

Abstract—The use of environmental energy such as solar

energy has recently emerged as an option to increase the

operating time of embedded systems (e.g. wireless sensors). It

consists in converting ambient energy into electricity to power

and lengthen battery life. Dynamic voltage scaling (DVS) is one

of the most effective techniques for reducing energy

consumption in embedded and real-time systems. However,

traditional DVS algorithms have inherent limitations on their

capability in energy saving since they rarely take into account

the actual application requirements and often exploit fixed

timing constraints of the real-time tasks. Some authors used

feedback scheduling techniques in order to minimize the

consumed energy by observing the actual usage of resources in

the system. This paper combines the use of DVS and energy

harvesting with the capabilities of a feedback scheduler. Our

goal is to minimize the consumed energy, as well as to take the

charging model into account.

I. INTRODUCTION AND RELATED WORK

Wireless and embedded systems are commonly powered
using batteries. The battery life is an important quality
metric; therefore, the reduction of the energy consumption
becomes a crucial optimization criterion in the conception
and the realization of these systems. For applications where
the system is expected to operate for long durations, energy
becomes a severe bottleneck and much effort has been spent
on the efficient use of the batteries. More recently, another
alternative has been explored to supplement or even replace
batteries: harvesting energy from the environment.

Several authors treated the problems of power and
scheduling with the objective of minimizing power usage
under timing constraints. For example, EDF (Earliest
Deadline First) and RM (Rate Monotonic) [1] scheduling
algorithms have been extended to variable-voltage
processors. The idea is to save power by slowing down the
processor just enough to meet the deadlines [2], [3], [4]. For
ambient energy harvesting, Moser et al. proposed LSA (Lazy
Scheduling Algorithm) [5] to optimally schedule tasks with
deadlines. Despite its optimality in terms of schedulability
and battery usage, the drawbacks of LSA is that it needs an
exponential complexity for periodic task sets, as well as a
high complexity for some kinds of complex energy
harvesting curves. Several simple deadline-based heuristics

* This work was not supported by any organization.
1Université Akli Mohand Oulhadj de Bouira, 10000 Bouira, Algeria;

(a_abbas@esi.dz).
2Laboratoire d’Informatique et d’Automatique pour les Systèmes (LIAS)

ISAE-ENSMA, France (grolleau@ensma.fr).
3Ecole Nationale Supérieure d’Informatique (ESI), Laboratoire de

Communication dans les Systèmes Informatiques (LCSI), B.P 68M, 16270
Oued Smar, El Harrach, Algiers, Algeria; (m_loudini@esi.dz).

4Laboratoire d’Informatique et d’Automatique pour les Systèmes
(LIAS), Université de Poitiers, France; (driss.mehdi@univ-poitiers.fr)

have been compared to LSA in [6]. In [7], a DVS algorithm
(called EA-DVFS) is proposed to enhance the performance
of LSA. This algorithm adjusts the processor’s behavior
depending on the sum of the stored energy and the harvested
energy in a future duration. Particularly, if the system has a
sufficient amount of energy, the tasks are executed at full
speed; otherwise, the processor slows down to save energy.
In [8], [9], the algorithm EDeg is using the slack time (the
slack time [10] at a time t is the amount of time the processor
can remain idle without missing a future deadline): this
notion is extended to the notion of slack energy.

Up to our knowledge, the authors combining DVS and
energy harvesting consider a worst-case behavior of the
tasks. Nevertheless, the worst-case execution time (WCET)
which is taken into account in the task models, considered in
the literature concerning energy harvesting, is the upper
bound of a highly volatile parameter. As an illustration, Fig.
1 is a histogram, taken from [11], representing the typical
effective task duration observed on an important amount of
executions of a task. The WCET, taken in the scheduling
analysis as an upper bound of the task duration, is a far
upper bound of the average execution duration. Since the
energy harvesting scheduling techniques are based on the
WCET, they overuse the battery in order to insure that task
deadlines are met.

To overcome the limitations due to the WCET, in the case
of soft real-time systems, the feedback scheduling [12], [13]
has recently emerged as a promising technique for resource
management. In particular, significant effort has been made
on feedback scheduling of control systems [14], [15]. There
are also several papers applying feedback control methods to
DVS. For instance, the popular PID (Proportional- Integral-
Derivative) control has been integrated into several DVS
algorithms [16]. Solutions for integrated optimization of
sampling periods and CPU speed have been presented in
[17], [18]. A feedback fuzzy-DVS scheduling method has
been developed in [19]. Marinoni and Buttazzo [20]
presented an approach that integrates elastic scheduling with
DVS management to fully exploit the available
computational resources in processors with limited voltage
levels. In [21], a solution is proposed to achieve further
reduction in energy consumption over pure DVS while not
jeopardizing the quality of control, the sampling period of
each control loop is adapted to its actual control performance,
thus exploring flexible timing constraints on control tasks. In
[26], an approach combining feedback scheduling with DVS
is presented for exploiting the slack time of schedule which is
generated by actual executions of tasks that complete under
their WCET. However, these algorithms have been used
without considering energy harvesting capabilities.

A Real-time Feedback Scheduler for Environmental Energy

Harvesting*

A. ABBAS1, 3, E. GROLLEAU2, M. LOUDINI3, and D. MEHDI4

Proceedings of the 3rd International Conference on
Systems and Control, Algiers, Algeria,
October 29-31, 2013

ThBA.5

978-1-4799-0275-0/13/$31.00 ©2013 IEEE

In this paper, we consider that the system is powered by
rechargeable battery and it evolves in a dynamic environment
in which the task parameters (mainly their execution times)
are not fixed.

Figure 1. Histogram of effective task duration vs. WCET

The outline of the paper is as follows. In section 2, we
describe the system model: tasks, processor ambient
model. Our main contribution concerning the
scheduling under energy harvesting is presented in
Experimental results are included and discussed in Section 4.
Finally, the main conclusions and discusses topics for
work are highlighted in section 5.

II. MODELS AND ASSUMPTION

This section describes the system model and energy
source- consumption model, thus formulating the problem to
be addressed in this paper.

A. Task system model

A real-time task is classically defined as a set of temporal
parameters [1]. In the sequel, we consider independent tasks:
they do not communicate or share resources, and cannot
suspend themselves. This assumption can be removed in
some subsequent work. We consider sets of
time tasks, which are defined by:

• ri the first release time of the task τi

a task is named a job τi,k, k≥0;

• Ti,nom the nominal release period of the task
τi,0 is released at the date ri,0

subsequent job τi,k is released at the date
with Ti derived from Ti,nom;

• WCETi is the Worst-Case Execution Time of every
job of τi at full processor speed;

• Di is the relative deadline of the task
the absolute deadline of a job τi,k

ri,k+Di.

Note that in our model, the release time (resp. absolute
deadline) is computed given the previous release time (resp.
the job release time). This definition comes from the fact that
in a feedback scheduler, the period Ti may vary.

The underlying idea of feedback scheduling is that for
tasks integrating a control loop (a task controlling an
independent physical process), meeting the deadlines is not
giving the best quality of the process response. Indeed,

In this paper, we consider that the system is powered by
in a dynamic environment

in which the task parameters (mainly their execution times)

Histogram of effective task duration vs. WCET

The outline of the paper is as follows. In section 2, we
describe the system model: tasks, processor ambient source
model. Our main contribution concerning the feedback
scheduling under energy harvesting is presented in section 3.
Experimental results are included and discussed in Section 4.

discusses topics for future

ODELS AND ASSUMPTIONS

This section describes the system model and energy
consumption model, thus formulating the problem to

time task is classically defined as a set of temporal
. In the sequel, we consider independent tasks:

or share resources, and cannot
suspend themselves. This assumption can be removed in
some subsequent work. We consider sets of n periodic real-

τi; every release of

the nominal release period of the task τi: the job

0=ri, and every
is released at the date ri,k=ri,k-1+Ti,

Case Execution Time of every

is the relative deadline of the task τi: we assume

i,k to be given by

Note that in our model, the release time (resp. absolute
ne) is computed given the previous release time (resp.

the job release time). This definition comes from the fact that
may vary.

The underlying idea of feedback scheduling is that for
(a task controlling an

independent physical process), meeting the deadlines is not
giving the best quality of the process response. Indeed,

several factors, like the release jitter, and the input
jitter, have a higher impact on the quality of the pr
response than meeting the deadlines or not. The jitter is an
important metric for control tasks: a jitter may be defined in
different ways, but it expresses the variation of the execution
times between subsequent jobs. In some cases, it is better to
increase the period of a control task in order to lower the
jitters [14], than to increase the sampling period (which side
effect may be to increase the jitters).

Since we consider DVS systems, the WCET of a task is
given for a full processor speed, which is called unitary
speed. We suppose that if the processor is running at a speed
0 1α≤ ≤ , the WCET of the tasks are scaled to match the
speed. Using a DVS system, we can change the WCET and
the actual execution times of every task at once. Therefore, at
any time, the WCET of the tasks depends on

• WCETi,α is the Worst-Case Execution Time of every
job of τi at an α -processor speed;

Using a classic feedback scheduler (FS), we can also
change independently the release periods of some chosen
tasks in order to allow the DVS system to be scaled eve
more than when considering only the WCET of the tasks,
consuming less power than without the FS. We will assume
the FS to be executed periodically. For the FS part, we use,
like in [15], the following notations:

• Ci,1 estimated execution time at full CPU speed

• Ci,α actual estimated execution time of the task
when the CPU speed is scaled by

• ci measured execution time of the job

• Ti is the actual period of the task

To include energy consumption
the following notations:

• Ei is the Worst Case Energy Consumption (WCEC)
by the task τi;

• Ei,α actual energy consumption by the task
the CPU speed is scaled by α

To estimate the execution time
filter given below with a forgetting factor λ in [0, 1] proposed
by Cervin in [15].We initialize the estimator of a task as its
worst execution time (WCET). The index
execution number of the task τi.

()
() (

i ,1 i

i,1 i ,1 i

0 WCET

C k * C k - *

C

1 1- cλ λ

=

= +

where, at each termination of the job

The instantaneous state of the task system is given by
the scaling speed of the CPU, and for every subsequent job
τi,k<ri,k, Ci,1,Ti>.

A task system is schedulable by a scheduling policy if
every job τi,k can be completely executed in the time window
[ri,k., ri,k+Di].

several factors, like the release jitter, and the input-output
jitter, have a higher impact on the quality of the process
response than meeting the deadlines or not. The jitter is an
important metric for control tasks: a jitter may be defined in
different ways, but it expresses the variation of the execution
times between subsequent jobs. In some cases, it is better to
increase the period of a control task in order to lower the

than to increase the sampling period (which side

Since we consider DVS systems, the WCET of a task is
given for a full processor speed, which is called unitary
speed. We suppose that if the processor is running at a speed

, the WCET of the tasks are scaled to match the
speed. Using a DVS system, we can change the WCET and
the actual execution times of every task at once. Therefore, at
any time, the WCET of the tasks depends on α .

Case Execution Time of every
processor speed;

Using a classic feedback scheduler (FS), we can also
change independently the release periods of some chosen
tasks in order to allow the DVS system to be scaled even
more than when considering only the WCET of the tasks,
consuming less power than without the FS. We will assume
the FS to be executed periodically. For the FS part, we use,

estimated execution time at full CPU speed;

actual estimated execution time of the task τi
when the CPU speed is scaled by α. Ci,α= Ci,1 / α;

measured execution time of the job τi,k;

is the actual period of the task τi chosen by the FS;

consumption per task τi we consider

is the Worst Case Energy Consumption (WCEC)

actual energy consumption by the task τi when
α .

To estimate the execution time Ci,1, we use a low-pass
filter given below with a forgetting factor λ in [0, 1] proposed

We initialize the estimator of a task as its
worst execution time (WCET). The index k represents the

) ()i ,1 i,1 iC k * C k - *1 1- cλ λ= +
 (1)

where, at each termination of the job τi,k , Ci,1(k) is updated.

The instantaneous state of the task system is given by α ,
the scaling speed of the CPU, and for every subsequent job

A task system is schedulable by a scheduling policy if
can be completely executed in the time window

Proceedings of the 3rd International Conference on ThBA.5

978-1-4799-0275-0/13/$31.00 ©2013 IEEE

EDF is optimal regarding schedulability in the context of
independent tasks. The density test is an easy way to test
(linear time) a sufficient condition of schedulability for
periodic tasks. When the tasks have their nominal period, and
are executed by a unitary speed processor this schedulability
test is [22]:

1 ,

1
min{ , }

n
i

i i i nom

WCET

D T=

∆ = ≤∑

If the processor runs at a scale factor of
schedulability condition can be expressed as:

Given a system under a feedback scheduler, we can adapt
the definition of the density test, during the
the feedback scheduler, as the instantaneous processor
utilization:

 ,1

1

()
1

min{ , }

n
i

inst

i i i

C k

D T=

∆ = ≤∑

where the term Ci,1(k) is equal to the latest filtered value of
the task τi according to (1).

∆inst ≤ α can be used as an indicative sufficient
schedulability test on the average observed execution time
during the execution of the feedback scheduler

B. Energy source model

We assume that ambient energy is harvested and
converted into electrical power. To model the solar energy
source behavior, we use the following model

 () 10 () cos() cos()
0.7 0.1

t t
Ps t unif t

π π
= × × ×

× ×

where unif(t) denotes a uniform distributed random variable
between 0 and 1. The values of Ps have been cut off at the
value Ps, max = 10. As illustrated in Fig. 2, the obtained
power trace Ps (t) is simulating day and night periods similar
to those experienced by solar cells in an outdoor
environment.

Figure 2. Power trace Ps(t)

In this energy source model, the input power
excluded the loss incurred by the auxiliary circuitry. In
another word, Ps (t) is the net power to feed the storage. The
harvested energy Es (t1, t2) by PS (t) at time interval
is given as:

 ()
2

1

1, 2 ()
t

t

Es t t Ps t dt= ∫

EDF is optimal regarding schedulability in the context of
independent tasks. The density test is an easy way to test

ar time) a sufficient condition of schedulability for
periodic tasks. When the tasks have their nominal period, and
are executed by a unitary speed processor this schedulability

1
min{ , }

∆ = ≤ (2)

α , this sufficient
schedulability condition can be expressed as: α∆ ≤ .

Given a system under a feedback scheduler, we can adapt
the definition of the density test, during the jth execution of
the feedback scheduler, as the instantaneous processor

1
min{ , }

∆ = ≤ (3)

he latest filtered value of

can be used as an indicative sufficient
schedulability test on the average observed execution time
during the execution of the feedback scheduler.

We assume that ambient energy is harvested and
converted into electrical power. To model the solar energy
source behavior, we use the following model [5].

10 () cos() cos()
0.7 0.1

t t

π π
= × × ×

× ×
 (4)

denotes a uniform distributed random variable
have been cut off at the

. As illustrated in Fig. 2, the obtained
and night periods similar

to those experienced by solar cells in an outdoor

In this energy source model, the input power Ps (t) has
excluded the loss incurred by the auxiliary circuitry. In

ower to feed the storage. The
at time interval [t1, t2]

1, 2 ()Es t t Ps t dt (5)

The system uses an energy storage unit that has a
nominal capacity (noted E), corresponding to a maximum
energy (expressed in Joules or Watts
has to remain between two boundaries
therefore the maximal available energy for the CPU is
Emax - Emin.

C. Energy consumption model

A wide range of processors supports variable voltage and
frequency levels which are tightly coupled. A processor is an
integrated circuit of the CMOS family; such a circuit answers
the following generic equations [23]:

Instantaneous power and energy consumed

consumption (with joules/second or watt for example) can
be divided into two types, static and dynamic:

CMOS stat dyn

P P P= +

where, Pdyn is power consumption in switching (dynamic)
and Pstat is power consumed by
(static).In CMOS circuits, the dynamic power represents
about 80-85% of the power-dissipated. Conventionally, we
neglect the static power. The total power dissipated can be
expressed by:

 CMOS dynP P≈

The total energy consumed (in joules), at
time, is given by the following formula:

 ()
stat dyn stat dyn dyn

E P P t E E E= + ⋅ = + ≈

Relationship between frequency and supply voltage

operating frequency of the CMOS circuits is given by

()tv v

f
v

−
≈

with γ a constant, vt is the threshold voltage. In the model of
metal oxide semiconductor field effect transistor (noted
MOSFET) a classical value for γ is approximated by two
[24]. For a threshold voltage sufficiently small relatively to
the supply voltage, the
supply voltage becomes.

 f v≈

where f is the operating frequency and

Relationship between power, energy, frequency and

supply voltage: The dynamic power is calculated by

 2 3 3 dynP C f v C f C v= ⋅ ⋅ = ⋅ = ⋅

where C is a constant related to the type of

Under the operating frequency f

cycle's, which will give a

Thus, we obtain a consumed energy equal to:

dyn dyna

n
E P n C f n C v

f
= ∗ = ∗ ∗ = ∗ ∗

The system uses an energy storage unit that has a
), corresponding to a maximum

pressed in Joules or Watts-hour). The energy level
has to remain between two boundaries Emin and Emax
therefore the maximal available energy for the CPU is E =

A wide range of processors supports variable voltage and
frequency levels which are tightly coupled. A processor is an

circuit of the CMOS family; such a circuit answers
:

Instantaneous power and energy consumed: Power
consumption (with joules/second or watt for example) can

two types, static and dynamic:

CMOS stat dyn

P P P= + (6)

is power consumption in switching (dynamic)
is power consumed by a CMOS gate at rest

In CMOS circuits, the dynamic power represents
dissipated. Conventionally, we

total power dissipated can be

CMOS dynP P≈ (7)

The total energy consumed (in joules), at t operating
formula:

stat dyn stat dyn dyn

E P P t E E E= + ⋅ = + ≈ (8)

frequency and supply voltage: The
operating frequency of the CMOS circuits is given by.

()tv v

v

γ−
 (9)

is the threshold voltage. In the model of
metal oxide semiconductor field effect transistor (noted
MOSFET) a classical value for γ is approximated by two

. For a threshold voltage sufficiently small relatively to
ency and

f v≈ (10)

is the operating frequency and v is

Relationship between power, energy, frequency and

The dynamic power is calculated by.

2 3 3 UP C f v C f C v= ⋅ ⋅ = ⋅ = ⋅ (11)

is a constant related to the type of processor.

f , a task requires n clock

n f seconds.

Thus, we obtain a consumed energy equal to:

2 2 E P n C f n C v= ∗ = ∗ ∗ = ∗ ∗ (12)

Proceedings of the 3rd International Conference on ThBA.5

978-1-4799-0275-0/13/$31.00 ©2013 IEEE

D. Dynamic Voltage Scaling

The Dynamic Voltage Scaling aims at the dynamic
adaptation of processor voltage and thus, its
current needs of the application in terms of performance. The
scheduler, in this case, is not only defining the order of the
tasks to be executed by the processor. It also has to define the
processor speed. We assume that the speed can be varying
continuously from Smin to the maximum supported speed
We normalize the speed to the maximum speed to have a
continuous operating range of [Smin, Smax], where
fmax and Smax=fmax/fmax=1, with the minimum and maximum
frequencies represented by fmin and fmax respectively. The
important point to note is that, when we perform a slowdown
factor α, we change both the frequency and
the processor with a slowdown factor α ∈[Smin

The key idea is that, if we consider periodic tasks and if
the instantaneous density∆inst given in (3) is
the processor operates with a maximum speed, it is possible
to reduce the processor speed (so increasing the execution
times of tasks) up to a speed α which gives an instantaneous
density factor equal to 1, simply take α=∆inst

The current processor frequency noted
terms of slowdown factor

 maxUf fα= ×

By referring to the above equations, the current energy
consumption relative to the current slowdown factor
written:

 2 2
_ max dyn dynE C f E= × = ×

with Edyn_max the maximum energy consumption under the
maximum frequency fmax.

III. FEEDBACK SCHEDULING UNDER

HARVESTING

We present here a new scheduler algorithm noted EDfbs
eg (Earliest Deadline Feedback Scheduling with Energy
Guarantee) in order to enhance the performances of classical
EDF under energy constraint. Before present
algorithm, we consider the example given in
EDeg (which consists in putting the processor in the idle state
when the available energy E=0) and EDfbs
consider the set of tree tasks given in [25] Γ = {τi |
and τi = (Ci, Di, Ti, Ei) with Ei is the worst case energy
consumption (WCEC) of the task τi. Let τ1
= (2, 8, 10, 15) and τ3 = (4, 11, 15, 22). We assume that the
energy storage capacity is C = 25 energy units at
simplicity, we assume that the rechargeable p
along time with (Ps = 5). We choose a forgetting factor
equal to 0 in order to have Ci,1 = ci.

A. Case 1: rechargeable power is constant along time but

without EDeg and Edfbs-eg

We show below the scheduling of the given
configuration Γ for a classical EDF policy at full processor
speed. In this case, the system stops at time t = 22. This is
due to the depletion of the battery (Fig. 3). The average
energy available is E = 7.14.

The Dynamic Voltage Scaling aims at the dynamic
adaptation of processor voltage and thus, its frequency, to the
current needs of the application in terms of performance. The
scheduler, in this case, is not only defining the order of the

by the processor. It also has to define the
processor speed. We assume that the speed can be varying

maximum supported speed Smax.
the maximum speed to have a

], where Smin=fmin /
=1, with the minimum and maximum

respectively. The
is that, when we perform a slowdown

, we change both the frequency and supply voltage of

min, 1].

The key idea is that, if we consider periodic tasks and if
given in (3) is less than 1 and

processor operates with a maximum speed, it is possible
processor speed (so increasing the execution

which gives an instantaneous

inst.

t processor frequency noted f expressed in

(13)

By referring to the above equations, the current energy
consumption relative to the current slowdown factor α can be

2 2 α= × = × (14)

the maximum energy consumption under the

NDER ENERGY

We present here a new scheduler algorithm noted EDfbs-
eg (Earliest Deadline Feedback Scheduling with Energy
Guarantee) in order to enhance the performances of classical

Before presenting our
algorithm, we consider the example given in [25] to compare
EDeg (which consists in putting the processor in the idle state

=0) and EDfbs-eg. For this, we
Γ = {τi | 1 ≤ i ≤ 3}

is the worst case energy
 = (1, 5, 6, 12), τ2

= (4, 11, 15, 22). We assume that the
= 25 energy units at t = 0. For

simplicity, we assume that the rechargeable power is constant
= 5). We choose a forgetting factor λ

Case 1: rechargeable power is constant along time but

We show below the scheduling of the given
a classical EDF policy at full processor

speed. In this case, the system stops at time t = 22. This is
due to the depletion of the battery (Fig. 3). The average

Figure 3. Energy available without EDeg and EDfbs

B. Case 2: rechargeable power is constant along time with

EDeg

When scheduling the configuration Γ under EDeg the
system never stops. A time t = 19, an idle time of four time
units is inserted: its duration is computed using the slack
time. The variation of the energy consumptio
Fig. 4. In this case, the average available energy is equal to E
= 13.03.

Figure 4. Energy available with EDeg

C. Case 3: rechargeable power is constant along time with

EDfbs-eg

The scheduling configuration in EDfbs
deadline misses. However, in terms of consumed energy, the
algorithm allows EDfbs-eg to consume way less than EDeg
(see Fig. 5). In this case, the average available energy is E =
19.43

Figure 5. Energy available with EDfbs

Energy available without EDeg and EDfbs-eg

power is constant along time with

When scheduling the configuration Γ under EDeg the
= 19, an idle time of four time

units is inserted: its duration is computed using the slack
time. The variation of the energy consumption is shown in
Fig. 4. In this case, the average available energy is equal to E

Energy available with EDeg

Case 3: rechargeable power is constant along time with

The scheduling configuration in EDfbs-eg causes some
However, in terms of consumed energy, the

eg to consume way less than EDeg
In this case, the average available energy is E =

Energy available with EDfbs-eg

Proceedings of the 3rd International Conference on ThBA.5

978-1-4799-0275-0/13/$31.00 ©2013 IEEE

D. The EDfbs-eg algorithm

When a task (other than FS) ends its execution, its actual
estimated execution time Ci,α is evaluated according to (1)
For each execution of FS the instantaneous density
all tasks is evaluated according to (3) and is taken as the new
scaling factor α.

IV. SIMULATION RESULTS

In order to simulate the algorithm EDfbs
tool TrueTime [14] in which we implemented a random task
execution time generator according to a weibull low given
below in (15), with k =3, β= 1.5, and U
distributed random variable between 0 and 1. We choose
these parameters so that the max of ci is less than the

The goal of this generator is to simulate a
distribution (Fig. 6) of actual execution times.

Figure 6. Distribution of actual execution times

We have implemented a power generator source which
supplies a battery according to the model given in (4). We
choose the forgetting factor of Eq. (1) λ=0.9.We
tasks system Γ but for these experiments, we consider that the
actual execution times of each instance of the tasks are given
by the random generator (15).

In order to compute the rate of missed deadlines, the
average and minimum energy available, we perform 100
simulations according to the specifications listed above.

A. Rate of missed deadlines

In this section, we present results of simulations
performed to compute the rate of missed deadlines for each
simulation where the results are shown in Fig. 7. This rate is
equal to the number of instances of tasks that have missed
their deadlines divided by the number of instances of all
tasks. The maximum rate of missed deadlines is equal to
7.69%. The average rate for 100 simulations is equal to
0.84%.

1/(log(1))k

i
c U β= − − ×

its execution, its actual
is evaluated according to (1)

For each execution of FS the instantaneous density ∆inst for
all tasks is evaluated according to (3) and is taken as the new

IMULATION RESULTS

In order to simulate the algorithm EDfbs-eg, we used the
in which we implemented a random task

g to a weibull low given
U is an uniformly

distributed random variable between 0 and 1. We choose
is less than the WCETi,

 (15)

The goal of this generator is to simulate a typical
distribution (Fig. 6) of actual execution times.

Distribution of actual execution times

We have implemented a power generator source which
supplies a battery according to the model given in (4). We
choose the forgetting factor of Eq. (1) λ=0.9.We consider the
tasks system Γ but for these experiments, we consider that the
actual execution times of each instance of the tasks are given

In order to compute the rate of missed deadlines, the
able, we perform 100

simulations according to the specifications listed above.

In this section, we present results of simulations
performed to compute the rate of missed deadlines for each

Fig. 7. This rate is
equal to the number of instances of tasks that have missed
their deadlines divided by the number of instances of all
tasks. The maximum rate of missed deadlines is equal to
7.69%. The average rate for 100 simulations is equal to

Figure 7. Rate of missed deadlines under EDfbs

From Fig. 7, we can conclude that the EDfbs
algorithm causes in average a small amount of deadline
misses. Nevertheless we know that in the control systems the
number of missed deadlines is less important tha
execution frequencies. An example is the control of an
inverted

stable equilibrium (an angle of 180°). Miss some samples
(deadlines) of

m position, but with more

pendulum will fall.

B. Average and minimum energy available

We also measured for each simulation, the average and
minimum energy available. The results are illustrated in Fig.
8.

Figure 8. Energy available with EDfbs

As shown in Fig. 8, the EDfbs
significant amount of energy where the average energy
available is near to the maximum capacity of the battery (here
it equals to 25). This algorithm protects in average against a
total discharge of the battery, since the minimum energy
available for each simulations is superior to 5.

C. Quality of control

In this section, we consider an embedded control system
that consists of three independent control loops. Each plant is
controlled using a PID algorithm where parameters are well
designed and remain the same as those in [14]. The transfer

function of each plant is

experiments, the nominal sampling periods of three loops are

(log(1))β= − − ×

() 1000 ()G s s s= +

Rate of missed deadlines under EDfbs-eg

From Fig. 7, we can conclude that the EDfbs-eg
algorithm causes in average a small amount of deadline
misses. Nevertheless we know that in the control systems the
number of missed deadlines is less important than their
execution frequencies. An example is the control of an

in the position of
stable equilibrium (an angle of 180°). Miss some samples

m position, but with more

Average and minimum energy available

simulation, the average and
minimum energy available. The results are illustrated in Fig.

Energy available with EDfbs-eg for 100 simulation

As shown in Fig. 8, the EDfbs-eg algorithm saves a
significant amount of energy where the average energy

able is near to the maximum capacity of the battery (here
it equals to 25). This algorithm protects in average against a
total discharge of the battery, since the minimum energy
available for each simulations is superior to 5.

ction, we consider an embedded control system
that consists of three independent control loops. Each plant is
controlled using a PID algorithm where parameters are well
designed and remain the same as those in [14]. The transfer

. In our

experiments, the nominal sampling periods of three loops are

2() 1000 ()G s s s= +

Proceedings of the 3rd International Conference on ThBA.5

978-1-4799-0275-0/13/$31.00 ©2013 IEEE

set to be T1,nom =0.006 s, T2,nom =0.01 s, and T3,nom =0.015 s,
respectively. To measure the QoC (Quality of Control), the
Integral of Absolute Error (IAE) is used for each loop, i.e

, where the absolute control error ei is

defined as the absolute difference between the reference input
xi (blue line) and the system output yi (red line), i.e., ei = |xi -
yi|. The total control cost of the system is calculated as

. We assume that the energy storage

capacity is C = 6 energy units at t = 0. In the first
experiment (case 1), we consider an EDF policy at full
processor speed where the results of control performance are
shown in Fig. 9.

Figure 9. Control performance of three plants at full speed (case 1)

From Fig 9, we can see that all plants remains stable and
exhibit satisfactory performances until t= 1.897 s. After this
time the execution tasks stops and the plants become unstable
and will fall. This is due to the depletion of the battery. In this
case, the total control cost of the system is equal to Jsys=
25704.16. The average energy available is equal to 2.23 with
considering the cycle of charge and discharge of battery and
the minimum energy available is equal to 0.

The EDF schedule produced before the system stops and
will fall is depicted in Fig. 10.

Figure 10. EDF schedule at full speed

In the second experiment (case 2), we use the EDfbs-eg
with a FS period equal to 0.007 s. The results are shown in
Fig.11.

Figure 11. Control performance of three plant with EDfbs_eg (case 2)

From Fig. 11, we can see also that the three plants
remains stable and never stops with the total control cost of
the system is Jsys = 13156.54. We note that in this case, the
rate of missed deadlines is equal to 5.68 %. Nevertheless, the
average energy available is equal to 3.46 and the minimum
energy available is equal to 1.49 which is better than for
EDF.

To show the impact of the choice of the FS period, we
performed a third experiment (case 3) with a FS period equal
to 0.02 s. The results of control performance are shown in
Fig. 12.

Figure 12. Control performance of three plant with EDfbs_eg (case 3)

From Fig. 12, we can see also that the three plants remain
stable with the total control cost of the system Jsys =
10479.67. We note that in this case the rate of missed
deadlines is equal to 0 %. The average energy available is
equal to 2.92 where the minimum energy available is equal to
0.26.

V. CONCLUSION AND FUTURE WORKS

We have shown through a case study that the energy
consumption can be drastically reduced in the case of soft
real-time system. Moreover, the number of missed deadlines
is limited giving a weibull distribution of the execution times.
For some types of tasks in embedded systems, like process
control tasks, meeting the deadlines is less important than a
relative regularity of their execution. In the future, we plan to
combine this approach with a delay control taking a
maximum lateness of the control task into account, insuring
the convergence of the state of the system towards the
command. In the other work, we plan to consider some recent

0
() ()

t

i i
J t e t dt= ∫

3

1

() ()sys iJ t J t= ∑

0 0.5 1 1.5 2 2.5 3

0

P
la

n
t
1

0 0.5 1 1.5 2 2.5 3

0

P
la

n
t
2

0 0.5 1 1.5 2 2.5 3

0

Time (s)

P
la

n
t
3

0 0.5 1 1.5 2 2.5 3
T1

T2

T3

Time (s)

0 0.5 1 1.5 2 2.5 3
-2

0

2

P
la

n
t

1

0 0.5 1 1.5 2 2.5 3
-2

0

2

P
la

n
t

2

0 0.5 1 1.5 2 2.5 3
-2

0

2

Time (s)

P
la

n
t

3

0 0.5 1 1.5 2 2.5 3
-2

0

2

Time (s)

P
la

n
t
3

0 0.5 1 1.5 2 2.5 3
-2

0

2

P
la

n
t
1

0 0.5 1 1.5 2 2.5 3
-2

0

2

P
la

n
t
2

Proceedings of the 3rd International Conference on ThBA.5

978-1-4799-0275-0/13/$31.00 ©2013 IEEE

works with adaptive control withe considering energy
harvesting capabilities

REFERENCES

[1] C. L. Liu, and J. W. Layland, “Scheduling algorithms for
multiprogramming in real-time environment”. Journal of the ACM
20(1): p. 46–61. 1973

[2] F. Yao, A. J. Demers, and S. A. Shenker, “Scheduling Model for
Reduced CPU Energy”, in IEEE Symposium on Foundations of
Computer Science, pp. 374-382. 1995

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Determining
optimal processor speeds for periodic real-time tasks with different
power characteristics”. Euromicro Conference on Real-Time Systems,
pp. 225-232. 2001

[4] D. Qian, Z. Zhang, X. Tian and C. Hu “Low power scheduling for
periodic real-time systems with Dynamic Voltage Scaling processor”.
International Conference on Computer Application and System
Modeling (ICCASM) 11:244-248. 2010

[5] C. Moser, D. Brunelli, L. Thiele and L. Benini. “Real-time scheduling
for energy harvesting sensor nodes”, Real-Time Systems, Volume 37,
Issue 3, Pages: 233 - 260, 2007.

[6] M. Chetto and H. Zhang, “Performance Evaluation of Real-Time
Scheduling Heuristics for Energy Harvesting Systems”, Proceedings
of the 2010 IEEE/ACM Int'l Conference on Green Computing and
Communications & Int'l Conference on Cyber, Physical and Social
Computing, GREENCOM-CPSCOM '10, pp. 398-403,2010.

[7] S. Liu, Q. Qiu and Q. Wu, “Energy aware dynamic voltage and
frequenc selection for real-time systems with energy harvesting”.
Proceedings of thconference on Design, automation and test in Europe
236-241. 2008.

[8] H. El Ghor, M. Chetto and R.H. Chehade “A real-time scheduling
framewor for embedded systems with environmental energy
harvesting”. Computers an Electrical Engineering 37: 498-510. (2011)

[9] M. Chetto, D. Masson, and S. Midonnet, “Fixed priority scheduling
strategies for ambient energy-harvesting embedded systems,” Green
Computing and Communications (GreenCom), 2011 IEEE/ACM
International Conference, 2011.

[10] J. P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for
scheduling soft-aperiodic tasks fixed priority preemptive systems,” in
proceedings of the 13th IEEE Real-Time Systems Symposium,
Phoenix, Arizona, , pp. 110–123, Dec. 1992.

[11] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson,
P. Marwedel, J. Reineke, C. Rochange, M. Sebastian, R. von
Hanxleden, R. Wilhelm and W. Yi, “Building Timing Predictable
Embedded Systems”, ACM Transactions on Embedded Computing
Systems, 2012.

[12] F. Xia, “Feedback Scheduling of Real-Time Control Systems with
Resource Constraints”, PhD thesis, Zhejiang University, 2006.

[13] K.-E. Årzén, A. Robertsson, D. Henriksson, M. Johansson, H.
Hjalmarsson and K. H. Johansson, “Conclusions of the ARTIST2
Roadmap on Control of Computing Systems”, ACM SIGBED Review
3(3) 11-20, (2006)

[14] A. Cervin, D. Henriksson, B. Lincoln, J. Eker and K.-E. Årzén “How
Does Control Timing Affect Performance? Analysis and Simulation of
Timing Using Jitterbug and TrueTime”. IEEE Control Systems
Magazine, 23:3, pp. 16–30, 2003.

[15] A. Cervin. “Integrated Control and Real-Time Scheduling”. Thèse
PHd. s.l., Department of Automatic Control - Lund Institute of
Technology, Sweden :Lund Tryckeri AB, 2003.

[16] A. Soria-Lopez, P. Mejia-Alvarez and J. Cornejo,“Feedback
Scheduling of Power-Aware Soft Real-Time Tasks”, in: Proc. of the
Sixth Mexican Int. Conf. on Computer Science (ENC'05), , pp. 266-
273 , 2005

[17] H. S. Lee and B. K. Kim, “Dynamic Voltage Scaling for Digital
Control System Implementation”, Real-Time Systems 29 263-280,
2005

[18] H. A. Wang, H. Jin, H. Wang and G. Z. Dai, “EnergyAware
Optimization Design of Digital Control Systems with Evolution
Strategy”, Dynamics of Continuous, Discrete and Impulsive Systems -
Series B, 13(S1) 1893-1898, 2006

[19] H. Jin, D. L. Wang, H. A. Wang, H. Wang, “Feedback fuzzy-DVS
scheduling of control tasks”, Journal of Supercomputing 41(2) 147-
162, 2007

[20] M. Marinoni and G. Buttazzo, “Elastic DVS Management in
Processors With Discrete Voltage/Frequency Modes”, IEEE Trans.
Industrial Informatics 3(1) 51-62, 2007

[21] F. Xia, L. Ma, W. Zhao, Y. Sun, and J. Dong, “Enhanced energy-
aware feedback scheduling of embedded control systems”, Journal of
Computers, , 4(2): 103-111, 2008.

[22] J. Liu, “Real-Time Systems”, Prentice Hall, 2000
[23] W. C. Kwon, and T. Kim, “Optimal Voltage Allocation Techniques

for Dynamically Variable Voltage Processors”. ACM Transactions on
Embedded Computing Systems, Vol. 4, No.l, pp.211 -230, 2005,

[24] H. Aydin, R. Melhem, D. Mosé and P.Mejia-Alvarez. “Determining
optimal processor speeds for periodic real-time tasks with different
power characteristics”. In Euromicro Conference on Real-Time
Systems, pages 225–232, 2001.

[25] M. Chetto, H. El Ghor and R. H. Chehade, “real-time scheduling for
energy harvesting sensors”, The 6th International Conference for
Internet Technology and Secured Transactions, Abu Dhabi : United
Arab Emirates Page(s): 396 - 402 , 2011.

[26] A. Dudani, F. Mueller, and Y. Zhu. Energy-conserving feedback edf
scheduling for embedded systems with realtime constraints. In ACM
SIGPLAN Joint Conference Languages, Compilers, and Tools for
Embedded Systems (LCTES’02) and Software and Compilers for
Embedded Systems (SCOPES’02), pages 213.222, June 2002.

Proceedings of the 3rd International Conference on ThBA.5

978-1-4799-0275-0/13/$31.00 ©2013 IEEE

