
  

  

Abstract—The use of environmental energy such as solar 

energy has recently emerged as an option to increase the 

operating time of embedded systems (e.g. wireless sensors). It 

consists in converting ambient energy into electricity to power 

and lengthen battery life.  Dynamic voltage scaling (DVS) is one 

of the most effective techniques for reducing energy 

consumption in embedded and real-time systems. However, 

traditional DVS algorithms have inherent limitations on their 

capability in energy saving since they rarely take into account 

the actual application requirements and often exploit fixed 

timing constraints of the real-time tasks. Some authors used 

feedback scheduling techniques in order to minimize the 

consumed energy by observing the actual usage of resources in 

the system. This paper combines the use of DVS and energy 

harvesting with the capabilities of a feedback scheduler. Our 

goal is to minimize the consumed energy, as well as to take the 

charging model into account. 

I. INTRODUCTION AND RELATED WORK 

Wireless and embedded systems are commonly powered 
using batteries. The battery life is an important quality 
metric; therefore, the  reduction of the energy consumption 
becomes a crucial optimization criterion in the conception 
and the  realization of these systems.  For applications where 
the system is expected to operate for long durations, energy 
becomes a severe bottleneck and much effort has been spent 
on the efficient use of the batteries. More recently, another 
alternative has been explored to supplement or even replace 
batteries: harvesting energy from the environment. 

Several authors treated the problems of power and 
scheduling with the objective of minimizing power usage 
under timing constraints. For example, EDF (Earliest 
Deadline First) and RM (Rate Monotonic) [1] scheduling 
algorithms have been extended to variable-voltage 
processors. The idea is to save power by slowing down the 
processor just enough to meet the deadlines [2], [3], [4]. For 
ambient energy harvesting, Moser et al. proposed LSA (Lazy 
Scheduling Algorithm) [5] to optimally schedule tasks with 
deadlines. Despite its optimality in terms of schedulability 
and battery usage, the drawbacks of LSA is that it needs an 
exponential complexity for periodic task sets, as well as a 
high complexity for some kinds of complex energy 
harvesting curves. Several simple deadline-based heuristics 
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have been compared to LSA in [6]. In [7], a DVS algorithm 
(called EA-DVFS) is proposed to enhance the performance 
of LSA. This algorithm adjusts the processor’s behavior 
depending on the sum of the stored energy and the harvested 
energy in a future duration. Particularly, if the system has a 
sufficient amount of energy, the tasks are executed at full 
speed; otherwise, the processor slows down to save energy. 
In [8], [9], the algorithm EDeg is using the slack time (the 
slack time [10] at a time t is the amount of time the processor 
can remain idle without missing a future deadline): this 
notion is extended to the notion of slack energy. 

Up to our knowledge, the authors combining DVS and 
energy harvesting consider a worst-case behavior of the 
tasks. Nevertheless, the worst-case execution time (WCET) 
which is taken into account in the task models, considered in 
the literature concerning energy harvesting, is the upper 
bound of a highly volatile parameter. As an illustration, Fig. 
1 is a histogram, taken from [11], representing the typical 
effective task duration observed on an important amount of 
executions of a task. The WCET, taken in the scheduling 
analysis as an upper bound of the task duration, is a far 
upper bound of the average execution duration. Since the 
energy harvesting scheduling techniques are based on the 
WCET, they overuse the battery in order to insure that task 
deadlines are met. 

To overcome the limitations due to the WCET, in the case 
of soft real-time systems, the feedback scheduling [12], [13] 
has recently emerged as a promising technique for resource 
management. In particular, significant effort has been made 
on feedback scheduling of control systems [14], [15]. There 
are also several papers applying feedback control methods to 
DVS. For instance, the popular PID (Proportional- Integral-
Derivative) control has been integrated into several DVS 
algorithms [16]. Solutions for integrated optimization of 
sampling periods and CPU speed have been presented in 
[17], [18]. A feedback fuzzy-DVS scheduling method has 
been developed in [19]. Marinoni and Buttazzo [20] 
presented an approach that integrates elastic scheduling with 
DVS management to fully exploit the available 
computational resources in processors with limited voltage 
levels. In [21], a solution is proposed to achieve further 
reduction in energy consumption over pure DVS while not 
jeopardizing the quality of control, the sampling period of 
each control loop is adapted to its actual control performance, 
thus exploring flexible timing constraints on control tasks. In 
[26], an approach combining feedback scheduling with DVS 
is presented for exploiting the slack time of schedule which is 
generated by actual executions of tasks that complete under 
their WCET. However, these algorithms have been used 
without considering energy harvesting capabilities.  
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In this paper, we consider that the system is powered by 
rechargeable battery and it evolves in a dynamic environment 
in which the task parameters (mainly their execution times) 
are not fixed. 

Figure 1.  Histogram of effective task duration vs. WCET

The outline of the paper is as follows. In section 2, we 
describe the system model: tasks, processor ambient
model. Our main contribution concerning the 
scheduling under energy harvesting is presented in 
Experimental results are included and discussed in Section 4. 
Finally, the main conclusions and discusses topics for 
work are highlighted in section 5.  

II. MODELS AND ASSUMPTION

This section describes the system model and energy 
source- consumption model, thus formulating the problem to 
be addressed in this paper. 

A. Task system model 

A real-time task is classically defined as a set of temporal 
parameters [1]. In the sequel, we consider independent tasks: 
they do not communicate or share resources, and cannot 
suspend themselves. This assumption can be removed in 
some subsequent work. We consider sets of 
time tasks, which are defined by: 

• ri the first release time of the task τi

a task is named a job τi,k, k≥0; 

• Ti,nom the nominal release period of the task 
τi,0 is released at the date ri,0

subsequent job τi,k is released at the date 
with Ti derived from Ti,nom; 

• WCETi  is the Worst-Case Execution Time of every 
job of τi at full processor speed; 

• Di is the relative deadline of the task 
the absolute deadline of a job τi,k

ri,k+Di. 

Note that in our model, the release time (resp. absolute 
deadline) is computed given the previous release time (resp. 
the job release time). This definition comes from the fact that 
in a feedback scheduler, the period Ti may vary.

The underlying idea of feedback scheduling is that for 
tasks integrating a control loop (a task controlling an 
independent physical process), meeting the deadlines is not 
giving the best quality of the process response. Indeed, 

In this paper, we consider that the system is powered by 
in a dynamic environment 

in which the task parameters (mainly their execution times) 
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ODELS AND ASSUMPTIONS  

This section describes the system model and energy 
consumption model, thus formulating the problem to 

time task is classically defined as a set of temporal 
. In the sequel, we consider independent tasks: 

or share resources, and cannot 
suspend themselves. This assumption can be removed in 
some subsequent work. We consider sets of n periodic real-

τi; every release of 

the nominal release period of the task τi: the job 

0=ri, and every 
is released at the date ri,k=ri,k-1+Ti, 

Case Execution Time of every 

is the relative deadline of the task τi: we assume 

i,k to be given by 

Note that in our model, the release time (resp. absolute 
ne) is computed given the previous release time (resp. 

the job release time). This definition comes from the fact that 
may vary. 

The underlying idea of feedback scheduling is that for 
(a task controlling an 

independent physical process), meeting the deadlines is not 
giving the best quality of the process response. Indeed, 

several factors, like the release jitter, and the input
jitter, have a higher impact on the quality of the pr
response than meeting the deadlines or not. The jitter is an 
important metric for control tasks: a jitter may be defined in 
different ways, but it expresses the variation of the execution 
times between subsequent jobs. In some cases, it is better to 
increase the period of a control task in order to lower the 
jitters [14], than to increase the sampling period (which side 
effect may be to increase the jitters). 

Since we consider DVS systems, the WCET of a task is 
given for a full processor speed, which is called unitary 
speed. We suppose that if the processor is running at a speed 
0 1α≤ ≤ , the WCET of the tasks are scaled to match the 
speed. Using a DVS system, we can change the WCET and 
the actual execution times of every task at once. Therefore, at 
any time, the WCET of the tasks depends on 

• WCETi,α is the Worst-Case Execution Time of every 
job of τi at an α -processor speed; 

Using a classic feedback scheduler (FS), we can also 
change independently the release periods of some chosen 
tasks in order to allow the DVS system to be scaled eve
more than when considering only the WCET of the tasks, 
consuming less power than without the FS. We will assume 
the FS to be executed periodically. For the FS part, we use, 
like in [15], the following notations: 

• Ci,1 estimated execution time at full CPU speed

• Ci,α actual estimated execution time of the task 
when the CPU speed is scaled by 

• ci  measured execution time of the job 

• Ti  is the actual period of the task 

To include energy consumption
the following notations: 

• Ei  is the Worst Case Energy Consumption (WCEC) 
by the task τi; 

• Ei,α  actual energy consumption by the task 
the CPU speed is scaled by α

To estimate the execution time 
filter given below with a forgetting factor λ in [0, 1] proposed 
by Cervin in [15].We initialize the estimator of a task as its 
worst execution time (WCET). The index 
execution number of the task τi. 
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C

1 1- cλ λ

=
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where, at each termination of the job 

The instantaneous state of the task system is given by 
the scaling speed of the CPU, and for every subsequent job 
τi,k<ri,k, Ci,1,Ti>. 

A task system is schedulable by a scheduling policy if 
every job τi,k can be completely executed in the time window 
[ri,k., ri,k+Di]. 

 

several factors, like the release jitter, and the input-output 
jitter, have a higher impact on the quality of the process 
response than meeting the deadlines or not. The jitter is an 
important metric for control tasks: a jitter may be defined in 
different ways, but it expresses the variation of the execution 
times between subsequent jobs. In some cases, it is better to 
increase the period of a control task in order to lower the 

than to increase the sampling period (which side 
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given for a full processor speed, which is called unitary 
speed. We suppose that if the processor is running at a speed 
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speed. Using a DVS system, we can change the WCET and 
the actual execution times of every task at once. Therefore, at 
any time, the WCET of the tasks depends on α . 

Case Execution Time of every 
processor speed;  

Using a classic feedback scheduler (FS), we can also 
change independently the release periods of some chosen 
tasks in order to allow the DVS system to be scaled even 
more than when considering only the WCET of the tasks, 
consuming less power than without the FS. We will assume 
the FS to be executed periodically. For the FS part, we use, 

 

estimated execution time at full CPU speed; 

actual estimated execution time of the task τi 
when the CPU speed is scaled by α. Ci,α= Ci,1 / α; 

measured execution time of the job τi,k; 

is the actual period of the task τi chosen by the FS; 

consumption per task τi we consider 

is the Worst Case Energy Consumption (WCEC) 

actual energy consumption by the task τi when 
α . 

To estimate the execution time Ci,1, we use a low-pass 
filter given below with a forgetting factor λ in [0, 1] proposed 

We initialize the estimator of a task as its 
worst execution time (WCET). The index k represents the 

) ( )i ,1 i,1 iC k * C k - *1 1- cλ λ= +
 (1) 

where, at each termination of the job τi,k , Ci,1(k) is updated. 

The instantaneous state of the task system is given by α , 
the scaling speed of the CPU, and for every subsequent job 

A task system is schedulable by a scheduling policy if 
can be completely executed in the time window 
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EDF is optimal regarding schedulability in the context of 
independent tasks. The density test is an easy way to test 
(linear time) a sufficient condition of schedulability for 
periodic tasks. When the tasks have their nominal period, and 
are executed by a unitary speed processor this schedulability 
test is [22]: 

 
1 ,

1
min{ , }

n
i

i i i nom

WCET

D T=

∆ = ≤∑

If the processor runs at a scale factor of 
schedulability condition can be expressed as: 

Given a system under a feedback scheduler, we can adapt 
the definition of the density test, during the 
the feedback scheduler, as the instantaneous processor 
utilization: 

 ,1

1

( )
1

min{ , }

n
i

inst

i i i

C k

D T=

∆ = ≤∑

where the term Ci,1(k) is equal to the latest filtered value of 
the task τi according to (1). 

∆inst ≤ α can be used as an indicative sufficient 
schedulability test on the average observed execution time 
during the execution of the feedback scheduler

B. Energy source model 

We assume that ambient energy is harvested and 
converted into electrical power. To model the solar energy 
source behavior, we use the following model 

 ( ) 10 ( ) cos( ) cos( )
0.7 0.1

t t
Ps t unif t

π π
= × × ×

× ×

where unif(t) denotes a uniform distributed random variable 
between 0 and 1. The values of Ps have been cut off at the 
value Ps, max = 10. As illustrated in Fig. 2, the obtained 
power trace Ps (t) is simulating day and night periods similar 
to those experienced by solar cells in an outdoor 
environment. 

Figure 2.  Power trace Ps(t) 

In this energy source model, the input power 
excluded the loss incurred by the auxiliary circuitry. In 
another word, Ps (t) is the net power to feed the storage. The 
harvested energy Es (t1, t2) by PS (t) at time interval 
is given as: 

 ( )
2

1

1,  2 ( )
t

t

Es t t Ps t dt= ∫   

EDF is optimal regarding schedulability in the context of 
independent tasks. The density test is an easy way to test 

ar time) a sufficient condition of schedulability for 
periodic tasks. When the tasks have their nominal period, and 
are executed by a unitary speed processor this schedulability 

1
min{ , }

∆ = ≤  (2) 

α , this sufficient 
schedulability condition can be expressed as: α∆ ≤ . 

Given a system under a feedback scheduler, we can adapt 
the definition of the density test, during the jth execution of 
the feedback scheduler, as the instantaneous processor 

1
min{ , }

∆ = ≤  (3) 

he latest filtered value of 

can be used as an indicative sufficient 
schedulability test on the average observed execution time 
during the execution of the feedback scheduler. 

We assume that ambient energy is harvested and 
converted into electrical power. To model the solar energy 
source behavior, we use the following model [5]. 

10 ( ) cos( ) cos( )
0.7 0.1

t t

π π
= × × ×

× ×
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denotes a uniform distributed random variable 
have been cut off at the 

. As illustrated in Fig. 2, the obtained 
and night periods similar 

to those experienced by solar cells in an outdoor 

 

In this energy source model, the input power Ps (t) has 
excluded the loss incurred by the auxiliary circuitry. In 

ower to feed the storage. The 
at time interval [t1, t2] 

1,  2 ( )Es t t Ps t dt  (5) 

The system uses an energy storage unit that has a 
nominal capacity (noted E), corresponding to a maximum 
energy (expressed in Joules or Watts
has to remain between two boundaries 
therefore  the maximal available energy for the CPU is 
Emax - Emin. 

C. Energy consumption model 

A wide range of processors supports variable voltage and 
frequency levels which are tightly coupled. A processor is an 
integrated circuit of the CMOS family; such a circuit answers 
the following generic equations [23]:

Instantaneous power and energy consumed

consumption (with joules/second or watt for example) can 
be divided into two types, static and dynamic:

     
CMOS stat dyn

P P P= +

where, Pdyn is power consumption in switching (dynamic) 
and Pstat is power consumed by 
(static).In CMOS circuits, the dynamic power represents 
about 80-85% of the power-dissipated.  Conventionally, we 
neglect the static power. The total power dissipated can be 
expressed by: 

 CMOS dynP P≈

The total energy consumed (in joules), at 
time, is given by the following formula:

 ( )        
stat dyn stat dyn dyn

E P P t E E E= + ⋅ = + ≈

Relationship between frequency and supply voltage

operating frequency of the CMOS circuits is given by

 
( )tv v

f
v

−
≈

with γ a constant, vt is the threshold voltage. In the model of 
metal oxide semiconductor field effect transistor (noted 
MOSFET) a classical value for γ is approximated by two 
[24]. For a threshold voltage sufficiently small relatively to 
the supply voltage, the 
supply voltage becomes. 

 f v≈  

where f is the operating frequency and 

 

Relationship between power, energy, frequency and 

supply voltage: The dynamic power is calculated by

 2 3 3            dynP C f v C f C v= ⋅ ⋅ = ⋅ = ⋅

where C is a constant related to the type of 

Under the operating frequency f

cycle's, which will give a 

Thus, we obtain a consumed energy equal to:

      
dyn dyna

n
E P n C f n C v

f
= ∗ = ∗ ∗ = ∗ ∗

 

The system uses an energy storage unit that has a 
), corresponding to a maximum 

pressed in Joules or Watts-hour). The energy level 
has to remain between two boundaries Emin and Emax 
therefore  the maximal available energy for the CPU is E = 

A wide range of processors supports variable voltage and 
frequency levels which are tightly coupled. A processor is an 

circuit of the CMOS family; such a circuit answers 
: 

Instantaneous power and energy consumed: Power 
consumption (with joules/second or watt for example) can 

two types, static and dynamic: 

    
CMOS stat dyn

P P P= +  (6) 

is power consumption in switching (dynamic) 
is power consumed by a CMOS gate at rest 

In CMOS circuits, the dynamic power represents 
dissipated.  Conventionally, we 

total power dissipated can be 

CMOS dynP P≈   (7) 

The total energy consumed (in joules), at t  operating 
formula: 

        
stat dyn stat dyn dyn

E P P t E E E= + ⋅ = + ≈   (8) 

frequency and supply voltage: The 
operating frequency of the CMOS circuits is given by. 

( )tv v

v

γ−
  (9) 

is the threshold voltage. In the model of 
metal oxide semiconductor field effect transistor (noted 
MOSFET) a classical value for γ is approximated by two 

. For a threshold voltage sufficiently small relatively to 
ency and 

f v≈  (10) 

is the operating frequency and v is 

Relationship between power, energy, frequency and 

The dynamic power is calculated by. 

2 3 3            UP C f v C f C v= ⋅ ⋅ = ⋅ = ⋅  (11) 

is a constant related to the type of processor. 

f , a task requires n clock 

n f seconds. 

Thus, we obtain a consumed energy equal to: 

2 2     E P n C f n C v= ∗ = ∗ ∗ = ∗ ∗  (12) 
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D. Dynamic Voltage Scaling  

The Dynamic Voltage Scaling aims at the dynamic 
adaptation of processor voltage and thus, its 
current needs of the application in terms of performance. The 
scheduler, in this case, is not only defining the order of the 
tasks to be executed by the processor. It also has to define the 
processor speed. We assume that the speed can be varying 
continuously from Smin to the maximum supported speed
We normalize the speed to the maximum speed to have a 
continuous operating range of [Smin, Smax], where 
fmax and Smax=fmax/fmax=1, with the minimum and maximum 
frequencies represented by fmin and fmax respectively. The 
important point to note is that, when we perform a slowdown 
factor α, we change both the frequency and 
the processor with a slowdown factor α ∈[Smin

The key idea is that, if we consider periodic tasks and if 
the instantaneous density∆inst given in (3) is 
the processor operates with a maximum speed, it is possible 
to reduce the processor speed (so increasing the execution 
times of tasks) up to a speed α which gives an instantaneous 
density factor equal to 1, simply take α=∆inst

The current processor frequency noted 
terms of slowdown factor 

 

 maxUf fα= ×  

By referring to the above equations, the current energy 
consumption relative to the current slowdown factor 
written: 

 2 2
_ max       dyn dynE C f E= × = ×

with Edyn_max the maximum energy consumption under the 
maximum frequency fmax. 

III. FEEDBACK SCHEDULING UNDER 

HARVESTING 

We present here a new scheduler algorithm noted EDfbs
eg (Earliest Deadline Feedback Scheduling with Energy 
Guarantee) in order to enhance the performances of classical 
EDF under energy constraint. Before present
algorithm, we consider the example given in 
EDeg (which consists in putting the processor in the idle state 
when the available energy E=0) and EDfbs
consider the set of tree tasks given in [25] Γ = {τi | 
and τi = (Ci, Di, Ti, Ei) with Ei is the worst case energy 
consumption (WCEC) of the task τi. Let τ1 
= (2, 8, 10, 15) and τ3 = (4, 11, 15, 22). We assume that the 
energy storage capacity is C = 25 energy units at 
simplicity, we assume that the rechargeable p
along time with (Ps = 5). We choose a forgetting factor 
equal to 0 in order to have Ci,1 = ci. 

A. Case 1: rechargeable power is constant along time but 

without EDeg and Edfbs-eg 

We show below the scheduling of the given 
configuration Γ for a classical EDF policy at full processor 
speed. In this case, the system stops at time t = 22. This is 
due to the depletion of the battery (Fig. 3). The average 
energy available is E = 7.14. 

The Dynamic Voltage Scaling aims at the dynamic 
adaptation of processor voltage and thus, its frequency, to the 
current needs of the application in terms of performance. The 
scheduler, in this case, is not only defining the order of the 

by the processor. It also has to define the 
processor speed. We assume that the speed can be varying 

maximum supported speed Smax.  
the maximum speed to have a 

], where  Smin=fmin / 
=1, with the minimum and maximum 

respectively. The 
is that, when we perform a slowdown 

, we change both the frequency and supply voltage of 

min, 1]. 

The key idea is that, if we consider periodic tasks and if 
given in (3) is less than 1 and 

processor operates with a maximum speed, it is possible 
processor speed (so increasing the execution 

which gives an instantaneous 

inst. 

t processor frequency noted f expressed in 

(13) 

By referring to the above equations, the current energy 
consumption relative to the current slowdown factor α can be 

2 2       α= × = ×  (14) 

the maximum energy consumption under the 

NDER ENERGY 

We present here a new scheduler algorithm noted EDfbs-
eg (Earliest Deadline Feedback Scheduling with Energy 
Guarantee) in order to enhance the performances of classical 

Before presenting our 
algorithm, we consider the example given in [25] to compare 
EDeg (which consists in putting the processor in the idle state 

=0) and EDfbs-eg. For this, we 
Γ = {τi | 1 ≤ i ≤ 3} 

is the worst case energy 
 = (1, 5, 6, 12), τ2 

= (4, 11, 15, 22). We assume that the 
= 25 energy units at t = 0. For 

simplicity, we assume that the rechargeable power is constant 
= 5). We choose a forgetting factor λ 

Case 1: rechargeable power is constant along time but 

We show below the scheduling of the given 
a classical EDF policy at full processor 

speed. In this case, the system stops at time t = 22. This is 
due to the depletion of the battery (Fig. 3). The average 

Figure 3.  Energy available without EDeg and EDfbs

B. Case 2: rechargeable power is constant along time with 

EDeg 

When scheduling the configuration Γ under EDeg the 
system never stops. A time t = 19, an idle time of four time 
units is inserted: its duration is computed using the slack 
time. The variation of the energy consumptio
Fig. 4. In this case, the average available energy is equal to E 
= 13.03. 

Figure 4.  Energy available with EDeg

C. Case 3: rechargeable power is constant along time with 

EDfbs-eg 

The scheduling configuration in EDfbs
deadline misses. However, in terms of consumed energy, the 
algorithm allows EDfbs-eg to consume way less than EDeg 
(see Fig. 5). In this case, the average available energy is E =
19.43 

Figure 5.  Energy available with EDfbs

 

 

Energy available without EDeg and EDfbs-eg 

power is constant along time with 

When scheduling the configuration Γ under EDeg the 
= 19, an idle time of four time 

units is inserted: its duration is computed using the slack 
time. The variation of the energy consumption is shown in 
Fig. 4. In this case, the average available energy is equal to E 

 

Energy available with EDeg 

Case 3: rechargeable power is constant along time with 

The scheduling configuration in EDfbs-eg causes some 
However, in terms of consumed energy, the 

eg to consume way less than EDeg 
In this case, the average available energy is E = 

 

Energy available with EDfbs-eg 
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D. The EDfbs-eg algorithm 

When a task (other than FS) ends its execution, its actual 
estimated execution time Ci,α  is evaluated according to (1) 
For each execution of FS the instantaneous density 
all tasks is evaluated according to (3) and is taken as the new 
scaling factor α. 

IV. SIMULATION RESULTS

In order to simulate the algorithm EDfbs
tool TrueTime [14] in which we implemented a random task 
execution time generator according to a weibull low given 
below in (15), with k =3,  β= 1.5, and U
distributed random variable between 0 and 1. We choose 
these parameters so that the max of ci is less than the 

 

The goal of this generator is to simulate a 
distribution (Fig. 6) of actual execution times.

Figure 6.  Distribution of actual execution times

We have implemented a power generator source which 
supplies a battery according to the model given in (4). We 
choose the forgetting factor of Eq. (1) λ=0.9.We
tasks system Γ but for these experiments, we consider that the 
actual execution times of each instance of the tasks are given 
by the random generator (15). 

In order to compute the rate of missed deadlines, the 
average and minimum energy available, we perform 100 
simulations according to the specifications listed above.

A. Rate of missed deadlines 

In this section, we present results of simulations 
performed to compute the rate of missed deadlines for each 
simulation where the results are shown in Fig. 7. This rate is 
equal to the number of instances of tasks that have missed 
their deadlines divided by the number of instances of all 
tasks. The maximum rate of missed deadlines is equal to 
7.69%. The average rate for 100 simulations is equal to 
0.84%. 

1/( log(1 ) )k

i
c U β= − − ×

its execution, its actual 
is evaluated according to (1) 

For each execution of FS the instantaneous density ∆inst for 
all tasks is evaluated according to (3) and is taken as the new 

IMULATION RESULTS 

In order to simulate the algorithm EDfbs-eg, we used the 
in which we implemented a random task 

g to a weibull low given 
U is an uniformly 

distributed random variable between 0 and 1. We choose 
is less than the WCETi, 

 (15) 

The goal of this generator is to simulate a typical 
distribution (Fig. 6) of actual execution times. 

 

Distribution of actual execution times 

We have implemented a power generator source which 
supplies a battery according to the model given in (4). We 
choose the forgetting factor of Eq. (1) λ=0.9.We consider the 
tasks system Γ but for these experiments, we consider that the 
actual execution times of each instance of the tasks are given 

In order to compute the rate of missed deadlines, the 
able, we perform 100 

simulations according to the specifications listed above. 

In this section, we present results of simulations 
performed to compute the rate of missed deadlines for each 

Fig. 7. This rate is 
equal to the number of instances of tasks that have missed 
their deadlines divided by the number of instances of all 
tasks. The maximum rate of missed deadlines is equal to 
7.69%. The average rate for 100 simulations is equal to 

Figure 7.  Rate of missed deadlines under EDfbs

From Fig. 7, we can conclude that the EDfbs
algorithm causes in average a small amount of deadline 
misses. Nevertheless we know that in the control systems the 
number of missed deadlines is less important tha
execution frequencies. An example is the control of an 
inverted 

stable equilibrium (an angle of 180°). Miss some samples 
(deadlines) of 

m position, but with more 

pendulum will fall. 

B. Average and minimum energy available

We also measured for each simulation, the average and 
minimum energy available. The results are illustrated in Fig. 
8. 

Figure 8.  Energy available with EDfbs

As shown in Fig. 8, the EDfbs
significant amount of energy where the average energy 
available is near to the maximum capacity of the battery (here 
it equals to 25). This algorithm protects in average against a 
total discharge of the battery, since the minimum energy 
available for each simulations is superior to 5.

C. Quality of control 

In this section, we consider an embedded control system 
that consists of three independent control loops. Each plant is 
controlled using a PID algorithm where parameters are well 
designed and remain the same as those in [14]. The transfer 

function of each plant is

experiments, the nominal sampling periods of three loops are 

( log(1 ) )β= − − ×

( ) 1000 ( )G s s s= +

 

 

Rate of missed deadlines under EDfbs-eg   

From Fig. 7, we can conclude that the EDfbs-eg 
algorithm causes in average a small amount of deadline 
misses. Nevertheless we know that in the control systems the 
number of missed deadlines is less important than their 
execution frequencies. An example is the control of an 

in the position of 
stable equilibrium (an angle of 180°). Miss some samples 

m position, but with more 

Average and minimum energy available 

simulation, the average and 
minimum energy available. The results are illustrated in Fig. 

 

Energy available with EDfbs-eg for 100 simulation 

As shown in Fig. 8, the EDfbs-eg algorithm saves a 
significant amount of energy where the average energy 

able is near to the maximum capacity of the battery (here 
it equals to 25). This algorithm protects in average against a 
total discharge of the battery, since the minimum energy 
available for each simulations is superior to 5. 

ction, we consider an embedded control system 
that consists of three independent control loops. Each plant is 
controlled using a PID algorithm where parameters are well 
designed and remain the same as those in [14]. The transfer 

. In our 

experiments, the nominal sampling periods of three loops are 

2( ) 1000 ( )G s s s= +
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set to be T1,nom =0.006 s, T2,nom =0.01 s, and T3,nom =0.015 s, 
respectively. To measure the QoC (Quality of Control), the 
Integral of Absolute Error (IAE) is used for each loop, i.e 

, where the  absolute control error ei is 

defined as the absolute difference between the reference input  
xi (blue line) and the system output  yi (red line), i.e., ei = |xi - 
yi|. The total control cost of the system is calculated as

. We assume that the energy storage 

capacity is C = 6 energy units at t = 0.   In the first 
experiment (case 1), we consider an EDF policy at full 
processor speed where the results of control performance are 
shown in Fig. 9.  

 

Figure 9.  Control performance of three plants at full speed (case 1) 

From Fig 9, we can see that all plants remains stable and 
exhibit satisfactory performances until t= 1.897 s. After this 
time the execution tasks stops and the plants become unstable 
and will fall. This is due to the depletion of the battery. In this 
case, the total control cost of the system is equal to Jsys= 
25704.16. The average energy available is equal to 2.23 with 
considering the cycle of charge and discharge of battery and 
the minimum energy available is equal to 0. 

The EDF schedule produced before the system stops and 
will fall is depicted in Fig. 10.   

 

Figure 10.  EDF schedule at full speed 

In the second experiment (case 2), we use the EDfbs-eg 
with a FS period equal to 0.007 s. The results are shown in 
Fig.11. 

 

Figure 11.  Control performance of three plant with EDfbs_eg (case 2) 

From Fig. 11, we can see also that the three plants 
remains stable and never stops with the total control cost of 
the system is Jsys = 13156.54. We note that in this case, the 
rate of missed deadlines is equal to 5.68 %. Nevertheless, the 
average energy available is equal to 3.46 and the minimum 
energy available is equal to 1.49 which is better than for 
EDF. 

To show the impact of the choice of the FS period, we 
performed a third experiment (case 3) with a FS period equal 
to 0.02 s. The results of control performance are shown in 
Fig. 12.  

 

Figure 12.  Control performance of three plant with EDfbs_eg (case 3) 

From Fig. 12, we can see also that the three plants remain 
stable with the total control cost of the system Jsys = 
10479.67. We note that in this case the rate of missed 
deadlines is equal to 0 %. The average energy available is 
equal to 2.92 where the minimum energy available is equal to 
0.26. 

V. CONCLUSION AND FUTURE WORKS 

We have shown through a case study that the energy 
consumption can be drastically reduced in the case of soft 
real-time system. Moreover, the number of missed deadlines 
is limited giving a weibull distribution of the execution times. 
For some types of tasks in embedded systems, like process 
control tasks, meeting the deadlines is less important than a 
relative regularity of their execution. In the future, we plan to 
combine this approach with a delay control taking a 
maximum lateness of the control task into account, insuring 
the convergence of the state of the system towards the 
command. In the other work, we plan to consider some recent 
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works with adaptive control withe considering energy 
harvesting capabilities 
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