
Introduction
Context

Contributions
Conclusion

Interactions between WCET analysis and
scheduling

Guillaume Phavorin and Pascal Richard

LIAS/Université de Poitiers

April 4th, 2014

1/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Contents

1 Introduction

2 Context
Into the WCET
Into the scheduling analysis
Reducing CRPD

3 Contributions
Problematic
Problem 1: CRPD-aware scheduling
Problem 2: Cache-aware scheduling

4 Conclusion

2/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

CPU

core

registers 1 cycle / compiler

instr.
cache

data
cache

3 cycles / hardware

L2 cache 15 cycles / hardware

main memory 200 cycles / OS

memory bus

3/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Cache

Small and fast memory (compared to the main memory).
→ to bridge the gap between the processor speed and the main
memory access time.
→ by storing:

data that is frequently accessed (temporal locality),

data that will (or may) be accessed next (spatial locality).

Instruction vs data caches, shared cache, cache hierarchy...

When a block is accessed:

in cache: cache hit → low cost (≈ 1 to 4 clock cycles),

not in cache: cache miss → high cost (≈ 8 to 32 cycles).

4/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Cache organization

Cache:

divided into cache lines of equal size:

number of contiguous bytes transferred from the main memory
to the cache.

that may be grouped into sets:
direct-mapped: 1 line = 1 set

a memory block can be mapped to only one line.

fully-associative: only one set containing all lines

a memory block can be mapped everywhere in the cache.

set-associative: lines equally divided into several sets

a memory block can be mapped only to one set BUT
everywhere in it.

Eg: 8kB direct-mapped instruction cache with a 8 bytes line size and a 4
bytes instruction size (ARM7).

5/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Replacement policy

Offline:
Belady’s rule: the block whose next request is the furthest in the
future is evicted. ⇒ OPTIMAL.

Online:
No optimal policy, as the access sequence is not known.

LRU: Least Recently Used.

Example with a 4-way associative cache set
age

a b c d

e a b c

b e a c

acces to e: cache miss

acces to b: cache hit

6/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Cache-Related Preemption Delay (CRPD)

time

0 1 2 3 4 5 6 7 8 9 10 11 12

τ2

τ1

adding
preemption

costs

time

0 1 2 3 4 5 6 7 8 9 10 11 12

τ2

τ1

7/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Into the WCET
Into the scheduling analysis
Reducing CRPD

Classical approaches

Timing
Analysis

Platform
features

(processor,
cache...)

Task code

Scheduler

Task periods
and deadlines

Task WCET Task priorities

Schedulability
Analysis

Yes/No

8/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Into the WCET
Into the scheduling analysis
Reducing CRPD

”Magic” WCET

Goal:

WCET accounting for all potential preemption delays.

preemption costs have no longer to be considered into the
scheduling analysis.

Timing
Analysis

WCET
Scheduling

Analysis

9/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Into the WCET
Into the scheduling analysis
Reducing CRPD

Magic WCET: Approach 1

Easiest way to incorporate preemption delays into the WCET:

every access → considered to be a cache miss (as if the
cache was disabled)

But very pessimistic, and cache benefits are not taking any more
into account.

10/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Into the WCET
Into the scheduling analysis
Reducing CRPD

Magic WCET: Approach 2

taking cache benefits into account → tighter WCET,

upper-bounding cache effects (CRPD: Cache-Related
Preemption Delays) → to achieve predictability.

→ by conducting cache analyses:
1 for WCET: representation of cache contents to identify

accesses that will be ”Always Hits”.
2 to bound the impact of a preemption at a given program

point.

WCETw/o preemption︸ ︷︷ ︸
(1)

+n · CRPD︸ ︷︷ ︸
(2)

Problem: how to get n ? → very dependant on the chosen
scheduling policy and the considered task system.

11/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Into the WCET
Into the scheduling analysis
Reducing CRPD

CRPD incorporated into the scheduling analysis

Timing
Analysis

WCET

CRPD

Scheduling
Analysis

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
·

Cj + γi ,j︸︷︷︸
CRPD parameter


hp(i) : tasks of higher priority than task τi .
γi ,j : preemption cost due to each job of a higher priority
preempting task τj executing within the worst-case response time
of task τi .

12/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Into the WCET
Into the scheduling analysis
Reducing CRPD

Controlling preemption

Using well-known scheduling policies such as RM or EDF,
schedulability improvement can be achieved by:

limiting preemptions (Buttazzo et al. 2013),

selecting the best possible preemption points in the program
code, based on their overhead cost (Bertogna et al. 2011),

...

⇒ reduce CRPD.

But, scheduling decisions are independent from any cache-related
parameter.

13/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Problematic
Problem 1: CRPD-aware scheduling
Problem 2: Cache-aware scheduling

All previous strategies → use of ”classical” scheduling policies
(RM, EDF...):

CRPD added to achieve better predictability,

but scheduling decisions are independant from any
cache-related parameter.

Would it not be better to take scheduling decisions to reduce
CRPD?

Taking delays due to the use of caches into account in the
definition of scheduling algorithms.

Task model modified → addition of cache-related parameters:
1 representing the sequence of accessed block,
2 representing preemption cost.

14/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Problematic
Problem 1: CRPD-aware scheduling
Problem 2: Cache-aware scheduling

CRPD-aware scheduling

Scheduling decisions taken based on preemption costs → to
minimize the general overhead.

Task defined by τi (Ci ,Di ,Ti , γ)

Ci : WCET without preemption cost estimated when τi is
executed fully non preemptively,

γ: CRPD for one preemption → the same for all program
points and all tasks.

15/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Problematic
Problem 1: CRPD-aware scheduling
Problem 2: Cache-aware scheduling

τ1(1, 3), τ2(7, 12), CRPD: γ = 0.5.

Fixed-Job Priority Scheduling:

time

0 1 2 3 4 5 6 7 8 9 10 11 12

τ2

τ1

⇒ Fixed-Task and Fixed-Job Priority schedulers are not optimal.

CRPD-aware scheduling:

time

0 1 2 3 4 5 6 7 8 9 10 11 12

τ2

τ1

16/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Problematic
Problem 1: CRPD-aware scheduling
Problem 2: Cache-aware scheduling

Simplified scheduling with CRPD problem:

INSTANCE:

a finite set of n tasks τi (Ci ,Di ,Ti ),
a positive number γ representing the Cache-Related
Preemption Delay incurred by τi , 1 ≤ i ≤ n at every resume
point after a preemption.

QUESTION:

Is there a uniprocessor preemptive schedule meeting the
deadlines?

⇒ the scheduling problem with CRPD is NP-hard.

17/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Problematic
Problem 1: CRPD-aware scheduling
Problem 2: Cache-aware scheduling

Cache-aware scheduling

Scheduling with information about cache state and block reuse by
the different tasks.

eg: tasks using the same data or a common external library.

Job defined by Ji (Ci ,Di , Si ):

Ci : WCET considering that all requested memory blocks are
hits in the cache,
Di : relative deadline of the job,
Si : string denoting the sequence of memory blocks used
during the job execution (no if-then-else structure).

Hypotheses:

a single cache line,
hit cost = 0, miss cost = BRT (Block Reload Time),
job preemption → only before requesting the next block,
synchronous jobs.

18/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Problematic
Problem 1: CRPD-aware scheduling
Problem 2: Cache-aware scheduling

Cache size = 1, exec.(hit) = 1, exec.(miss) = 1.5, S1 = cbabd ,
S2 = ebaf .

Fixed-Job Priority Scheduling (prio(J1) > prio(J2)):

0 1 2 3 4 5 6 7 8 9 10 11 12 13

J1 c b a b d

J2 e b a f

Cache Miss Miss Miss Miss Miss Miss Miss Miss Miss

⇒ Fixed-Task and Fixed-Job Priority schedulers are not optimal.

Cache-aware scheduling:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

J1 c b a b d

J2 e b a f

Cache Miss Miss Miss Hit Miss Hit Miss Miss Miss

19/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Problematic
Problem 1: CRPD-aware scheduling
Problem 2: Cache-aware scheduling

Simplified scheduling with cache memory problem:

INSTANCE:

a finite alphabet Σ → representing all accessed blocks,
a finite set of n jobs Ji (Ci ,D,Si ) with a common deadline D,

QUESTION:

Is there a uniprocessor preemptive schedule meeting the overall
deadline D for every job Ji?

⇒ the scheduling problem with cache memory is NP-hard.

20/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Conclusion

Timing
Analysis

Scheduling
Problem

Schedulability
Analysis

Improving WCET ⇒ make scheduling more complex.
Many questions:

which task(s) model(s)?

which parameters for the timing analysis (WCET, CRPD...)?

...

21/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling



Introduction
Context

Contributions
Conclusion

Thank you for you attention!

22/22

Guillaume Phavorin and Pascal Richard Interactions between WCET analysis and scheduling


	Introduction
	Context
	Into the WCET
	Into the scheduling analysis
	Reducing CRPD

	Contributions
	Problematic
	Problem 1: CRPD-aware scheduling
	Problem 2: Cache-aware scheduling

	Conclusion

