametric) representation instance may itself be dependent on the
context in which the instance is inserted. For example, the extended length of a
pneumatic cylinder depends on the other parts of the global design. When an
instance is inserted in a higher-level assembly, it becomes an occurrence. And an
occurrence representation depends on the value of some other parameters called
context_parameters. Modifying context_parameters (e.g., compressed length of a
spring) only modifies the occurrence representation, it does not change the
product (instance) itself. Generally speaking, the values of the occurrence context
parameters result, directly or indirectly, from the representations attributes or
context parameters of the (parametric) representation in which the occurrence is
inserted.

Finally, context_integrity_constraints and global_integrity_constraints enables
the modelling of the domain D (see clause 2.2), and an output interface specifies
the representation_items (often called the "datums") that shall be instantiated in
any occurrence representation.

ENTITY pm_representation
SUBTYPE OF (representation);
representation_attributes :LIST[1:?] OF UNIQUE

pm_representation_parameter;
context_parameters :LIST[0:?] OF UNIQUE

pm_representation_parameter;
parametric_definition :LIST[1:?] OF UNIQUE

representation_item;
context_integrity_constraints :OPTIONAL SET[1:?] OF

Boolean_expression;
global_integrity_constraints :OPTIONAL SET[1:?] OF

Boolean_expression;
output_interface :LIST[0:?] OF UNIQUE

pm_named_representation_item;
DERIVE

SELF\representation.items :SET[1:?] OF representation_item
:SELF.representation_attributes

 +SELF.context_parameters
 +SELF.parametric_definition;

WHERE
...
END-ENTITY;

Fig. 7. The proposed EXPRESS model for parametric representation

Two categories (i.e., SUBTYPES) of parametric functions exist, modelled as
pm_definition_relationship.

A pm_canonical_definition is a special case of pm_definition_relationship
which is associated one to one to any representation_item and which:
– associates to each numeric-valued, string-valued or Boolean-valued attribute of
this representation_item one expression that enables its computation, and,
– collects, in the used_items derived attribute:
(1) the representation_items directly or indirectly referred to by these expressions,
(through the used_representation_item expression tree traversal function) and,
(2) the representation_items directly referred to by the representation_item itself.
This entity shall be subtyped for each representation_item.

The role of the used_items attribute is to assert that the composition of
parametric functions (see clause 2.3) is consistent.

ENTITY cartesian_point
SUBTYPE OF (point);
coordinates: LIST[1:3] OF

 length_measure;
END_ENTITY;

ENTITY pm_canonical_cartesian_point
SUBTYPE OF

(pm_canonical_definition);
SELF\pm_definition_relationship.de

fines : cartesian_point;
coordinates: LIST [1:3] OF

numeric_expressions;
DERIVE

SELF\pm_definition_relationship.us
ed_item:

SET [0:?] OF representation_item
:=used_representation_item

(SELF.coordinates);
END_ENTITY;

Fig. 8. The STEP definition of a cartesian_point and its proposed
pm_canonical_definition

A pm_constraint_based_definition is a parametric function that defines a new
representation_item through constraints with pre-existing representation_items.
No canonical definition for such constraint-based parametric functions exists: it
depends on the system (or standard format) designer choice

ENTITY
SUBTYPE OF pm_constraint_based_definition
item_1: line;
item_2: line_or_plane

DERIVE
SELF\pm_definition_relationship.used_item
 :SET[0:?] OF representation_item
 :=[SELF•item_1] +[SELF•item_2];

END-ENTITY;

Fig. 9. A (simplified) example of a pm_constraint_based_definition for
cartesian_point

Besides its interest for exchanging directly parametric models in the format of
pm_representations, this data model points out the role of expressions, and, in
particular, of numeric expressions. In program-oriented parametric model
exchange, these expressions shall be:

- captured by the EBP system during interactive program construction, and
- restored (through the interface) on the receiving system in order to be able to
restore not only the current instance but also the parametric representation itself.

It should be emphasised that these expressions shall contain not only the usual
operators and functions (+,*,/..., SIN, ...), but also grapho-numeric functions
which enables a value which results from some other representation_items (e.g.,
distance_of(.,.); radius_of (.),...) to be involved in a numeric expression.

5 The EBP System

Parametric programs constitute the other method of exchanging parametric
models. The EBP system is a programming environment for designing such
programs. Based on the visual example-based-programming paradigm, EBP is
intended to reduce the programming tasks required for parametric program
generation to a minimum. During an interactive session, a draftsman only designs
one instance (the example) on a CAD system. As long as the draftsman acts, the
EBP system records his work, and translates it into a real program.

The CAD system builds up the example representation by means of system
procedures involving parameters. These procedures and parameters are implicitly
controlled, in interactive mode, by the user manipulating commands and (values)
operands. To record a program requires the explicit description of the (implicitly)
involved procedures and parameters. Is this translation easy?

Obviously, this translation is not straightforward. The first difficulty concerns
the management of objects, what we have called the "dynamic context" in the
third section of this paper. This object management allows direct translation of
operands (values) in references (variable names). The second difficulty split into
the two classical problems known in compilation theory as interpretation and code
generation. We will describe how these different problems are addressed in the
EBP system.

5.1 Object Management

The first difference between designing an explicit representation and specifying a
program lies at the level of the manipulated objects. Command languages refer to
values. Programs refer to variables. If we consider the designed representation as
an example of the (implicit) program, the problem is to identify what values stand
for parameters, constants and internal variables.

As far as the geometric entities are concerned we have already pointed out that
the (example) values may be captured as CAD database pointers. The condition,
applied in the EBP system, is to capture their values above the designation layer
of the dialogue interface (see Fig. 10). Therefore, the only problem is to create

and to manage the (dynamic) context of the program. Each entity creation has to
generate an internal variable (implicit) declaration. Recording does not only
consist of noticing interactions: it requires the object manager (named "context
manager") to be notified for each object creation or deletion. This is done through
a specific link between the CAD System database and EBP context manager (see
fig.10).

As far as numeric values are concerned, all the parameters shall be declared by
a specific command and are considered as database entities. When an explicit
numeric value is involved in an expression, it is implicitly considered as a
constant.

5.2 Parsing the Command Script

In compilation theory, program interpretation is based on parsing. The syntactic
abstract tree is the basis of semantic analysis and code generation. Unfortunately,
this approach may not be used for the interpretation of interactive command
languages.

Firstly, command languages have in fact no (or an extremely limited) syntax.
All the sequences of interactions are allowed, even if they are useless. No fatal
error is raised after any interaction inputs (i.e., a command language never crashes
with an "error # 347" message !). The user is intended to react to the interactive
command messages. Therefore, interpretation of such incomplete or incoherent
sequences of commands and operands would lead to incorrect syntactic abstract
trees.

Secondly, command languages are heavily context-sensitive. Dialogue
interfaces contain a lot of dialogue context variables that enable command
remanence, multiplicity of "threads of task accomplishment"[19] or inhibition of
previous commands. Command remanence means that some procedure may be
invoked twice, without repetition of the interactive command. Multiple threads of
task accomplishment allow the user to stop an unfinished sequence of interactions
in order to carry out realise another one, and to terminate the first sequence after
the end of the second one. So, the operands of one command are embedded within
the operands of another.

Such dialogue threads act in fact as non context-free languages, which are
known to be hardly translatable. These two aspects show the non-feasibility of
syntax-driven translation.

5.3 From Syntax- to Semantic-Driven Translation

Even if, for ergonomic reasons, dialogue interfaces enable any dialogue (or near
any dialogue) sequences, some representation is in fact built as a result. The CAD
system procedures which are really triggered constitute the semantics of the
command sequence. Capturing these semantics enables the semantic tree of the

parametric program to be directly built. In the EBP system, the user commands
are captured only when a system procedure is triggered, and not within (or below)
the dialogue interface.

CAD Dialog Interface

CAD Data Base CAD Procedures

EBP Program

EBP Dynamic context

var1 var_2 param_1 param_3

<line_1> <point_3> 12.0 8.0

TOKENCapture

create/delete

Fig. 10. Architecture of the EBP system

5.4 The Problem of Expressions

We emphasised, in section four, the need to capture expressions. These
expressions may be numeric (e.g., <Param_2> * <Param_2>), grapho-numeric
(e.g., distance_of <Point_1>, <Point_2>) or graphic (e.g., projection_of
<Point_1> onto <Line_1>). When a procedure is triggered, only the result of such
expressions is transferred. Recording only this result would be a loss of the real
parametric function. When constants are the unique objects involved in an
expression, there is no real loss. On the other hand, when parameters or
representation_items are involved, such a loss is unacceptable.

+

 - (param_3)

{param_1} {4.5}

{15.5}

<line_1>

projection

Intersection <line_3>

<line_2>

{ (1.0, 2.0) }Circle_cent_and_rad (,)

TOKEN

Fig. 11. Content of the captured tokens

The solution used in the EBP system (in fact, in the dialogue interface of the
CAD system) consists of gathering within the same token the expression value
and its syntactic abstract tree. When an expression is not used (the user changes
his "thread of task accomplishment", or his mind) the expression remains in the
dialogue interface and does not appear within the program. When the result of an
expression is sent to a CAD system procedure, the EBP system captures the name
of the procedure together with the expression abstract trees.

5.5 Ambiguity in Constraint-Based Geometry

The other major difficulty is the ambiguity of constraint-based geometry. In a
graphical command language, such an ambiguity is removed by the pointing
device coordinates. To capture such coordinates is useless: changing the program
parameters would change the meaning of the position coordinates. In EBP, this
problem is solved by duplicating all the ambiguous constraint-based construction.
The version used during program (implicit) construction obtains the pointing
device coordinates as input parameters, and returns some specific value (based on
entity orientations) as output parameter. The version used during program
execution (and code generation) uses this specific value as input parameter to
remove the ambiguity of the construction. It should be noted that this problem is a
general one in parametric design. All geometric programming interfaces must
address it, or be restricted to non-ambiguous (very poor indeed) constructs. For
example, in 2D geometry, most of the constructs that involve a line extremity, or
a tangency to a circle are ambiguous.

5.6 Introducing Control Structure in Command Languages

Unlike the usual parametric or variational systems, and unlike most command
languages, EBP provides purely interactive graphic facilities for control structure
design.

We only outline here the solution used which was developed for the LIKE
system [20] [21].The predicates of these control structures are defined using the
display computer which is part of the interface provided to the user. The
recurrence definition of a loop is specified by the interactive user by designing
successively (1) the control predicate, (2) the first (example) step of the loop and
(3) the second step of the loop. EBP may then infer (algorithmically) the
recurrence relationship. Therefore, it may generate the other steps and store, in the
semantic tree, the recurrence relationship.

The reason for the lack of control structures in most example-based
programming systems is to be found in the dynamic context management.
Identifying objects during the interaction process requires, as we have previously
shown, an object management, with an automatic naming process of the created
objects. This automatic process is in all cases some kind of numbering. Control

structures are very inappropriate for this automatic naming. Alternative structures
create different objects for each branch. Iterations create inherently varying
numbers of objects. What are the consequences for the subsequent naming?

In the EBP system, we defined strong rules to manage the dynamic context. The
idea is based on the concept of local variables in subroutines. The exchange
between the calling process (the embedding context of the program) and the
called the subroutines (contexts that are local to control structure branches) are
governed by this metaphor. For example, an object which was created during a
loop structure is not individually attainable in the embedding program (after the
end of the loop structure). The set of entities that were created during the same
loop structure are attainable as a whole. These rules, which seem to be quite
natural for end-users, solve all the context management problems that result from
the introduction of control structures in example-based programming systems
[21].

6 Conclusion

Parametrics is an emerging technology that encompasses several different
problems. In this paper we have defined a parametric model as a function that
depends on an explicit set of parameters and that may generate each
representation instance by composition of internal functions. There are two ways
of representing such a parametric model: either as a data structure that we called a
parametric representation, or as a parametric program referring to an API. As far
as the parametric representation is concerned, we represented the global function
by embedding in its description one specific instance: the current instance. The
values contained in this instance stand for the functions variables and are referred
to by the functions that constitute the global function. We have presented the
overall architecture of an EXPRESS model that follows this approach and that
might be integrated into the STEP standard to provide for parametric product
modelling facilities exchange.

As far as the second approach is concerned, which corresponds to the
parametric modelling facilities provided in the first release of the Parts Library
Standard (ISO 13584), we have used the Example Based Programming paradigm
to enable the design of such a program by an end-user. In the EBP system, the
user designs an example. The values of the example are captured by the EBP
system which creates corresponding variables. The recorded functions refer to
these variables, and EBP manages, both in recording and in running mode, a
dynamic context where program variables are associated with example values.
The functions are captured on the surface of the user interface, and each token
contains not only the operand values, but also their whole expression tree if these
values result from expressions. These expressions are stored within the program,
and, when running such a program on a parametric system supporting the API ,

the parametric representation may be restored within its database provided that
the API supports both the parametric functions and the expressions, and provided
that the parametric program is only sequential. Finally EBP also enables to
generation of parametric programs that contain control structures. Their
expressive power is therefore greater than the usual parametric representations.

References

[1] Pierra, G.: Modelling classes of pre-existing components in a CIM
perspective: the ISO 13584/ENV 40004 approach, Revue Intern.
CFAO et infographie,9,3, 1994, p 435-454.

[2] Pierra, G.: A general framework for parametric product modelling,
ISO-STEP meeting, Davos, Mai 1994, ISO/TC 184/SC4/WG2 N183,
51 p.

[3] Roller, D., Schonek, F., Verroust, A.: Dimension-driven geometry in
CAD : a survey in : Theory and Practice on Geometric Modeling,
Springer Verlag, 1989, pp. 509-523.

[4] Sunde, G.: A CAD system with declarative Specification of Shape.
Proc. of EuroGraphigs Workshop on Intelligent CAD Systems,
Noodwijkerhout, The Nederlands, 21-24 April, 1987.

[5] Hillyard R., Braid, I.: Analysis of dimensions and tolerances in
computer-aided mechanical design. Computer Aided Design, 10, 3,
1978, pp. 161-166.

[6] Light, R., Gossard, D.: Modification of geometric models through
variational geometry. Computer Aided Design, 14, 4, 1982, pp. 209-
214.

[7] Lee, K., Andrews, G.: Inference of the positions of components in an
assembly : Part 2. Computer Aided Design, 17, 1, 1985, pp. 20-24.

[8] Aldefeld, B.: Variation of geometries based on a geometric-reasoning
method. Computer Aided Design, 20, 3, 1988, pp. 65-72.

[9] Chou, S.-C.: Proving-Elementary Geometry Theorems Using Wu's
Algorithm, Contemporary Mathematics, 29, AMS, 1984, 243-286.

[10] Chou, S.-C., Schelter, W.F. & Yang, J.-G.: Characteristic Sets and
Gröbner Bases in Geometry Theorem Proving, Workshop on.
Computer-Aided Geometric Reasoning, INRIA, Sophia-Antipolis,
1987, pp.29-56.

[11] Sutherland, I. E.: A Man-Machine Graphical Communication System,
Proc. of AFIPS Spring Joint Comp. Conf., 23, 1963, pp. 329-346.

[12] Kin, N.: PictureEditor : A 2D Picture Editing System Based on
Geometric Constructions and Constraints. Proc. Comp. Graphics
Int.'89, Leeds, Springer-Verlag, 1989, pp.193-208.

[13] Dufour, J.F.: Programmation et résolution de problèmes de
construction géométrique, BIGRE ,67, Jan. 1990, pp..136-147.

[14] Verroust, A.: Construction d'objets géométriques définis par des
contraintes. BIGRE, 67, Jan. 1990, pp. 62-74

[15] Halbert, D.: Programming by example. PhD. Thesis, Berkeley Univ.,
California, 1984, pp.121.

[16] Myers, B., A.: Visual Programming, Programming by Examples, and
Program Visualization : A Taxonomy. Proc. of SIGCHI 86, Human
Factors in Computer Systems, New-York, 1986, pp. 59-66.

[17] Myers, B.: Taxonomies of Visual Programming and Program
Visualization. J. of Visual Lang. and Comp., 1, 1990, 97-123.

[18] Girard, P., Pierra, G.: Command Recording versus Parametric and
Variational Systems, and old/new third way of parametrizing CAD
models by End Users. COMPEURO'93 (IEEE-SEE), 1993, pp. 194-
200.

[19] Bass, L., Coutaz, J.: Developing Software for the User Interface. SEI
Series in Software Engineering, Addison-Wesley, 1991, 251 p.

[20] Girard, P.: Environnement de programmation pour non-
programmeurs et parametrage en conception assistée par ordinateur:
le système Like, PhD Thesis, Univ. of Poitiers, 1992, 195 p.

[21] Girard, P., Pierra, G.: One more step towards end-user programming
environments: introducing control structures in visual example-based
programming. (to appear).

	Réf: Pierra G., Potier J.-C., & Girard P. The EBP system : Example Based Programming for Parametric Design. in Modelling and Graphics in Science and Technology, Eds. J. Teixeira & J. Rix, Springer-Verlag, 1996, pp. 124-140.

