Patry G. & Girard P. GIPSE: a Model-Based System for CAD. Third Conference on
Computer-Aided Design of User Interfaces (CADUI'99), Louvain-la-Neuve,
Belgique, 21-23 October 1999. p. 61-72.

Chapter 6
GIPSE, a Model Based System for CAD Software

GUILLAUME PATRY AND PATRICK GIRARD
LISI / ENSMA, Téléport 2, 1 Avenue Clément Ader

BP 40109, 86961 Futuroscope Chasseneuil Cedex
{patry, girard}@ensma.fr

Tel :(33/0)5.49.49.80.70 - Fax : (33/0) 5.49.49.80.64

Key words: ~ Model-Based Systems, CAD, User Interface, CADUI

Abstract: We describe in this paper GIPSE, a model based system that is specialised in
CAD systems. GIPSE facilitates the design and the development of
applications using structured dialogues. From a functional core and some
initialisation files describing the user interface properties such as the tasks,
their structuration and the presentation, GIPSE allows the online construction
of self-running applications.

1. INTRODUCTION

User interface and dialogue control are a large part of any software. They
are hard to implement, to debug and to maintain [11]. The problem grows
much worse when the application dialogue extends, or when it follows some
dialogue strategy where relations between user tasks are not well defined.
Such is the case in CAD systems. The user must be able to express a lot of
geometrical relations between entities, leading to a structured dialogue
where parameters of tasks may be given by the way of a (possible huge)
number of subtasks.

A lot of tools have been created in order to facilitate designing user
interfaces. These tools range from toolkits and application frameworks to
model based systems. In the latter ones, the desired user interface is

62

automatically generated from a specification made of declarative models.
However, few of these tools address the problem of structured dialogues.

Our goal in this paper is to describe GIPSE, a model based system
specialised in applications where this dialogue form is usual. In the
subsequent section, we explain more precisely the particularities of our main
domain, CAD software. A natural decomposition of structured dialogue in a
general task structure follows. Then we describe GIPSE, our specialised
model based system, and give some example of its use.

2. DOMAIN

Technical design is a domain where construction constraints are largely
used. In order to be helpful for end users, Computer Aided Design (CAD)
software have to facilitate the expression of these constraints. Graphical
applications do not usually ask the user for carefully positioning objects. On
the contrary, CAD systems require the user to strictly define the geometrical
entities that make up technical objects. So, systems offer a wide range of
methods for constructing these entities. A software from the former type
may allow the construction of an ellipse with two mouse interactions, and
then may allow its modification by the way of direct manipulation. On the
contrary, CAD systems allow the creation of these entities in terms of centre,
radius, axis, or allow the use of constraints such as tangency or coincidence.
Moreover, these parameters can themselves be defined by the way of
numerical or grapho-numerical expressions. Circle creation, for example,
can use a subtask that returns the projection of a position on a line to define
its centre, and then use another subtask to calculate the distance between two
entities as the radius. The dialogue associated with a task is recursively
including dialogues associated with subtasks allowing the realisation of
intermediate goals.

This kind of dialogue is called a structured one [15]. On the one hand, it
gives to the user a very powerful way of expressing constructs constraints.
On the other hand, using these dialogues requires specific software
architecture, to reduce the combinatorial explosion of subtask calls. Some
examples of these architectures may be found [4, 10, 18].

Nevertheless definition and implementation of these dialogues is very
difficult. Current user interface development systems lack the ability to
describe them. These systems, such as JANUS [1], MASTERMIND [20]
TRIDENT [2] or MECANO/Mobi-D [16, 17], may be used in fields where
the user’s tasks are well defined. Examples of such fields are database
manipulation (JANUS), or stock management (Mobi-D). In such systems,
the number of tasks allowed to the user at any point of the session is limited.

63

In contrast, structured dialogues give the user many ways of expressing
his/her needs: any (sub)task able to produce a parameter from a currently
waited kind must be available.

3. STRUCTURED DIALOGUES

Structured dialogues may be seen as a set of producers and consumers.
Some tasks consume data produced by some other tasks. In our previous
example, the "Create Circle" task gets data from two others tasks,
"Projection" and "Distance"”, which produce respectively one position and
one real value.

Tasks may be decomposed in three categories: terminal tasks, production
tasks and opportunistic tasks.

— Terminal tasks use data, but do not produce’ them. They are used to
modify the application (mainly geometrical) model. Some examples are
tasks allowing entity creation, destruction or modification. These tasks
are the main reason for the existence of CAD systems. At any moment,
only one terminal task may be active. One can not create a circle while
creating a line. Two dialogue strategies may apply: either the expression
of a new terminal task is forbidden (by disabling menu components),
either this expression replaces the current one, which is then cancelled,
with all its subtasks.

— Production tasks consume data in order to produce another data that will
be transmitted to another tasks. These subtasks exist solely in the context
of another task, either a terminal task or a production (sub)task. If no
terminal task is in use (i.e. the user is not currently modifying the model),
then no production task must be available, as there is no one to transmit
data. It is the existence of such tasks that define structured dialogue.
Production tasks are defined by the result they give, and not by their
client (to which task they give it). The "Centre" task gives a position, and
may be used to define the extremity of a line or the centre of an ellipse.
Last, production tasks do not modify the application model. They may
extract some information from their parameters ("Centre"), or they may
calculate some value ("Distance™), but they do not create, modify or
destroy any entity while doing so.

— Opportunist tasks are the third kind of tasks in structured dialogues.
These are the tasks that neither modify the model, neither produce

Be careful that we are interested here in dialogue. So, when we claim that terminal tasks
do not produce anything, it is in the sense of dialogue: they do not produce any data
(dialogue token) for other tasks. Obviously, they produce entities in the CAD system
model.

64

information for other tasks. These tasks allow end users for asking for a
modification of the system to allow better realisation of tasks. An
example of this kind of task is the translation of the visible content of a
window. Opportunist tasks modify the presentation of data, but do not
change them. These tasks may be used at any moment, without
cancelling the currently active terminal task. The former temporarily
replaces the latter, until it is completed. The terminal task then resumes
as if no interruption had ever been done. In our previous example of a
circle construction, the user may, at any moment, ask for a zoom, define
the position that delimits the zoomed area, and then resume his/her
construction.

4. GIPSE: A MODEL-BASED SYSTEM

GIPSE is a model-based system specialised in software that use
structured dialogues. Its main goal is to provide a basis than can be extended
later to provide additional capacities. One of the stated goals was to allow
for fast modification of the dialogue.

GIPSE does not generate code. It is composed of a software component
that links itself with the application in order to manage the dialogue. It acts
as the dialogue controller for the whole application. As the application starts-
up, specifications of the dialogue properties and functional core
functionalities are loaded from textual models. From this point, GIPSE
manages the dialogue until the end of the session with the application.

This structure has several benefits. First, as the model is directly used by
the system, there is no recompilation time whenever there is a change in the
dialogue structure. Second, as the dialogue is itself a data structure, in
opposition to hard coded dialogue, it is possible to dynamically modify it.
The user may be allowed to remove unneeded functionnalities, or to add new
ones, created by the way of Programming by Demonstration (PbD) [3]. This
leads to the possible extension and specialisation of a system by the end user
himself/herself [14]. Third, it is possible to integrate verification tools in the
software itself. Some works have already been done on that subject [9]. This
ability to examine the software dialogue, even during run time, comes handy
when the end user is able to modify the dialogue. Inconsistency or incorrect
dialogue structures may be notified.

In this paper, we do not focus on the PbD features of GIPSE, which is a
purely interactive tool that allows developing interactive applications by
extension/specialisation [6, 13, 14]. We only deal with declarative models
that are used by GIPSE to manage the interactive system

65
4.1 Task structuration in GIPSE

GIPSE uses an architectural model called H* [7], which was designed
specifically for CAD systems. In the H* model, the dialogue controller is
composed of a hierarchical set of agents, named dialogue interactors,
relatively to the theory of Interactors ([8, 12]). Each of them corresponds to a
task level: they group and structure system tasks in a hierarchical fashion.
They are defined by the nature of information they accept as input, and
produce output information, which is the result of the task. Usual dialogue
interactors in drawing applications include designation (picking graphical
entities), information (giving information such as centre or extremity of
entities), calculus (projection, distance), and creation. Communications
between interactors are automatically managed by a Monitor. Interactors
may accept information from any other interactor that is lower in the
hierarchy, without knowing who produced it. The communication unit is a
typed element, named Token, which may either be a command (order to
initiate an action) or data (parameter of actions). The monitor transmits
tokens to the next interactor in the hierarchy that waits for such typed data.

Monitor Interactors

| Create_Circle (Position, Real) |

: | Projection (Position, Object) Position|

: | Designation (Position) Object |

User

Figure 1. Dialogue controller in GIPSE

This model of dialogue controller allows for a great deal of independence
between tasks. The monitor manages communication between separate task
levels. Possible interactions between tasks of the same level are managed by
the interactor that manages this level. Each task can be defined
independently from each other. The same thing can be said about interactors.
Each one is independent from the other, and manages the tasks at its own
level. The number of other interactors able to provide or consume data does
not matter. An interactor provides data to and consumes data from the
monitor, and transmits theses data to any active task via the monitor. One
consequence of that structure is no need for complex task and dialogue
models (see section 4.2).

66

It should be noticed that this model is focusing on dialogue control.
Presentation of model objects is out of its scope. CAD entities are highly
structured and relational. Their presentation on the screen is therefore left to
the functional core, using some specialised software component.

4.2 Specification of CAD software with GIPSE

A system, in the H* model, can be specified from three components:
tokens (communication unit between tasks), tasks (communication unit
between user and system) and interactors (task structuring unit). The monitor
can be derived from the interactors order.

The description of these components, along with a description of the
presentation, allows for the complete specification of the application
dialogue. The token specification is akin to the object model, whereas tasks
specification constitutes the task model, interactors specification represents
the dialogue model and presentation specification states for the presentation
model.

4.2.1 Object model

Tokens are objects that communicate user's intention. They may contain
data (references to model objects, or values), or commands initiating tasks.
Commands, and some data such as string or numerical value, exist in any
application. Most of them, however, are application-dependent and refer to
model objects.

Tokens are a communication unit, allowing tasks to freely exchange data.
The exact structure and value of these objects are of no importance to other
dialogue controller objects. The interactor that manages a given task does
not care what is the value of a position. What is important is the nature of the
transmitted data, as it allows it to know when the task may be called (i.e.

have received all parameters).

-- Tokens

Rectangle

Line

Point

Arc

Unbounded_Line

Circle

-- Groups

Support_Object {Unbounded_Line, Circle}
Drawing_Object {Rectangle, Line, Point, Arc}
Graphical_Object {Support_Object, Drawing_Object}

Figure 2. Object model example

The object model of the dialogue controller contains the list of
application-dependent token types, and provides for a structuring mechanism

67

(Figure 2.). This structuring mechanism (groups) allows for concision in task
description, as we will see in the next section.

422 Task model

Thanks for the H* architecture, tasks may be defined individually,
without any connection between them. A name, a list of input parameters
and one (optional) output parameter define each task. This specification
allows the system to automatically disable any task that cannot give any
parameter of the waited kind. As it has been said, it defines the tasks in terms
of what it takes and what it produces.

Some help line may also be added to the description. This is used by the
system to provide the user for dynamic help. Figure 3 shows an example of
task description. In the second case, we can see the use of structuring: only
one task description is required for all the graphical entities (every entities in

our small example).
-- Terminal task
Task{
Create_Circle (Position, Real)
Help {Circle creation by center and radius}
Parameter {Position, “Center”}
parameter {Real, ‘“Radius”}

-- Production task
Task {
Center {Graphical_Object} Position
Help {give an Object’s Center}
Parameter {Graphical_Object, “Give an object”}

}

Figure 3. Task model example

Other characteristics of the task may be added for PbD purpose (see
later). Such characteristics are, for example, the reaction of the task when
macro-recording is on. Some tasks may be ignored (that is, not recorded),
while others are strictly forbidden ("save" for example).

423 Interactor Model

The Interactor model defines the dialogue. Each interactor defines the
dialogue at its own level, while the hierarchy of interactors gives an implicit
rule on which task may use which other tasks. A task from a given interactor
can use any task from a lower level interactor, given that, this lower task is
able to produce data that are waited by the higher one.

Interactors define the dialogue at their level using a MAD-like approach
[19]. Tasks are structured with Alternative (ALT) and Sequence (SEQ),
possibly repetitive (ALT* and SEQ¥).

68

For example, the “Creation” interactor definition may look like this:
Interacteur Creation {

Seq {

Alt {
Task {New}
Task {Open}

b

Alt {
Alt* {
Task {Create_Circle (Position, Real)}
Task {Create_Rectangle (Position, Position)}
Task {Create_Line (Position, Position)}

}
Task {Close}
Task {Quit}
T
be
}

Figure 4. Dialogue model example

The end user must begin by either creating a new document or opening
an existing one. It then can either create an indefinite amount of objects (the
Alt*), or finish the session by closing the document or exiting the
application. Other interactors are defined in the same way. Most of them are
composed of a simple alternative between multiple tasks. The language
constructs are very few; the communications between interactors and the
behaviour of the monitor (described in 4.1) extend automatically the
possibilities of the language.

This description defines the static constraints on dialogue: what is
eventually available at any given moment. Dynamic constraints are managed
by the system at run-time: in the set of available tasks, only tasks that
produce expected data are effectively available. Others are disabled (greyed
out) by the system. This is completely automatic.

The description of the dialogue in independent chunks, themselves
composed of structured tasks, and linked by explicit rules, allows for an easy
description of the whole dialogue. Adding a new task to the system implies
only the modification of the interactor that will manage it, to have this task
fully integrated with the whole application dialogue. The same description,
realised via a state-transition diagram, would be unmanageable, as the
number of possible transitions between tasks is exponential. The adjunction
of a new task would, in this case, imply the creation of one transition from
any task able to consume the produced data, and to any task able to produce
waited data.

424 Presentation Model

Presentation of a CAD system may be boiled down to one (or more)
visualisation space and some way to express commands and data to the

69

system. The former does not concern us, as it is under the control of the
model itself. The latter are composed of menus and dialogue boxes that
allow entering specific data, such as strings, or numerical values.

The presentation model we use is based on tasks, and concentrates on
ways of initiating them. We use menus and submenus as containers for

labels or pictures that, when used by user, activate the corresponding tasks.
Menu Objet {
Label Line {Create_Line (Position, Position)}
Label Circle {
Create_Circle (Position, Reel)
Create_Circle (Position, Position)}
Label Rectangle {Create_Rectangle (Position, Position)}
Menu Modification {
Label Color {Modify_Color (Object)}
Label Style {Modify_Style (Object)}
}

}

Figure 5. Presentation model example

As shown by the "Circle" label (Figure 5), a label may be associated with
more than one task. The only restriction is that these tasks should be in the
same interactor. When the user selects this label, both tasks are initiated. The
system then allows unrestricted use of any task that give a parameter for any
of these two tasks. A parameter is transmitted to any task that waits for it. A
parameter that is accepted by one task and not by the other automatically
cancels the second one. For example if the user clicks on "Circle" (initiating
both tasks) and then gives a numerical value, then the task he/she is asking
for is the one with the numerical parameter. The other one is then silently
cancelled.

4.25 Example of use

We will present in this section an example of system modification. We
suppose that a new functionality, defined by (and associated to) its
specification "Intersection (Object, Object) Position" has been added to the
functional core.

From this point, we add to the textual task model the information
associated with this task.

Task {
Intersection (Graphical_Object, Graphical_Object)
Position
Help {return the nearest intersection of the two object }
Parameter {Graphical_Object, *“ First Object "}
Parameter {Graphical_Object, “ Second Object "}

}

70

We then add the task to an interactor. As it is a production task (it returns
a "position"), that calculates its response from the parameters (in opposition
to extracting information of these parameters), we place it in the "Calculus"
interactor.

Interacteur Calculus {

Alt {
Task {Centre (Graphical_Object) Position }
Task {Distance (Position, Position) Real}
Task {Intersection (Graphical_Object, Graphical_Object)

Position}

}

3

and we add a label in a menu to allow the end user for using the task.

Menu Calculus {
Label Centre {
Create_Line (Position, Position)}
label Distance {
Create_Circle (Position, Reel)
label Intersection {
Intersection (Graphical_Object, Graphical_Object)
Position }

3

From this point the new task is fully usable in the system. The user may
use it as a subtask for any higher task asking for a position. In the same way,
any task producing a Graphical _Object and belonging to a lower interactor
may be used to give its parameters.

We describe here a purely textual way to accomplish this modification.
As we stated upper, it is possible with GIPSE to do the same modification in
a purely interactive way, using PbD possibilities of GIPSE. The only thing
we cannot do interactively is modifying the object model, which is a work
that has been conducted in our laboratory [21].

S. RELATED WORK

GIPSE is a specialised model based system (MBS). It is specialised in an
application domain that presents some very specific characteristics, which
influence the required dialogue structure. The main difference between
GIPSE and other existing MBS lies therefore in its dialogue management
system. Most MBS, as we have already stated, have few or no support for
structured dialogues. They are adapted for the conception of forms
applications, but are unusable for the design and conception of CAD
systems.

GIPSE has some common points with SACADO [5, 10], another
development environment oriented towards CAD systems. Both use the
notion of hierarchical level of dialogue tasks. However, the model used and

71

the assertion made by the system on the application are different. SACADO
makes it necessary for the developer to define the set of relations between
tasks: any function that may be used while creating a circle to produce a
parameter must be explicitly given. On the contrary, the hierarchical
decomposition described in the dialogue model of GIPSE gives an implicit
set, whose exact content has not to be defined by the developer.

6. CONCLUSION AND FURTHER WORKS

As a model based system specialised in CAD systems, GIPSE facilitates
the conception and development of applications using structured dialogues.
Using a functional core and some initialisation files that describe the
dialogue properties (the tasks, their structuring and the presentation), GIPSE
allows the online generation of dialogue and the execution of the application.

GIPSE is a very flexible system, which allows the modification of the
dialogue without any recompilation, by the modification of human-readable
text files. Current works aim to extend this flexibility in several ways. End-
user programming, that allows adding and removing user-produced tasks,
has already been integrated in the system. The creation of new category of
objects and associated tasks is actually in study. Another currently studied
extension is the ability to mix structured dialogue and direct manipulation,
allowing the user to choose his/her interaction depending on his/her goals
[13]. Last, we are now integrating validation and verification tools in the
system, to warn or prevent the user for creating non functional dialogues [9].
These additions will allow GIPSE to become a full CAD software
development environment, an actual CADUI product.

7. REFERENCES

1. Balzert, H. From OOA to GUI : The JANUS-System, in Proc. IFIP TC13 Human-
Computer Interaction (INTERACT'95) (Lillehammer, Norway, 27-29 June, 1995),
Chapmann & Hall, pp. 319-324.

2. Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, |., B. Sacré and Vanderdonckt, J.
Towards a systematic building of software Architectures : the Trident Methodological
Guide., in Proc. Eurographics Workshop on Design, Specification, and Verification of
Interactive Systems (DSV-1S'95) (Bonas, France, 1995), Springer-Verlag/Wien, pp. 262-
278.

3. Cypher, A. Watch What | Do: Programming by Demonstration. The MIT Press, 1993. 604
p.

4. Fekete, J.-D. Un modele multicouche pour la construction d'applications graphiques
interactives. PhD Université Paris-Sud, Orsay, 1996, 203 p.

72

5. Gardan, Y., Jung, J.-P. and Martin, B. An End-User oriented approach to design man-
machine interface for CAD/CAM, in Proc. IEEE Internationel Conference on Systems,
Man and Cybernetics (Le Touquet, France, 17-20 Octobre 1993, 1993), pp. 525-530.

6. Girard, P., Patry, G., Pierra, G. and Potier, J.-C. Deux exemples d'utilisation de la
Programmation par Démonstration en Conception Assistée par Ordinateur. Revue
Internationale de CFAO et d'informatique graphique. 12, 1-2 (1997), pp. 169-188.

7. Guittet, L. Contribution & I'Ingénierie des Interfaces Homme-Machine - Théorie des
Interacteurs et Architecture H4 dans le systtme NODAOO. PhD Université de Poitiers,
1995, 196 p.

8. Harrison, M.D. and Duce, D.A. A review of formalisms for describing interactive
behaviour. University of York, January 7 1994.

9. Jambon, F., Girard, P. and Boisdron, Y. Dialogue Validation from Task Analysis, in Proc.
Eurographics Workshop on Design, Specification, and Verification of Interactive Systems
(DSV-1S'99) (Universidade do Minho, Braga, Portugal, 2-4 June, 1999), Conference
proceedings, pp. 201-221.

10.Martin, B. Contribution pour une nouvelle Approche du dialogue Homme-Machine en
CFAO. PhD Université de Metz, 1995, 188 p.

11.Myers, B.A. User Interface Software Tools. ACM Transactions on Computer Human
Interaction. 2, 1 (1995), pp. 64-103.

12.Paterno, F. A Theory of User-Interaction Objects. Journal of Visual Languages and
Computing. 5, 3 (1994), pp. 227-249.

13.Patry, G. Contribution a la conception du dialogue Homme Machine dans les applications
graphiques interactives de conception technique : le systtme GIPSE. PhD Université de
Poitiers, 1999, 199 p.

14.Patry, G. and Girard, P. From Adaptable Interfaces to Model-Based Interface
Development: The GIPSE Project, in Proc. ERCIM Workshop on User Interfaces for All
(UI4ALL'97) (Obernai, France, 3-4 november, 1997), INRIA Lorraine, pp. 127-133.

15.Pierra, G. Towards a taxonomy for interactive graphics systems, in Proc. Eurographics
Workshop on Design, Specification, Verification of Interactive Systems (Bonas, June 7-9,
1995), Springer-Verlag, pp. 362-370.

16.Puerta, A. The MECANO project : comprehensive and integrated support for Model-
Based Interface development, in Proc. Computer-Aided Design of User iterface
(CADUI'96) (Namur, Belgium, 5-7 June, 1996), Presse Universitaire de Namur, pp. 19-35.

17.Puerta, A.R. A Model-Based Interface Development Environment. IEEE Software. 14, 4
(1997), pp. 40-47.

18.Qiang, L., Wei, L., Ke, X. and Jiaguang, S. An Event-Driven and Object Oriented
FrameWork for Human Computer Interface of CAD System, in Proc. CAD & Graphics'97
(Shenzen, China, 2-5 Dec., 1997), International Academic Publishers, Volume 1, pp. 42-
45,

19.Scapin, D.L. and Pierret-Golbreich, C. Towards a method for task description : MAD in
Working with display units. Elsevier Science Publishers, North-Holland, 1990. pp. 371-
380.

20.Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J. and E. Salcher. Declarative
interface models for user interface construction tools : the MASTERMIND approach, in
Proc. IFIP TC2/WG2.7 Working Conference on Engineering for Human-Computer
Interaction (EHCI'95) (Grand Targhee Resort (Yellowstone Park), USA, 14-18 August,
1995), Chapman & Hall, pp. 120-150.

21.Texier, G. and Guittet, L. User defined objects are first class citizens, in Proc. Computer-
Aided Design of User iterface (CADUI'99) (Louvain, Belgique, 1999), Kluwer Academic
press, pp. in this book.

