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Abstract

A typical characteristic of real-time systems is concur-
rent processing of tasks under strict timing requirements.
These timing requirements may impose not only direct con-
straints, such as deadlines, but also indirect timing con-
straints in terms of inter–task dependencies. However,
scheduling policies which can deal with some of these con-
straints effectively are limited, especially for the on-line
context, and are not widely known within the real-time com-
munity. In this context, this paper presents a technique to
control execution irregularities, namely, jitter. The tech-
nique is based on the modi£cation of task temporal param-
eters in the paradigm of the well known Deadline Mono-
tonic (DM) and Earliest Deadline First (EDF) algorithms.
The technique presents a way either to remove jitter com-
pletely (in the case of regularity constrained tasks) or to
bound jitter releases. Moreover, the approach takes into ac-
count temporal dependencies of tasks on one another.
Keywords: Real-time, on-line scheduling, jitter, dependent
periodic tasks.

1. Introduction

A real-time system, controlling a physical device or a
physical process, invariably performs two basic functions:
sampling sensor readings and responding to different situa-
tions by sending control signals to actuators. With respect to
process requirements, these tasks (sampling data systems,
control systems, etc.) must often be periodic. However,

∗LISI – Laboratory of Applied Computer Science; ENSMA – National
Engineering School in Mechanics and Aerotechnics.

†SCISM–SBU – School of Computing, Information Systems and Math-
ematics

this is rarely the case in practice since periodicity cannot be
achieved in an absolute sense. Indeed there are often timing
requirements on the design in the form of permissible jit-
ter [2] or timing tolerances. Basically, jitter arises due to the
way algorithms, such as Rate Monotonic (RM), Deadline
Monotonic (DM) and Earliest Deadline First (EDF) [19] al-
gorithms, schedule multiple tasks for concurrent execution.
These algorithms do not consider jitter requirements. In-
deed, in the periodic task model of Liu and Layland [19],
each instance of a task (an execution of a task within a given
period) is considered completely independent from other in-
stances. However, most real-time applications (e.g. multi-
media data transmission [11], fault-tolerant systems, preci-
sion robotics [18], etc.) have regularity constraints on var-
ious tasks. Besides, jitter can arise due to different reasons
at the implementation level, an example being the unpre-
dictability in the actual timing of periodic events as gener-
ated by the RTOS [20]. However, this paper addresses only
the jitter induced by scheduling at the application level.

Scheduling algorithms for controlling jitter are limited.
An off-line scheduling technique based on simulated an-
nealing methods due to Di Natale et al. [10] deals with
end-to-end jitters in a distributed context. In this context,
Coutinho et al. [8] propose a jitter minimization technique
based on a genetic algorithm. Another off-line solution
due to [6, 7] consists of an exhaustive search of all valid
sequences. Han and Lin [14] also suggest a distance con-
straint task system model (DCTS) in which execution reg-
ularity constraints are taken into account in some speci£c
scheduling algorithms. In £xed priority scheduled systems,
Bate et al. [2] describe a task attribute handling mechanism
which can deal with timing requirements, including jitter.
Baruah et al. [1] propose an interesting technique for mini-
mizing maximum jitter of a relatively small number of task
in the EDF context, but without taking advantage of the pos-
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sibility to set offsets in order to reduce jitter and to handle
systems of interdependent tasks. Based on a deadline as-
signment technique, Kim et al. [15] present a technique to
reduce jitter in a set of independent tasks. In our work, we
study in greater depth a) the issue of jitter control in the
general on-line scheduling context, and b) con£gurations of
interdependent tasks in the deadline based scheduling con-
text, both in a uni–processor context.

Our discussion on jitter control proceeds as follows. Sec-
tion 2 introduces different types of jitter. Section 3 intro-
duces a set of task parameter handling tools to be used in
Sections 4 and 5 in describing a complete jitter cancellation
technique and a jitter bounding technique.

2. De£nitions of Jitter

Our work uses the periodic task model [19]. Each ith
task is characterized by four parameters: ri,1 (the £rst re-
quest time or offset), Ci (maximum execution time), Di

(relative deadline) and Ti (task period), each being, as ap-
propriate, a non–negative or a positive integer; see Figure 1.

We consider two types of jitter: regularity jitter (ex-
ecution irregularity within one task) and end-to-end jitter
(response time irregularity, either within a set of two or
more tasks forming an activity or within the same task in
a repetitive sense). Both the above types of jitter can be
de£ned over a scheduling period, or a major cycle (H) –
a reference pattern used for scheduling simulation. Au-
thors of [13] generalize the results of [17] such that in every
case H is bounded by maxi(ri,1) + 2LCMi(Ti). A com-
mon approach to jitter de£nition is to use the maximum du-
ration between successive activation times and completion
times [1, 5]. It is not unusual, however, to come across se-
quences of task instances where the intervals between suc-
cessive completion times are more or less identical, result-
ing in a less accurate estimate of jitter. An advantage of us-
ing H is that in de£ning jitter it allows the use of statistical
concepts, such as the mean, covering a range of completion
times spread over H .

Figure 1. Task model.

2.1. Regularity Jitter

Let si,k and ei,k be, respectively, the kth execution start
date and the kth execution end date of task τi; see Fig-

ures 1 and 2. The length of time between two successive
start dates of task τi within the kth scheduling period is de-
noted by ∆si,k, i.e. ∆si,k = si,k+1 − si,k. Analogously,
∆ei,k = ei,k+1 − ei,k denotes the length of time between
two successive end dates. Both ∆si,k and ∆ei,k vary from
0 to 2Ti, the two extremities corresponding to negligibly
small execution times. Let us also introduce

jsi,k
=
|∆si,k − Ti|

Ti

100 % (1)

as a percentage relative measure of the execution start date
irregularity between the kth and the (k + 1)th instances.
Note that jsi,k

= 0 % when the difference si,k equals Ti

(i.e. the case of regular tasks) and jsi,k
= 100 % when it

equals 0 or 2Ti (i.e. the case of maximum irregularity in
execution). Analogous expressions apply for ei,k. Let us
now introduce the de£nition:

DEFINITION 1 : Given a task τi with characteristics
(ri,1, Ci, Di, Ti), the mean regularity jitter of τi is de£ned
by: JMean(τi) =

1
Ni

∑Ni

k=1 jsi,k
, Ni being the number of

instances of task τi during H , and si,k and jsi,k
being as

de£ned above.
See Figure 2 for an illustration of the above for Ni = 4.

Similarly, other statistics can be de£ned on jitter based
on jsi,k

, for example, the maximum jitter, the minimum jit-
ter, etc. Note that if preemption is not permitted then regu-
larity jitter based on si,k or ei,k will be identical. Otherwise,
they are linked through the cohesion jitter – a topic to be in-
troduced in the next section.

Figure 2. Regularity jitter.

2.2. End-to-End Jitter

This subsection de£nes end-to-end jitter for an activity
such as a control activity. An activity may consist of just
one periodic task or, alternatively, of several periodic tasks.
In the former case, the end-to-end jitter measures the cohe-
sion jitter and, in the latter, the response time irregularities.
Thus, the end-to-end jitter is the irregularity in the elapsed
time between the execution start date of one instance of a
task and the execution end date of another instance of a task,
with the two task instances not necessarily belonging to the
same task. The corresponding response times are denoted
by RTk(a), a being a given activity and k being an index
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ranging over the instances of a over a given scheduling in-
terval.

Let a be an activity consisting of, for example, two tasks
τi and τj , with outputs of τi serving as inputs for τj . In this
case, a is a pair 〈τi, τj〉. Note that τi and τj may not neces-
sarily have the same rate [2], except when they are depen-
dent. In Figure 3-a, τi and τj have two different rates and, in
order to be more up-to-date when executing τj , we choose
the most recent instance of τi for the last value RT3(a).
What is of interest then is the elapsed time, within a given
scheduling period, between the most recent execution start
date of an instance of τi and the execution end date of its
succeeding instance of τj ; see RTk(a) for 1 ≤ k ≤ 3 in Fig-
ure 3-a. On the other hand, with respect to cohesion jitter,
what is of interest is the elapsed time between the start and
end dates of execution of a given task instance; see RTk(τi)
for 1 ≤ k ≤ 4 in Figure 3-b.

Figure 3. (a) : End-to-end jitter for an activity
(a =< τi, τj >) - (b) : cohesion jitter for a task.

In de£ning end-to-end jitter, it is necessary to compare
RTk values de£ned above against a mean value, which
could be computed either from RTk values themselves or,
alternatively, using the data collected by monitoring the au-
tomation, for example, using a £tted response time curve
which makes the system stable. Let us denote whatever the
chosen value by RT . The end-to-end jitter can then be con-

sidered in terms of the difference: ∆k =
|RTk−RT |

RT
100 %.

The latter is similar to (1) and leads to the following de£ni-
tion:

DEFINITION 2: Given the response times RTk(a)
and RTk(τi) as introduced above, the mean end-to-
end jitter is de£ned as a percentage by: JMean(a) =

1
Na

∑Na

k=1
|RTk(a)−RT |

RT
100%, Na being the the number of

instances of the activity a. Analogously, the mean cohe-
sion jitter as a percentage is de£ned by JMean,c(τi) =
1
Ni

∑Ni

k=1
|RTk(τi)−Ci|

Ci
100%, Ni being the number of in-

stances of the task τi executed during H .
The above are illustrated in Figures 3-a and 3-b for Na = 3
and Ni = 4. Our focus in Section 3 and 4 is on regularity
jitter.

3. Approach to Controlling Regularity Jitter

Let R and NR be two sets of periodic tasks with nR and
nNR elements respectively and let their union characterize
a real-time task con£guration. The tasks τR in the £rst set
are required to be regular in term of execution, whereas the
tasks τNR in the second set are not subject to such a re-
quirement. Thus, the distinction between the two task sets
is based on whether or not the periodicity is to be observed
strictly. As was mentioned earlier, task execution irregular-
ities arise due to the way scheduling algorithms work and
do not affect other constraints such as deadlines. Task reg-
ularity constraints may be required in the case of sampling
tasks and control tasks.

Execution windows of a task τi correspond to intervals
of the form [|ri,j ; ei,j |](j ∈ N∗). We assume that the peri-
ods are not alterable, since they usually come from process
requirements. We also assume that the worst case execu-
tion characteristics of each task is known and £xed, and that
rede£nition of release dates ri,1 would not lead to rede£ni-
tion of any relative deadlines (Di) (offset free systems [12]).
Obviously, even where it is permitted, any rede£nition of Di

must result in a smaller value than its original value.

3.1. General scheme

The jitter control technique presented here is based on
the idea that if two regular tasks have a non empty inter-
section of their execution windows, then one of them will
be exposed to regularity or cohesion jitter. Let us illustrate
this idea with an example involving a con£guration of three
tasks (τ1, τ2, τ3), which are to be scheduled with external
priority (Prioi); see table 1. Figure 4 shows the scheduling
sequence where it can be noted that τ2 is preempted by τ1,
and τ3 is preempted by both τ1 and τ2. Equivalently, the
intersection of task execution windows are effectively not
empty, resulting in jitter on τ2 and τ3. An interesting solu-
tion would be to cancel jitter by desynchronizing the release
dates. Indeed, the triplet (r1,1, r2,1, r3,1) = (1, 0, 6) results
in an empty intersection of execution windows, eliminating
the jitter completely; see Figure 5.

Table 1. Example: Task characteristics.
ri,1 Ci Di Ti Prioi

τ1 0 3 16 16 3
τ2 0 1 4 4 2
τ3 0 2 8 8 1

Our technique is a generalization of the above idea and
consists basically of adjusting execution windows of reg-
ular tasks through rede£nition of release dates and rela-
tive deadlines, but always maintaining the required inter–
relationships between tasks. Thus, the approach to jitter
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Figure 4. τ2 preemption by τ1, τ3 preemption
by τ1 and τ2 : jitter on τ2 and τ3.

Figure 5. Scheduling sequence with no jitter.

cancellation and jitter bounding can be summarized in four
steps:

Step 1: release date desynchronization,

Step 2: maintenance of the precedence relation,

Step 3: restriction of execution windows to a certain
bound,

Step 4: veri£cation of schedulability through tests.

This above strategy can be accomplished with two differ-
ent effects: either by completely eliminating regularity jitter
(i.e. by forbidding preemption of R tasks by any NR task)
or by bounding regularity jitter (i.e. by permitting preemp-
tion to a certain extent). This relies on three separate tools.
The £rst tool searches for release dates for regular tasks so
that each one of the tasks completes after a certain amount
of time following its activation without causing an execu-
tion overlap. The second tool veri£es the maintenance of
the precedence constraints on tasks. The third tool performs
the rede£nition of relative deadlines in order to achieve the
required task priorities.

3.2. Release date desynchronization

Let {τ1, ..., τn} be a set of task to be desynchronized.
For every task τi, we de£ne a time value Wi, Wi ∈ N∗

and 0 < Ci ≤ Wi ≤ Di, such that by Wi the execution
of the corresponding instance of τi is fully completed; see
Figure 6. The problem of desynchronization of execution
windows [9] consists then of a constraint satisfaction prob-
lem, namely, of £nding a solution (r1,1, . . . , rn,1) satisfying

the inequalities:

(∀ i, j ∈ 1 · · ·n; i < j)
ri,1 − rj,1 6= 0mod (Ti ∧ Tj)











ri,1 − rj,1 6= 1mod (Ti ∧ Tj)
ri,1 − rj,1 6= 2mod (Ti ∧ Tj)

...
...

ri,1 − rj,1 6= (Wj − 1)mod (Ti ∧ Tj)











and











rj,1 − ri,1 6= 1mod (Ti ∧ Tj)
rj,1 − ri,1 6= 2mod (Ti ∧ Tj)

...
...

rj,1 − ri,1 6= (Wi − 1)mod (Ti ∧ Tj)











(2)

where ∧ denotes the greatest common divisor (GCD)
of its operands, and mod the modulo symbol. These in-
equalities follow from the Generalized Chinese Remainder
Theorem [12, 16]. This is illustrated in the £gure 7, where
ri,k (k ∈ N∗) is £xed and rj,k is to be de£ned at a location
such that it would cause no overlap with other jobs from R

tasks.

Figure 6. The Wi parameter used in task
desynchronization.

Figure 7. Illustrative diagram for task desyn-
chonisation.

A necessary condition for a solution to (2) is that the pe-
riods are NOT pairwise relatively prime. Let us attempt a
proof of this claim by contradiction, assuming its negation
and showing that this would make the £rst inequality incon-
sistent:

proof: Suppose that: (∀ i, j ∈ 1 · · ·n; i <

j)(∃ ri,1, rj,1 ∈ N∗) ri,1−rj,1 6= 0mod (Ti∧Tj)with peri-
ods pairwise relatively prime. For p, q and m in N∗, the de£-
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nition of congruence is given by p = q mod(m) ⇔ (∃ k ∈
Z∗) p − q = k · m. In others words, p 6= q mod(m) ⇔
(∀ k ∈ Z∗) p − q 6= k · m. In the £rst inequality of (2),
pairs such as 〈ri,1, rj,1〉 are supposed to be known. Let dij
denote the difference ri,1 − rj,1. It is necessarily the case
that dij is in Z∗. The fact that ri,1 − rj,1 = dij ensures the
existence of k in Z∗, such that ri,1 − rj,1 = k · 1. Hence,
ri,1 6= rj,1mod(1) is false, leading to a contradiction. As
a consequence we conclude that our original assumption is
false, resulting in the following condition: periods Ti and
Tj must not be pairwise relatively prime. ¤

If it is possible to £nd (r1,1, ..., rn,1) subject to above
conditions, and if the execution window of every task τi
(1 ≤ i ≤ n) is equal to Wi, then the execution windows
are guaranteed not to overlap. For the task con£guration of
Figure 5, the above conditions are satis£ed for W1 = 3,
W2 = 1 and W3 = 2. In this case, for i = 1 and j = 2 the
inequalities (2) take the form:

r1,1 − r2,1 6= 0mod (4)

and

(

r2,1 − r1,1 6= 1mod (4)
r2,1 − r1,1 6= 2mod (4)

) (3)

Solving the problem stated in (2) can be quite complex,
more so as n increases. Any precise analytical technique
is likely to be of limited value and restricted to a particu-
lar set of conditions. Therefore, generally numerical tech-
niques [9] are to be preferred. Though it is exponential, the
problem complexity is not a critical factor in real time appli-
cations with a relatively small number of regular tasks, and
with a relatively narrow time interval (Wi). Indeed, the reg-
ular tasks involved in this problem are mostly input–output
tasks, usually with a maximum execution time (Ci) much
smaller than the period (Ti) and with a choice of Wi pa-
rameter close to Ci in order to reduce jitter. As with other
task parameters, ri,1s are assumed to be non-negative inte-
gers [12]. Characteristics of applications dealt with by the
authors comply with these assumptions.

3.3. Precedence Relation

One of the important constraints on an activity is the
right execution order. Generally, tasks involved in an ac-
tivity are dependent on one another and have the same pe-
riod T , which also happens to be the activity period. In this
work we rely on this as an assumption, and choose condi-
tions that impose minimal restrictions on task temporal at-
tributes. According to [4], in order to ensure precedence of
τi over τj , it is necessary to impose that

ri,1 ≤ rj,1 Prioi > Prioj
or ri,1 < rj,1 Prioi ≥ Prioj

. (4)

Obviously, these conditions depend on the choice of the
scheduling algorithm. For example, in DM the priority or-
dering Prioi > Prioj corresponds to Di < Dj .

3.4. Priority Rede£nition

Let us examine here how to rede£ne relative deadlines
so that tasks in R will always enjoy higher priorities com-
pared to those in NR. Again, this would depend on the
chosen scheduling algorithm. In DM, where tasks with the
shorter deadlines will have higher priorities, the condition
that needs to be veri£ed is

(∀τi ∈ R) Ci ≤ D∗i ≤ min
τj∈NR

(Di;Dj − 1), (5)

where D∗i denotes the new relative deadline to be consid-
ered for task τi. In EDF, priorities are dynamic and, there-
fore, it is dif£cult to foresee the actual runtime priorities
of tasks. However, there is a condition which enables the
imposition of the required priority a priori, namely

(∀τi ∈ R) D∗i = Ci, (6)

according to which every task τi will have the highest pri-
ority whenever it requires, and acquires, the processor.

4. Elimination of Regularity Jitter

This section examines £rst the results obtained for inde-
pendent task con£gurations and then, using an illustrative
example, the case of dependent task con£gurations.

4.1. The Case of Independent Tasks

As the authors of [10] underline, controlling jitter is
quite a complex problem in the presence of task preemp-
tions. Thus, our approach is to ensure that no regular
task is ever preempted, thus achieving the kind of schedul-
ing sequence illustrated in Figure 8. Let us study the ap-
proach using an example [9]. Consider the task con£gu-
ration with characteristics given in Table 2 and with two
of them 〈τAcq1 , τAcq2〉 having an execution regularity con-
straint. Scheduling using DM, as well as EDF, leads to a
sequence with non–negligible jitter on regular tasks (see ta-
ble 2).

Now let us modify the task temporal attributes.
STEP 1: Apply the desynchronization scheme described

in Section 3.2 on both regular tasks with Wi = Ci. Ac-
cording to an enumeration solution technique, we obtain a
set of 377 pairs £tting this requirement. For example, one
solution is the pair (rAcq1,1, rAcq2,1) = (0, 2).

STEP 3: To guaranty execution of regular tasks in R

with no preemption, it is necessary to make tasks in R have
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