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Abstract. Flash memories are considered a competitive alternative to
rotating disks as non-volatile data storage for database management sys-
tems. However, even if the Flash Translation Layer – or FTL – allows
both technologies to share the same block interface, they have different
preferred access patterns. Database management systems could poten-
tially benefit from flash memories as they provide fast random access
for read operations although random writes are generally not as efficient
as sequential writes. In this paper, we propose a simple data placement
algorithm designed for flash memories, to reorganize inefficient random
writes in a quasi-sequential access pattern. This access pattern is first es-
tablished encouraging for a subset of flash devices by identifying a strong
correlation between spatial locality and write performances, with a dis-
tance being defined to quantify this effect. This design is then validated
by a formalization with a mathematical model, along with experimental
results. With this optimization, random write potentially become as ef-
ficient as sequential write, improving random write speed by up to two
orders of magnitude.

1 Introduction

For the sake of interchangeability, many flash memories include a Flash Transla-
tion Layer – abbreviated as FTL – to comply with the block interface, a rotating
disk legacy. In addition to providing block write and read operations, the FTL
manages flash chips complex writing mechanism. However, this layer is imple-
mented with proprietary and undocumented software, which makes flash devices
appear as “black boxes” from a system’s point of view [3].

Advantageously, this FTL allows a straightforward substitution between both
storage technologies. Yet, most database management systems include rotating
disks-oriented optimizations, which are not relevant for flash memories. Even
if both technologies use the same block interface, they have different preferred
access patterns. Database management systems could potentially benefit from
flash memories as they provide fast random access for read operations. Still, for
FTL-based devices, random writes are generally not as efficient as sequential
writes [5] and most optimization techniques for flash memories relate to this
specific issue.



In this paper, we identify a strong correlation between write performances
and spatial locality for a subset of FTL-based devices; and define a distance to
quantify this effect. From this property, we propose a simple data placement
algorithm, which trades flash memory space for random write performances. Its
efficiency is validated by a formalization with a mathematical model, along with
experimental results. With this optimization, random write potentially become
as efficient as sequential write, improving random write speed by up to two
orders of magnitude.

The rest of this paper is organized as follow. Section 2 introduces NAND flash
memories and different types of mapping used in the FTL. Section 3 emphasizes
the importance of locality on these devices for write performances and defines
a distance between consecutive writes to quantify this effect. In section 4, we
derive from this property an optimization technique for random writes, using
an indirection layer to minimize this distance, thus avoiding scattered writes.
In section 5, we present an approximate model for this algorithm. The results
of both our experiments and model are reported in section 6. Related works
are described in section 7. Then, section 8 summarizes the contributions of this
paper.

2 NAND Flash Memories

NAND flash memory is a non-volatile storage technology, which allows three low-
level data-access operations: read, write (or program) and erase. Still, erasing is
performed at a different granularity than reading or writing: NAND flash chips
are divided into blocks that can be erased independently, each block containing
a fixed number of pages, each of which being individually accessible for reading
or writing. As overwrites are not allowed, a full block must be erased prior to
writing on one of its already used page. Additionally, pages within a block must
be written sequentially.

To handle this complex writing mechanism, most flash memories include a
Flash Translation Layer (FTL) that redirects writes on available (erased) pages
and stores the associations between the logical sector identifier and its physical
location in an address translation table.

In most cases, this translation operates on a page-level basis or on a block-
level basis [6]. With a page mapping FTL, each logical page has its associated
physical page. After an overwrite, the translation table is updated with the
new physical location and the old physical location is marked as obsolete to
be reclaimed by a garbage collection mechanism. With a block mapping FTL,
each logical block has its associated physical block and an additional logging
area, which consists of log blocks. When a page is overwritten, new data are
appended to the last log block. Garbage collection merges a data block with all
its associated log blocks by copying every valid page on a new (erased) data
block and updating the translation table.

Each mapping granularity has its own drawbacks. Page mapping has a higher
memory overhead because of its larger address translation table, while block



mapping performances are highly dependent on empty blocks availability, to
serve as log blocks.

3 Write Spatial Locality for FTL-based Devices

As FTL enclosed in flash devices are usually proprietary and undocumented,
studies have been conducted to identify preferred write access patterns for such
devices. In [2], Birrell et al. identify a strong correlation between the average
latency of a write operation and the gap between writes, as long as this gap is
less than the size of two flash blocks. They conclude that write performance varies
with the likelihood that multiple writes will fall into the same flash block, which
is a manifestation of an underlying block or hybrid-mapping FTL. As a result, a
fine-grained mapping is mandatory for high performance flash memories, but we
believe that such a mapping can be efficiently provided by an additional layer,
distinct from the FTL. Indeed, Wang et al. study in [12] the effectiveness of log-
structured file systems for flash-based DBMS, since these file systems tend to
write large data blocs in sequence. Their experiments validate potential benefits
as they achieve up to x6.6 performance improvement.

uFLIP [3] is a component benchmark designed to quantify the behavior of
flash-memories when confronted to defined I/O patterns. Some of these pat-
terns relate to locality and increments between consecutive writes. Their results
confirm that localizing random writes greatly improve efficiency and large incre-
ments lead to performances which could be even worse than random writes.

We propose a similar approach to quantify the effect of spatial locality on
FTL-based devices, by introducing a notion of distance between consecutive
writes. In our experiments, the average write duration for each distance d is
evaluated by skipping |d|−1 sectors between consecutive writes. This metric can
be negative to discriminate between increasing and decreasing address values.
From the results of previous works, we conjecture a usual behavior where, up to
a distance dmax, the average cost of a write operation cost(d) is approximately
proportional to d.

To validate this assumption, we measured the effect of distance on a variety
of flash devices. Although individual write durations are erratic, their average
value converge when this access pattern is sustained. Figure 1 shows that our
assumption is verified for a flash-based SSD3 and a USB flash drive4.

Scattered writes (ie. d ≥ dmax) are typically 20 to 100 times slower than se-
quential writes for flash memories with a block-mapping FTL[3]. Consequently,
and because of this proportional performance pattern, reducing the average dis-
tance between consecutive writes can significantly improve efficiency, even if
strict sequential access (d=1) is not achieved. The optimization described in
the following section focuses on this access pattern, skipping as little sectors as
possible.

3 SSD Mtron MSD SATA3035-032, sector size 4 KiB
4 Flash chip HYNIX HY27UG088G5B with an ALCOR AU6983HL controller, sector

size 4 KiB



0

1

2

3

4

5

6

7

8

−400 −300 −200 −100 0 100 200 300 400

av
er

ag
e 

du
ra

tio
n 

of
 w

rit
e 

op
er

at
io

ns
 (

in
 m

s)

distance between consecutive writes (in sectors)

0

5

10

15

20

25

30

−60 −40 −20 0 20 40 60

av
er

ag
e 

du
ra

tio
n 

of
 w

rit
e 

op
er

at
io

ns
 (

in
 m

s)

distance between consecutive writes (in sectors)

a) SSD b) USB flash drive

Fig. 1. Influence of distance on write duration

4 Gathering Random Writes

Online transaction processing usually have a part of its workload constituted of
small random writes. The optimization described in this section converts these
random writes into sequential writes, while skipping sectors containing valid
data, as this access pattern should increase performances on flash memories.
With this optimization, sectors containing valid data (used sectors) and free
(unused) sectors are mixed on the device. An additional indirection layer is used
to redirect logical writes to unused sectors by minimizing the distance between
consecutive writes.

To allow data retrieval, correspondences between physical and logical loca-
tions are stored in an address translation table, with every logical sector being
associated with a physical sector. Unused physical sectors – not associated with
any logical sectors in the address translation table – do not contain any useful
data, and therefore constitute a pool of free sectors available for writing.

To overwrite a logical sector, data are assigned to a pool sector adjacent to
the previous write. Then the logical-physical association stored in the address
translation table is updated, the previously associated sector therefore being
freed and added to the pool. Figure 2 illustrates how logical writes are assigned
to physical locations, when writing successively on logical sectors 0, 3 and 0.

This optimization does not require garbage collection, as the size of the
pool remains constant: physical sectors containing obsolete data are immedi-
ately added to the pool, and can be overwritten. Yet, as an independent and
internal mechanism, the FTL might still use garbage collection to handle flash
erasures.

Any logical access pattern, whether sequential or random, will lead to a quasi-
sequential physical access pattern. Consequently, the average distance (and thus
write efficiency) is determined exclusively by the proportion of pool sectors. As
increasing pool size requires additional non-volatile memory space, this charac-
teristic can be adjusted to obtain an expected efficiency. As a downside, sequen-
tial reads are also transformed into random reads. However, this behavior is not
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Fig. 2. Optimization overview

an issue for flash devices, as random reads are as efficient as sequential reads [3].
Read operations only induce lookups in the address translation table, which is
a negligible overhead.

To prevent revisiting regions of the memory recently accessed, where pool
sectors should have been exhausted, only positive distances are considered in
this optimization. Additionally, the addressable space is assumed to be circular,
in order to avoid handling edges differently.

The first data structure used by the redirection algorithm is the address
translation table. This table – named T – binds every logical sector to a flash
sector. As this optimization aims at minimizing the average distance between
consecutive writes, the most recently written sector is referred to as fx. A
simple version of the redirection algorithm involves the following operations when
writing a logical sector l:

1: f ← closest pool sector from fx
2: write data on f
3: T (l)← f {update the translation table}
4: fx ← f {keep the reference of the most recently written sector}

Operation (1) – searching the pool sector closest to the previous write – has
to be implemented carefully with an adequate data structure. In our implemen-
tation, to hasten lookups of this sector, we keep references of every sector in the
pool in an ordered list P , where sectors are arranged by increasing distances
from fx. P (0) is thus the closest free sector from fx, followed by P (1), etc.

Including this ordered list of pool sectors allows efficient retrievals of clos-
est pool sectors. Nevertheless, this list has to be updated with each newly freed
sector, whenever the translation table is altered. With this additional data struc-
ture, writing on a logical sector l implies the following operations:



1: f ← T (l)
2: write data on P (0)
3: T (l)← P (0) {update the translation table}
4: remove P (0) from P {update the list of pool sectors}
5: add f in P

Operations (4) and (5) can be done asynchronously (ie. during the subsequent
write in a write-intensive environment) without any consistency issue, as the list
of pool sectors P can be rebuild from the translation table T . Consequently, P
might not be up-to-date for each write request, which results in a slight increase
of the average distance between consecutive writes if the closest pool sector from
fx is not yet referenced in this list. However, this case appears infrequently for
large pools and can be neglected.

5 Model

To estimate write speed improvement provided by this algorithm, we propose
to model its behavior by evaluating the average cost of a write operation. This
model is based on the simplifying assumption that pool sectors are uniformly
distributed within flash sectors. This state is also supposed to be stable with
occurring writes. Additionally, writing cost is expected to be determined exclu-
sively by its physical distance from the previous write.

Under these approximations, the overall speed improvement can be evaluated
given the probability to obtain each possible distance, and their associated costs.
For this model, the following notations are used :

– F is the set of sectors accessible from the device (flash sectors),

– D(a, b) is the distance between two sectors a and b,

– L is the set of logical sectors,

– P is the set of pool sectors; by definition, |P| = |F| − |L|.

Definition 1. Let p(d) be the probability that the sector fi ∈ P which minimizes
D(fx, fi) also verifies D(fx, fi) = d, namely having a distance d between two
consecutive writes.

With the uniform distribution assumption, the probability p(d) to get a dis-
tance d between two consecutive writes can be estimated as the ratio between
favorable and possible distributions :

p(d) =

(|F|−d−1
|P|−1

)(|F|−1
|P|
) (1)

The cost of a write operation conditioned by its distance from preceding
write, cost(d), can be approximated but also measured from the device, as shown
in Fig. 1. For our evaluations, the latter is believed to be more accurate.



Given these two parameters, p(d) and cost(d), the average cost of a write
operation, named costavg, amounts to :

costavg =

|L|∑
d=1

p(d)× cost(d) (2)

Estimations from this model are reported in Sect. 6, together with experi-
mental results. In addition to theoretical performance gains, resource usage can
be quantified as this optimization trades server CPU and RAM, as well as flash
memory space for writing speed.

CPU overheads occur when handling the translation table and the list of
pool sectors during a write operation. These overheads relate to the following
operations :

– search for the closest pool sector, which is O(1) when pool sectors references
are stored in an ordered list,

– update the translation table, which is O(1),
– update the list of pool sectors, which is O(log |P|) with optimized data struc-

tures, such as skip-lists.
Updating the list of pool sectors is the only operation with significant CPU
cost. However, as stated in Sect. 4, this update can be asynchronous. For read
operations, looking up correspondences between logical and flash sectors in the
address translation table results in constant CPU overhead, which is negligible
compared to a flash sector read duration.

Server RAM overheads are caused by the translation table and the list of pool
sectors maintained in main memory. These overheads amounts to O(|L|×log |F|)
for the translation table, and O(|P| × log |F|) for the pool. Total RAM overhead
adds up to O(|F| × log |F|).

As pool sectors are stored on the device, and do not hold any useful data,
flash memory space overhead amounts to |P| sectors.

The last significant trade-off involves sequential writes. Since, with this al-
gorithm, performances do not depend on the access pattern, logical sequential
writes have the same performances as logical random writes. Existing attempts
to sequentialize accesses would not bring any additional performance gain and
should be discarded.

6 Results

To validate this optimization together with the model detailed in the previous
section, the data placement algorithm is tested on both devices mentioned in
section 3. These tests consist in evaluating the average cost of logical random
writes for varying sizes of the pool.

Figure 3 shows experimental results and the model expectations for the USB
flash drive. To compare with conventional access patterns, random write and
sequential write iops (respectively 30 and 1060) are also reported on this figure.
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Fig. 3. Logical random write performance for 100,000 logical sectors

To obtain performances equivalent to sequential writes, consequent sacrifices
have to be made in terms of flash memory space. In our experiment, 95% of
sequential write efficiency is achieved when the pool is about three times larger
than the logical address space. However, we achieved significant improvements
over random writes with acceptable trade-offs, as we have a ten times improve-
ment with 50% flash memory space overhead.

Contrastingly, writing speed on the SSD is improved with distances below
dmax = 256, instead of dmax = 32 for the USB flash drive. As a result, notable
improvements are achieved on the SSD with relatively lower sacrifices. Experi-
mental results for this device are reported on Fig. 4.

Another noticeable difference was suggested by measurements obtained in
Sect. 3: Fig. 5 focuses on small distance values. Remarkably, a quasi-sequential
access pattern with a distance of 4 sectors between consecutive writes shows
relatively good performances. Highest iops are achieved with a pool size of about
29,000 sectors, which results in an average – but still random – distance of 4. This
property allows optimal performances to be achieved with much less overhead.
Indeed, our optimization reaches 7796 average iops for 4KB logical random writes
at a cost of only 687 KB of RAM, and 14.5% flash overhead for 800 MB of usable
data space. Compared to physical random writes 134 average iops, performances
are improved by ×58.

Determining this optimal pool size is not straightforward, and depends on
the sector size. With 16 KiB sectors, experiments give an optimum distance of
2; and about 1.6 for 32 KiB sectors. A possible explanation for this behavior
is that interleaving favors non-zero sized skips to access multiple internal flash
chips in parallel [13].

Unfortunately, this “peak” behavior might not be representative of flash
solid-state drives. Among the twelve SSD with uFLIP results available, only
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one (by the same manufacturer as ours) expose the same characteristic. This
singularity is only a facultative additional benefit as it was not part of our ini-
tial assumptions. Our model might be closer of what we would expect with a
regular SSD, and still shows considerable performances gains, such as a ×40
improvement over random writes with 25% flash memory overhead.

Still, these results reveal some limitations of our model. One of its simplifying
assumptions is that writing cost is determined exclusively by its physical distance
from the previous write, which might not be accurate.

Moreover, experiments outperform our model as memory is accessed in only
one direction – increasing physical addresses – to prevent revisiting regions of
the memory where pool sectors should have been exhausted. This improvement
over our theoretical uniform distribution reduces the average distance between
consecutive writes.

7 Related Works

Many optimizations have been conceived with flash chips characteristics in mind.
A frequent design avoids in place updates with log-based methods.

The In-Page Logging Approach [8] allocates a portion of each bloc to write
updates of its pages. This optimization improves writing speed, as updates are
written sequentially inside the erase unit, at the expense of more read operations.
Garbage collection consists in merging data pages with their log sectors on a new
empty block.

Page-Differential Logging [7] uses a similar approach, except page differential
are logged. Writing is improved as differentials of multiple pages can be combined
to fit in a single page. Also, differentials are recomputed from the original page
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for each overwrite, which implies that reading a logical page involves at most two
physical read (the original page and its last differential). The garbage collection
mechanism is also improved, as merging a page with its current differential is
not required (both can be copied separately).

Log-structured file systems, with a distinction between file systems designed
for raw flash chips (without FTL) – like YAFFS, LogFS, JFFS – and those de-
signed for block devices – like LFS – use methods comparable to the in-page
logging approach, and therefore provide similar benefits and drawbacks. Ad-
ditionally, I/O patterns of log-structured file systems for block devices when
accessing multiple files tend to be of small size and scattered.

Regarding more specific use cases, B-File [10] is an abstraction layer for self-
expiring items on flash memories. Depending on their expiration date, items
are written sequentially in appropriate erase units to avoid copying valid data
on deletion. Another approach defines an Append and Pack Layout [11], which
divide the database in two separate datasets, respectively write-hot and write-
cold. These datasets are written sequentially in multiples of the erase block size,
with space reclamation when the memory is full.

The main differences between these approaches and our optimization are the
necessity of a garbage collection mechanism and decreased read performances as
a logical read rely on multiple physical reads. In contrast with these works, we
optimize data access exclusively over the FTL. As a result, our approach is not
applicable to raw flash chips.

RS-Wrapper [13] is a simple conversion between random writes and sequential
writes for FTL-based devices. When random writes are adequately dense, their
experiments show that reading the missing pages to overwrite sequentially the
entire data range outperforms overwriting exclusively modified pages. However,



reorganizing these random writes in a quasi-sequential access pattern has not
been tested.

FlashLogging [4] is an efficient mechanism for synchronous logging on mul-
tiple low capacity flash devices. While the use case differs from our proposition,
this approach could be used to address the non-volatile issue of our current opti-
mization. Indeed, data written to the device are volatile, since the address trans-
lation table is stored in RAM, and is needed to rebuild the database. Logging
its modifications on additional flash devices could provide an efficient solution.
This issue could also be managed by writing logical addresses together with data,
similarly to the FTL internal functioning.

On a different but related subject, enterprise class SSD can provide better
random write performance at the cost of additional RAM, processing power and
spare blocks (not accessible from the host) [1, 9]. However, these designs focus
on random write and provide invariably good performances for the entire device.
Most database applications mix random and sequential accesses and do not re-
quire such homogeneous random write efficiency. By adding a software layer, our
optimization permit using less expensive personal-class SSD with good, yet spa-
tially limited, random write performances. This is also applicable to removable
flash media, which have lessened hardware capabilities.

8 Conclusion

In this paper, we first introduced a notion of distance, and described its impact on
flash memories write performances. Based on this property, we proposed a data
placement algorithm, which significantly improves random write performances.
Our contributions emphasize the importance of locality for these FTL-based
devices, and we believe quasi-sequential access patterns to be of use for future
data placement optimizations.

Compared to native write operations over the FTL, our optimization benefit
from the host available RAM and processing power to improve random write
efficiency on portions of the device. This method support localized performances
adjustment, while flash memories offer homogeneous behaviors.

For the SSD used in our experiments, we achieved an improvement of up
to ×58 at a cost of only 14.5% flash overhead. In this best case scenario, this
technique even caused random write to perform slightly better than sequential
write, by 3.5%. This optimization is, to some extent, also applicable on flash
memories with less capacity, as results with a USB flash drive show a ×10 im-
provement with 50% flash overhead. Conjointly, we proposed a model to predict
write performances, however, future works are needed to enhance its accuracy
and help tradeoffs adjustments.

Another perspective relate to data volatility, which might be addressed in
future works with solutions proposed in Sect. 7. Still, this optimization is already
applicable for indexation or temporary tables, where volatility is acceptable.
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