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a b s t r a c t

Nonlinear matrix inequalities (NLMIs) approach, which is known to be efficient for stability and L2-
gain analysis, is extended to input-to-state stability (ISS). We first obtain sufficient conditions for ISS
of systemswith time-varying delays via Lyapunov–Krasovskii method. NLMIs are derived then for a class
of systems with delayed state-feedback by using the S-procedure. If NLMIs are feasible for all x, then
the results are global. When NLMIs are feasible in a compact set containing the origin, bounds on the
initial state and on the disturbance are given, which lead to bounded solutions. The numerical examples
of sampled-data quantized stabilization illustrate the efficiency of the method.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear Matrix Inequalities or state-dependent Linear Ma-
trix Inequalities (LMIs) (see Lu and Doyle (1997) and the ref-
erences therein) constitute an efficient computational method
for stabilization and H∞ control of nonlinear systems. Recently,
the NLMIs approach was extended to stabilization and H∞ con-
trol of nonlinear systems with delay (Papachristodoulou, 2005),
where the sufficient conditions were derived via corresponding
Lyapunov–Krasovskii functionals.

To the best of our knowledge, NLMIs have not been applied
yet to ISS property (Sontag, 1989). In the present paper we
derive NLMIs, which give sufficient conditions for ISS, by applying
the S-procedure (Yakubovich, 1977) to Lyapunov-based sufficient
conditions for ISS.

In order to derive NLMIs for ISS of systems with time-varying
delays in the feedback, we first derive sufficient conditions for
ISS for such systems via Lyapunov–Krasovskii functionals. We
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note that sufficient conditions for ISS systems with time-varying
delays were derived via Razumikhin approach (Teel, 1998), which
leads usually tomore conservative results than Krasovskii method.
For systems with constant delays, ISS sufficient conditions were
recently derived in terms of Lyapunov–Krasovskii functionals in
Pepe (2007) and Pepe and Jiang (2006).

Notation. Throughout the paper the superscript ‘T’ stands for
matrix transposition, Rn denotes the n-dimensional Euclidean
spacewith norm |·|, Rn×m is the set of all n×m realmatrices, and the
notation P > 0, for P ∈ Rn×n means that P is symmetric and positive
definite. In symmetric block matrices we use ∗ as an ellipsis for
terms that are induced by symmetry. σ̄(P) and σ(P) denote the
largest and the smallest eigenvalues of the symmetric matrix P. By
L2([−r, 0]; Rn) is denoted the space of square integrable functions
φ : [−r, 0] → Rn.

The space of functions φ : [−r, 0] → Rn, which are absolutely
continuous on [−r, 0), have a finite limθ→0− φ(θ) and have square
integrable first-order derivatives is denoted by W with the norm

‖φ‖W = max
θ∈[−r,0]

|φ(θ)| +

[∫ 0

−r
|φ̇(s)|2ds

] 1
2

.

We also denote xt(θ) = x(t + θ) (θ ∈ [−r, 0]).
A continuous function α : [0, a) → [0,∞) is said to be of class

K if it is strictly increasing and α(0) = 0. We will say that the
function is of class K∞ if a = ∞ and α(r) → ∞ when r → ∞.
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A function β : [0,∞)2 → [0,∞) is said to be of class KL if, for
each fixed t, the mapping β(s, t) is of class K and, for each fixed s,
it is decreasing and β(s, t) → 0 as t → ∞. The symbol | · |∞ stands
for essential supremum.

2. Input-to-state stability of systems with time-varying delays

We consider the following system

ẋ(t) = f (x(t), x(t − τ(t)),w(t)), (1)

where x(t) ∈ Rn is the system state, w(t) ∈ Rp is an exogenous
signal, f : Rn

×Rn
×Rp

→ Rn is a continuously differentiable function,
f (0, 0, 0) = 0 and τ(t) is the unknown piecewise-continuous time-
delay that satisfies 0 ≤ τ(t) ≤ r. Given a measurable locally
essentially bounded inputw, Eq. (1) with initial condition xt0 = φ ∈

W has a unique solution (Kolmanovskii & Myshkis, 1999, chapter
3, Section 2.4).

Definition 1. The system (1) is said to be uniformly globally ISS if
there exist a KL function β and a K function γ such that, for any
initial time t0, any initial state xt0 = φ ∈ W and any measurable,
locally essentially bounded input w, the solution x(t, t0,φ) exists
for all t ≥ t0 and furthermore it satisfies

|x(t, t0,φ)| ≤ max
(
β(‖φ‖W, t − t0), γ

(∣∣w[t0,t)

∣∣
∞

))
. (2)

Given a continuous functional V : R×W × L2([−r, 0], Rn) → R+,
define (see e.g., Kolmanovskii and Myshkis (1999))

V̇(t,φ, φ̇) = lim sup
h→0+

1
h
[V(t + h, xt+h(t,φ), ẋt+h(t,φ)) − V(t,φ, φ̇)],

where xt(t0,φ), for t ≥ t0, is a solution of the initial-value problem
(1) with the initial condition xt0 = φ ∈ W.

Lemma 1. Let there exists a locally Lipschitz with respect to the
second and the third arguments functional V : R × W ×

L2([−r, 0]; Rn) → R+ such that the function v(t) = V(t, xt, ẋt)
is absolutely continuous for measurable essentially bounded w. If
additionally there exist functions α1,α2 of class K∞, and functions
α3, θ of class K such that

(i) α1(|φ(0)|) ≤ V(t,φ, φ̇) ≤ α2(‖φ‖W),
(ii) V̇(t,φ, φ̇) ≤ −α3(V(t,φ, φ̇)) for V(t,φ, φ̇) ≥ θ(|w|),

then (1) is uniformly globally ISS with γ = α−1
1 ◦ θ.

Proof Follows the lines of Sontag (1989). Denote

Λθ(t) =

{
φ ∈ W : V(t,φ, φ̇) < θ(|w[t0,∞)|∞)

}
.

(a) Let t1 be the first time, when the solution xt = xt(t0,φ) enters
Λθ(t). For all t ∈ [t0, t1), v(t) = V(t, xt, ẋt) ≥ θ(|w[t0,∞)|∞) and thus
v̇(t) ≤ −α3(v(t)). Then (see Chapter 4 of Khalil (2002)), there exists
a class KL function σ(r, s) such that v(t) ≤ σ(v(t0), t − t0). Hence,

|x(t, t0,φ)| ≤ α−1
1 (v(t)) ≤ α−1

1 (σ(v(t0), t − t0))

≤ α−1
1 (σ(α2(‖φ‖W), t − t0))

∆
= β(‖φ‖W, t − t0).

Since β(‖φ‖W, t − t0) → 0 as t → ∞, there is a finite time after
which β(‖φ‖W, t − t0) < θ(|w[t0,∞)|∞) for all t. Therefore t1 < ∞.

(b) We show now that xt ∈ Λθ(t),∀t ≥ t1 which implies that
|x(t, t0,φ)| ≤ α−1

1 (θ(|w[t0,∞)|∞)). Suppose that it is not the case.
Then, there exists an ε > 0 such that the set T = {t ≥ t1 : v(t) >
θ(|w[t0,∞)|∞)+ε} ⊂ R is not empty. Let t∗ denote its infimum. By (ii),
v̇(t) < 0 almost everywhere in a neighborhood of t∗, so v is strictly
decreasing in a neighborhood of t∗, which is in contradiction with
the fact that t∗ is the infimum of T .

(c) By the causality argument, (a) and (b) imply (2)with the gain
γ = α−1

1 ◦ θ.
3. ISS analysis of systems with delayed feedback: NLMI ap-
proach

3.1. Global input-to-state stability

Consider a class of systems, affine in control u(t) ∈ Rm and
disturbance w(t) ∈ Rp:

ẋ(t) = A(x(t))x(t) + B2(x(t))u(t) + B1(x(t))w(t), (3)

where x(t) ∈ Rn, A, B2 and B1 are continuously differentiable matrix
functions. Given a state-feedback

u(t) = K(x(t − τ(t))), K(x) = k(x)x, (4)

where k : Rn
→ Rm×n is a continuously differentiable function and

where τ(t) ∈ [0, r] is the unknown piecewise-continuous delay,
that often appears in the feedback. Following Liberzon (2006) and
Teel (1998), we are looking for conditions that guarantee the ISS of
the closed-loop system (3) and (4) with a gain γ for all τ(t) ∈ [0, r].
We note that in this section we focus on the analysis results. For
linear systems, the design procedure will be given in Section 4.

We assume that Kx =
∂K
∂x

(the Jacobian matrix of K) satisfies the
following inequality

|Kx|
2

≤ N + a2(|x|), x ∈ Rn, (5)

with some constant N ≥ 0 and some class K function a2.
We apply the relation

K(x(t − τ(t))) = K(x(t)) −

∫ t

t−τ(t)
Kx(x(s))ẋ(s)ds,

and represent the closed-loop system (3) and (4) in the form:

ẋ(t) = A(x(t))x(t) + B2(x(t))K(x(t)) + B1(x(t))w(t)

− B2(x(t))
∫ t

t−τ(t)
Kx(x(s))ẋ(s)ds. (6)

Note that (6) is equivalent to (3) and (4).
Consider the following Lyapunov–Krasovskii functional

V(xt, ẋt) = xT(t)Px(t) +

∫ t

t−r
D(s, xt, ẋt)ds,

D(s, xt, ẋt)
∆
=

∫ t

s
ẋT(ξ)KT

x (x(ξ))RKx(x(ξ))ẋ(ξ)dξ, P > 0, R > 0. (7)

We verify that∫ t

t−r
D(s, xt, ẋt)ds

=

∫ t

t−r
(ξ− t + r)ẋT(ξ)KT

x (x(ξ))RKx(x(ξ))ẋ(ξ)dξ

≤ r
∫ t

t−r
ẋT(ξ)KT

x (x(ξ))RKx(x(ξ))ẋ(ξ)dξ. (8)

Applying further (5), we find∫ t

t−r
D(s, xt, ẋt)ds ≤ rσ̄(R)

∫ t

t−r
|Kx(x(s))|

2
|ẋ(s)|2ds

≤ rσ̄(R)(N + max
θ∈[−r,0]

a2(|x(t + θ)|))

∫ t

t−r
|ẋ(s)|2ds

≤ c1

∫ t

t−r
|ẋ(s)|2ds + c2a

2
2( max
θ∈[−r,0]

|x(t + θ)|) + c2

(∫ t

t−r
|ẋ(s)|2ds

)2

,

where c1 = rσ̄(R)N, c2 = rσ̄(R)/2. Since

|x(t)|2σ(P) ≤ xT(t)Px(t) ≤ |x(t)|2σ̄(P),

we conclude that (i) of Lemma 1 is satisfied with α1(|x|) = |x|2σ(P)
and with

α2(s) = max{c1s2 + c2s
4, σ̄(P)s2 + c2a

2
2(s)}.
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Moreover, the function v(t) = V(xt, ẋt) is absolutely continuous
along the solutions of (3)–(4) with xt0 ∈ W and with measurable
essentially bounded w.

To satisfy assumption (ii) of Lemma 1, we find conditionswhich
guarantee that, for some constant a3 > 0

V̇(xt, ẋt) + a3V(xt, ẋt) < 0, for V(xt, ẋt) ≥ |w(t)|2.

By applying the S-procedure (Boyd, El Ghaoui, Feron, & Balakrish-
nan, 1994; Yakubovich, 1977), the latter condition is satisfied if, for
some positive continuous scalar function λ(x), the following holds:

U
∆
= V̇(xt, ẋt) + a3V(xt, ẋt)

+λ(x(t))(V(xt, ẋt) − |w(t)|2) < 0, ∀x 6= 0. (9)

Hence, differentiating V along the trajectories of (6) we find

U ≤ 2xT(t)P
[
A(x(t))x(t) + B2(x(t))K(x(t))

− B2(x(t))
∫ t

t−τ(t)
Kx(x(s))ẋ(s)ds + B1(x(t))w(t)

]
+ rẋT(t)KT

x (x(t))RKx(x(t))ẋ(t)

−

∫ t

t−r
ẋT(s)KT

x (x(s))R(1 − r(a3 + λ(x(t))))Kx(x(s))ẋ(s)ds

+ xT(t)Px(t)[a3 + λ(x(t))] − λ(x(t))wT(t)w(t). (10)

Applying further Jensen’s inequality (Gu, Kharitonov, & Chen,
2003)∫ t

t−r
ẋT(s)KT

x (x(s))R(1 − r(a3 + λ(x(t))))Kx(x(s))ẋ(s)ds

≥ ζ2(t)
TrR(1 − r(a3 + λ(x(t))))ζ2(t), (11)

where ζ2(t) =
1
r

∫ t
t−τ(t) Kx(x(s))ẋ(s)ds, we find that

U ≤ ζT(t)Ψζ(t) + rẋT(t)KT
x (x(t))RKx(x(t))ẋ(t), (12)

where

ζT(t) =

[
xT(t),

1
r

∫ t

t−τ(t)
[Kx(x(s))ẋ(s)]T ds, wT(t)

]
,

Ψ =

Ψ11 −rPB2 PB1
∗ −r(R − r(a3 + λ)) 0
∗ ∗ −λIp


Ψ11 = PA + ATP + PB2k + kTBT2P + (α3 + λ)P

and where, for simplicity, we omitted dependence on x(t) of
A, B1, B2, k and λ.

Setting the right-hand side of (12) for ẋ(t) into (9) and applying
Schur complements formula, we finally verify that U < 0 for
x(t) 6= 0 if the following NLMI holds:
M11(x) −rPB2(x) PB1(x) M14(x)

∗ M22(x) 0 M24(x)
∗ ∗ −λ(x)Ip M34(x)
∗ ∗ ∗ −rR

 < 0,

∀0 6= x ∈ Rn,

M11(x) = P(A(x) + B2(x)k(x))

+ (A(x) + B2(x)k(x))
TP + (a3 + λ(x))P

M14(x) = r(A(x) + B2(x)k(x))
TKT

x (x)R

M22(x) = −rR(1 − r(a3 + λ(x)))

M24(x) = −r2BT2(x)K
T
x (x)R

M34(x) = rBT1(x)K
T
x (x)R. (13)

Note that (13) may be considered as a state-dependent LMI, where
a3 and λ are tuning parameters. We proved the following
Theorem 1. Given a state-feedback (4), where k is a continuously
differentiable function, assume that (5) is satisfied with some function
a2 of class K . Then (3)–(4) is ISS with γ2(s) =

s2

σ(P)
for all piecewise-

continuous delays τ(t) ∈ [−r, 0] if there exist an n × n-matrix P > 0,
a scalar-continuous function λ(x) > 0, x 6= 0, a constant a3 > 0, and
a constant m × m-matrix R that solve (13).

Another sufficient condition for ISS (which leads in some cases
to less restrictive results) may be derived by using the descriptor
approach (Fridman, 2001).We add to U given by (9) the right-hand
side of the expression

0 = 2[xT(t)PT2 + ẋT(t)PT3]δ, (14)

where

δ = −ẋ(t) + A(x(t))x(t) + B2(x(t))K(x(t))

− B2(x(t))
∫ t

t−τ(t)
Kx(x(s))ẋ(s)ds + B1(x(t))w(t).

We obtain

U ≤ 2xT(t)Pẋ(t) + 2[xT(t)PT2 + ẋT(t)PT3]
[

− ẋ(t) + A(x(t))x(t)

+ B2(x(t))K(x(t)) − B2(x(t))
∫ t

t−τ(t)
Kx(x(s))ẋ(s)ds

+ B1(x(t))w(t)
]

+ rẋT(t)KT
x (x(t))RKx(x(t))ẋ(t)

−

∫ t

t−r
ẋT(s)KT

x (x(s))R[1 − r(a3 + λ(x(t)))]Kx(x(s))ẋ(s)ds

+ xT(t)Px(t)[a3 + λ(x(t))] − λ(x(t))wT(t)w(t). (15)

Applying further Jensen’s inequality, we arrive to (12), where

ζT(t) =

[
xT(t), ẋT(t),

1
r

∫ t

t−τ(t)
[Kx(x(s))ẋ(s)]T ds,wT(t)

]
,

Ψ =


Ψ11 Ψ22 rPT2B2 PT2B1

∗ −PT3 − P3 rPT3B2 PT3B1

∗ ∗ −rR(1 − r(a3 + λ)) 0
∗ ∗ ∗ −λIp


and where

Ψ11 = PT2(A + B2k) + (AT
+ kTBT2)P2 + (a3 + λ)P,

Ψ22 = P − PT2 + (AT
+ kTBT2)P3. (16)

From Schur complements formula, it follows that U < 0 for x(t) 6=

0 if the following NLMI holds:

Ψ11 Ψ22 rPT2B2 PT2B1 0
∗ −PT3 − P3 rPT3B2 PT3B1 rKT

x R

∗ ∗ −rR(1 − r(a3 + λ)) 0 0
∗ ∗ ∗ −λIp 0
∗ ∗ ∗ ∗ −rR


< 0, ∀0 6= x ∈ Rn. (17)

Theorem 2. Given a state-feedback (4), where k is a continuously
differentiable function, assume that (5) is satisfied with some function
a2 of class K . Then (3)–(4) is ISS with γ2(s) =

s2

σ(P)
for all piecewise-

continuous delays τ(t) ∈ [−r, 0] if there exist an n × n-matrix P >
0, n × n-matrices P2, P3, an m × m-matrix R, a scalar-continuous
function λ(x) > 0, x 6= 0 and a constant a3 > 0 that solve (17)
with the notations of (16).

Choosing λ > 0 to be constant, we obtain the following bound
on the solution of (1):
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Proposition 1. Assume that conditions of Theorem 1 (or Theorem 2)
hold with a constant λ > 0. Then the solution of (3) and (4) with the
initial condition xt0 ∈ W satisfies the following inequality

σ(P)|x(t)|2 ≤ e−(a3+λ)(t−t0)
[
xT(t0)Px(t0) +

∫ t0

t0−r
D(s, xt0 , ẋt0)ds

]

+
λ

a3 + λ
|w[t0,t)|

2
∞

. (18)

Proof. From (9) it follows that

V̇ + (a3 + λ)V − λ|w|
2 < 0,

V|t=t0 = xT(t0)Px(t0) +

∫ t0

t0−r
D(s, xt0 , ẋt0)ds.

By applying the comparison principle (Khalil, 2002), we have

xT(t)Px(t) ≤ V(xt, ẋt) ≤ e−(a3+λ)(t−t0)V(xt0 , ẋt0)

+

∫ t

t0

e−(a3+λ)(t−s)λ|w(s)|2ds,

which implies (18).

3.2. On ISS of systems without delay

Consider now system (6) without delay:
ẋ = A(x)x + B2(x)K(x) + B1(x)w. (19)
For (19), Lemma 1 holds with V : Rn

→ R+ and where ‖φ‖W is
changed by |x(t0)|. We use arguments of Theorem 1, where a3 may
be taken either constant or as a function of |x| of class K , since in
the latter case
V̇(x) ≤ −a3(|x|)V(x) ≤ −a3(α

−1
2 V(x))V(x)

∆
= −α3(V(x))

and α3 is of class K . We obtain

Corollary 1. Given a state-feedback (4), where k is a continuously
differentiable function. Then (19) is ISSwith γ2(s) =

s2

σ(P)
if there exists

a constant n×n-matrix P > 0, a scalar-continuous functionsλ(x) > 0
and a function a3(|x|) > 0, either constant or of class K , that solve[
Ψ11 PB1(x)
∗ −λ(x)

]
< 0, ∀0 6= x ∈ Rn, (20)

where

Ψ11 = P(A(x) + B2(x)k(x))

+ (A(x) + B2(x)k(x))
TP + (a3(|x|) + λ(x))P.

Remark 1. If (20) is feasible with constant a3 (and thus the system
without delay (19) is ISS), then (13) is feasible for small enough
r. Therefore, (1) is ISS for all small enough piecewise-continuous
delays τ(t) ∈ [−r, 0].

The corresponding condition, which follows from Theorem 2,
can be obtained similarly.

Example 1. Consider the system without delay

ẋ1 = −3x31 − 2x22x1,
ẋ2 = −x21x2 − x32 + (x21 + x22)w.

In this example, B2 = 0, B1(x) = [0 x21 + x22]
T. Choosing A(x) =

−diag{3x21 + 2x22, x21 + x22}, a3 = λ = 0.1(x21 + x22) and P = diag{p, p}
with p > 0 we obtain (20) of the form
ψ 0 0
∗ −1.8p(x21 + x22) p(x21 + x22)

∗ ∗ −0.1(x21 + x22)

 < 0,
where ψ = −2p(2.9x21 + 1.9x22). The latter inequality is feasible if
0.18
p
> 1 and thus the system is ISS with γ2

=
1
P
s2 = 5.56s2.

Remark 2. A necessary condition for the feasibility of NLMIs (13),
(17) and (20) is that the matrix A(x) + B2(x)k(x) is Hurwitz ∀x 6=

0. Since the choice of A(x) in representations (3) and (19) is not
unique, A(x) should be chosen in such a way that it satisfies the
above necessary condition. Thus, in Example 1, the considered
choice of A(x) is the only one that leads to Hurwitz A(x)∀x 6= 0.

Choosing e.g. A(x) =

[
−3x21 − 2x22 0

−x1x2 −x22

]
, we see that the latter

matrix is not Hurwitz for x2 = 0, x1 6= 0.

3.3. On local ISS

For nonlinear system (1), it may happen that (13) holds locally
for x 6= 0 from the ball Bb = {x ∈ Rn

: |x| ≤ b}. Then Theorem 1
holds for the initial condition and for the disturbances, which lead
to x(t) ∈ Bb for all t ≥ t0.

Example 2 (Liberzon, 2006). Consider the scalar system with
delayed and quantized feedback

ẋ = −x + x2 + u,

u =

{
q(−x2(t − τ(t))), t − τ(t) ≥ t0,
0, t − τ(t) < t0.

(21)

The input quantizer is a piecewise constant function q : R → Q ,
where Q is a finite subset of R and for some M > ∆ > 0 the
following holds: |y| ≤ M ⇒ |q(y) − y| ≤ ∆. Following Liberzon
(2006), we represent (21) in the form

ẋ(t) = −x(t) + x2(t) − x2(t − τ(t)) + e(t),

x(t0) = x0, x(t) = 0, t < t0,

where

e(t) =

{
q(−x2(t − τ(t))) + x2(t − τ(t)), t − τ(t) ≥ t0,
0, t − τ(t) < t0,

choose ∆ = 0.05 and M = 5 and consider the set of the initial
conditions satisfying |x0| ≤ 2.

The latter system has the form of (3) with A(x) = −1+ x, k(x) =

−x, Kx = −2x, B1 = B2 = 1, and e = w. If the conditions of
Proposition 1 hold, we find

|x(t)|2 < |x0|
2
+

λ

a3 + λ

|e[t0,t)|
2
∞

P
≤ 4.01 < (2.0025)2

if
|e[t0,t)|

2
∞

P
≤

∆2

P
=

0.0025
P

< a3+λ
λ

0.01, i.e. if

λ

a3 + λ
− 4P < 0. (22)

NLMI (17) will take the form

M11 P − P2 − P3 rP2 P2 0
∗ −2P3 rP3 P3 −2xrR
∗ ∗ −rR(1 − r(a3 + λ)) 0 0
∗ ∗ ∗ −λ 0
∗ ∗ ∗ ∗ −rR


< 0, ∀0 < |x| ≤ 2.0025 (23)

with M11 = −2P2 + (a3 + λ)P. The latter inequality is affine in
x. Therefore, considering x inside the polytope with the vertices
±2.0025, we solve (23) for these two vertices and (22) with the
same decision variables P > 0, P2, P3, R and choosing a3 = 0.7,
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λ = 0.1. We find that the resulting LMIs are feasible for r = 0.19.
We thus conclude that for every 0 ≤ τ(t) ≤ 0.19, the solution
starting from x0 ∈ [−2, 2] remains in [−2.0025, 2.0025] for all t ≥

t0 and asymptotically approaches [−γ(∆), γ(∆)] ⊂ [−0.1, 0.1]

(since γ2(∆) =
λ

a3+λ
∆2

P
< (0.1)2). This result is less restrictive than

the one (obtained via Razumikhin approach) in Liberzon (2006),
where it was found that the corresponding τ ≤ 0.01.

Remark 3. In this section we gave some sufficient conditions
for ISS, which may be conservative. Similar to delay-dependent
stability results for linear systems (see e.g. Xu and Lam (2005)),
different improvements may be the topic for the future research.

4. Input-to-state stabilization of linear systems

Consider a linear system with a control input u(t) ∈ Rm and a
disturbance w(t) ∈ Rp:

ẋ(t) = Ax(t) + B2u(t) + B1w(t), (24)

where x(t) ∈ Rn, A, B2 and B1 are constantmatrices. Consider a linear
state-feedback with time-varying delay

u(t) = Lx(t − τ(t)), (25)

where L ∈ Rm×n is a constant gain and τ(t) is an unknown
piecewise-continuous delay that satisfies 0 ≤ τ(t) ≤ r.

Theorems 1 and 2 give sufficient conditions for ISS analysis,
where Kx = k = L. To find the unknown gain L we use Theorem 2.
Following Suplin, Fridman, and Shaked (2004), we choose P3 = εP2,
where ε is a tuning scalar parameter (which may be restrictive).
Note that P2 is nonsingular due to the fact that the only matrix
which can be negative definite in the second block on the diagonal
of (17) is −ε(P2 + PT2). Defining:

Q2 = P−1
2 , P̄ = QT

2PQ2, R̄ = R−1, Y = LQ2, (26)

we multiply (17) by diag{P−1
2 , P−1

2 , R−1, Ip , R−1
} and its transpose,

from the right and the left, respectively. We obtain:

Theorem 3. Consider (24) with a piecewise-continuous delay τ(t) ∈

[0, r]. Given λ > 0 and a3 > 0 the system is ISS under the state-
feedback law (25) if for some tuning scalar parameter ε there exist
n × n-matrices 0 < P̄, Q2, an m × m-matrix R̄ and an m × n-matrix
Y such that the following LMI is satisfied

Γ11 Γ12 rB2R̄ B1 0
∗ −εQT

2 − εQ2 εrB2R̄ εB1 rYT

∗ ∗ −rR̄(1 − r(a3 + λ)) 0 0
∗ ∗ ∗ −λIp 0
∗ ∗ ∗ ∗ −rR̄


< 0, (27)

where

Γ11 = AQ2 + QT
2A

T
+ B2Y + YTBT2 + (a3 + λ)P̄,

Γ12 = P̄ − Q2 + ε(QT
2A

T
+ YTBT2).

The resulting γ and L are given by

γ2(s) =
1

σ(Q−T
2 P̄Q−1

2 )
·

λ

a3 + λ
s2, L = YQ−1

2 .

To minimize the gain γ, we can consider the following
procedure: let z ∈ R satisfy the LMI[

−P̄ QT
2

∗ −zIn

]
< 0. (28)
By the Schur complement, this matrix inequality can be equiva-
lently rewritten as P̄ − z−1QT

2Q2 > 0 or, Q−T
2 P̄Q−1

2 > z−1In, which
implies that σ(Q−T

2 P̄Q−1
2 ) > z−1. And so, we obtain the bound

γ2(s) ≤
λz

a3+λ
s2. Given positive numbers λ, a3 and ε such that LMI

(27) is feasible, one may obtain the least value for the gain γ2 by
finding the minimum value of z such that LMIs (27) and (28) are
satisfied. This is an LMI optimization problem that can be solved
with now standard numerical tools.

Example 3. We consider the problem of the stabilization of a two
cart–pendulum from Section 4 of Ishii and Francis (2003). The
system is described by

ẋ(t) = Ax(t) + Bu(t), (29)

where x(t) ∈ R8, u(t) ∈ R2, and A and B are given by:

0 1 0 0 0 0 0 0
−5 −2.5 −1.962 0 5 2.5 0 0
0 0 0 1 0 0 0 0
10 5 23.544 0 −10 −5 0 0
0 0 0 0 0 1 0 0
5 2.5 0 0 −5 −2.5 −1.962 0
0 0 0 0 0 0 0 1

−10 −5 0 0 10 5 23.544 0


,

B =



0 0
0.5 0
0 0

−1 0
0 0
0 0.5
0 0
0 −1


.

The objective is to find a memoryless state-feedback such that,
under sampling and quantization, the ball Bb0 (for a given radius
b0) is attractive from Rn (i.e. every trajectory enters it and does not
leave). The control law has the form

uT(t) = [q(L1x(tk)) q(L2x(tk))],

tk ≤ t < tk+1, k = 0, 1, . . . , (30)

where L = [LT1 LT2]
T is the state-feedback gain. The sampling may

be not uniform with bounded sampling times: tk+1 − tk ≤ Tmax,
limk→∞ tk = ∞. The quantization function q is defined as in
Example 2 (but with M = ∞ and with a countable set Q).

Following Fridman, Seuret, and Richard (2004) we represent
sampled-data control as delayed control and rewrite system (29)
and (30) in the form

ẋ(t) = Ax(t) + BLx(t − τ(t)) + Bw(t), (31)

where 0 ≤ τ(t) = t − tk ≤ Tmax and wT(t) = [w1(t) w2(t)],
wi(t) = q(Lix(t − τ(t))) − Lix(t − τ(t)), i = 1, 2. Note that for all
t, |w(t)| ≤

√
2∆.

Applying Theorem 3, we choose a3 = 10−4,λ = 0.019, ε = 8
and verify feasibility of (27).We obtain Tmax = 0.194 for the system
to be ISS, which is to compare with Tmax = 7.91 × 10−3 obtained
in Ishii and Francis (2003) (for the case of uniform sampling). The

Table 1
Results for example 3

Tmax 0.002 0.004 0.006

∆ by Theorem 3 105 68.3 50.7
∆ by Ishii and Francis (2003) 0.267 0.242 0.217
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ball Bb0 of radius b0 is attractive if γ(
√
2∆) ≤ b0. We use b0 = 4

as in Ishii and Francis (2003). The value of γ is obtained by solving
the following optimization problem: minimize z (i.e. minimize γ)
under the LMI constraints (27) and (28) (with B1 = B2 = B and
r = Tmax). Table 1 gives the values of ∆ for several values of Tmax,
that were obtained by our results and by Ishii and Francis (2003).

5. Conclusions

In this paper, we have proposed a newmethodology to analyze
ISS of nonlinear systemswith time-varying delays based on the use
of NLMI.
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