
Towards Performance Evaluation of Semantic
Databases Management Systems

Bery Mbaiossoum1,2, Ladjel Bellatreche1, and Stéphane Jean1

1 LIAS/ISAE-ENSMA - University of Poitiers 86960, Futuroscope Cedex, France
{mbaiossb, bellatreche, jean}@ensma.fr
2 University de N’Djamena, Chad Republic

Abstract. The spectacular use of ontologies generates a big amount
of semantic instances. To facilitate their management, a new type of
databases, called semantic databases (SDB) is launched. Large panoply
of these SDB exists. Three main characteristics may be used to differen-
tiate them: (i) the storage layouts for storing instances and the ontology,
(ii) ontology modeling languages, and (iii) the architecture of the target
database management system (DBMS) supporting them. During the de-
ployment phase, the database administrator (DBA) is faced to a choice
problem (which SDB she/he needs to choose). In this paper, we first
present in details the causes of this diversity. Based on this analysis, a
generic formalization of SDB is given. To facilitate the task of the DBA,
mathematical cost models are presented to evaluate the performance of
each type of SDB. Finally, two types of intensive experiments are con-
ducted by considering six SDB, both issued from industry and academic
communities; one based on our mathematical cost models and another
based on the studied semantic DBMS cost models.

Keywords: Semantic Databases, Cost Models, Query Performance

1 Introduction

The database is one of the robust technologies. Along its history, we remark
that when a new data model (e.g., the relational, object or XML data model)
is considered; the database technology offers storage, querying and management
solutions to deal with these new data. These solutions were directly implemented
in academic and industrial DBMS. In the last decades, the semantic technology
got a lot of attention from the research community, where semantic (ontolog-
ical) data models were proposed. This phenomenon generates a large amount
of semantic data that require efficient solutions to store and manage them. In
order to honour its tradition and to keep its marketplace, the database technol-
ogy responded to this need and offered persistent solutions. As a consequence,
a new type of databases is created, called semantic databases (SDB), to store
both data and ontologies in the same repository. A large panoply of SDB exists.
OntoDB [1], Jena [2] or Sesame [3] are examples of academician SDB. Oracle
[4] and IBM [5, 6] are example of solutions coming from industry.

2

Contrary to traditional databases, SDB bring new dimensions: (1) the diver-
sity of ontology formalisms: each SDB uses a particular formalism to define its
ontologies (e.g., OWL [7] or PLIB [8]), (2) the diversity of storage layouts: in
a SDB, several storage layouts (horizontal, vertical, binary) are used to store
ontologies and their data, and (3) the diversity of architectures: three main ar-
chitectures of DBMS managing SDB are distinguished according to the number
of schemes used to store ontologies, data and eventually the ontology formal-
ism used to define them. These dimensions complicates the deployment phase of
SDB as each dimension may impact positively or negatively the performance of
the target applications. Thus evaluating different SDB becomes a crucial issue
for DBA. To do so, two directions are possible: (i) the use of mathematical cost
models and (ii) the real deployment of SDB on several DBMS. Most of studies
have been concentrated on the physical phase of performance of SDB, where
algorithms for selecting optimization structures such as materialized views [9]
are proposed. These studies assume that a fixed SDB is used and do not con-
sider the dimensions that we discussed. Thus the proposed cost models do not
cover all possible combinations of deployment, they only consider one SDB with
a fixed ontology formalism model, storage layout and architecture.

In this paper, we propose a formalization of the notion of SDB. The different
components of this formal model are illustrated. This formalization allows us to
compare the existing SDB. Cost models depending on the different types of
SDB are proposed and used to compare the existing SDB. To the best of our
knowledge, our proposal is the first one dealing with the development of cost
models considering the large diversity of SDB. To validate this cost model,
several experiments are run on the LUBM benchmark.

This paper consists of six sections. Section 2 defines basic notions related to
ontologies and presents the diversity of SDB. Section 3 introduces a formalization
of SDB and the section 4 defines our cost model. We present in section 5 the
performance evaluations of several SDB. Finally, section 6 concludes the paper.

2 Background: the diversity of SDB

A variety of SDB have been proposed in the last decade. Some SDB only consider
the management of ontology instances represented as RDF data while others
also support the management of ontologies and ontology formalisms inside the
database. Moreover the management of these data is based on different storage
layouts. In this section, we introduce basic notions about ontology and detail
the different storage layouts and architectures of SDB.

2.1 Ontology definition and formalism

An ontology is a consensual model defined to explicit the semantics of a do-
main by a set of concepts (class or property) that can be referenced by universal
identifiers (e.g., URI). Two main types of concepts in a conceptual ontology are
distinguished: primitive and defined concepts. Primitive concepts (or canonical

3

concepts) represent concepts that can not be defined by a complete axiomatic
definition. They define the border of the domain conceptualized by an ontol-
ogy. Defined concepts (or non canonical concepts) are defined by a complete
axiomatic definition expressed in terms of other concepts (either primitive or
defined concepts). These concepts are the basis of inference mechanisms like
automatic classification.

Several formalisms (or languages) have been proposed for defining ontolo-
gies. They differ on their descriptive and deductive capabilities. Some ontology
languages focuses mainly on the definition of primitive concepts. Thus they are
used to define ontologies that are consensual and enhanced conceptual models.
RDF Schema and PLIB are two examples of such languages. RDF Schema is a
language defined for the Semantic Web. It extends the RDF model to support
the definition of classes and properties. The PLIB (Parts Library) formalism is
specialized in the definition of ontology for the engineering domain which of-
ten requires a precise description (e.g., value scaling and context explication)
of primitive concepts. OWL Lite, DL and Full are ontology models with more
deductive capabilities. They support the definition of defined concepts with var-
ious constructors such as restrictions (e.g, the definition of the Man class as all
persons whose gender is male) or Boolean expression (e.g., the definition of the
Human class as the union of the Man and Woman classes).

2.2 Storage Layouts used in SDB

Three main storage layouts are used for representing ontologies in databases
[10]: vertical, binary and horizontal. These storage layouts are detailed below
and illustrated on a subset of the LUBM ontology in the Figure 1.

TRIPLES

Subject Predicate Object

ID1 type Department

ID1 subOrganizationOf ID2

ID2 type University

TYPE

Subject Object

ID1 Department

ID2 University

SUBORGANIZATIONOF

Subject Object

ID1 ID2

UNIVERSITY

Subject

ID2

DEPARTMENT

Subject subOrganizationOf

ID1 ID2

(a) Vertical Representation

(b) Binary Representation(c) Horizontal Representation

University Department
subOrganizationOf

Ontology/instances

ID2 ID1

subOrganizationOf
type type

Fig. 1. Main storage layouts used by SDB

– vertical storage layout: it consists of a single triples table with three columns
(subject, predicate, object). Since URI are long strings, additional ta-
bles may be used to store only integer identifier in the triple table. Thus this
storage layout is a direct translation of the RDF model. It can be used to
store the different abstraction layers related to the management of ontolo-
gies. The main drawback of this storage layout is that most queries require

4

a lot of self-join operations on the triple table [10].The SDB Sesame (one
version of it) and Oracle use this storage layout.

– binary storage layout: it consists of decomposing the triple table into a set
of 2-columns tables (subject, object), one for each predicate. In some
implementations, the inheritance of classes and class membership are repre-
sented in a different way (e.g., the class membership can be represented by
a unary table for each class or the inheritance using the table inheritance of
PostgreSQL). Compared to the vertical storage layout, this storage layout
results in smaller tables but queries can still require many joins for queries
involving many properties [1]. The SDB SOR uses the binary storage layout
for the representation of ontologies and their instances.

– horizontal storage layout: it consists of a set of usual relational tables. For
storing ontologies, this storage layout consists of a relational schema defined
according to the ontology formalism supported. For managing ontology in-
stances, a table C (p1 , . . . , pn) is created for each class C where p1 , . . . , pn

are the set of single-valued properties used at least by one instance of the
class. Multi-valued properties are represented by a two-column table such
as in the binary representation or by using the array datatype available in
relational-object DBMS. Since all instances do not necessarily have a value
for all properties of the table, this representation can be sparse which can
impose performance overhead. The SDB OntoDB uses the horizontal storage
layout for storing instances, ontologies and the ontology formalism.

2.3 Architectures of SDB

According to the abstraction layers managed (instances, ontologies and ontology
formalism) and the storage layouts used, SDB are decomposed into one or several
schemes leading to different architectures illustrated Figure 2.

meta_table

ID name
Id3 triples … …

Catalog system

Data

Triples

subj pred obj
Id1 type univ
Id2 type dpt

1

2

Type 1 architecture

meta_table

ID name
Id5 class … …
Id6 triples

Catalog system

Data

1

2Ontology 3

Class

ID name
Id3 dpt … …
Id4 univ

Type 2 architecture Type 3 architecture

meta_table

ID name
Id5 class … …
Id6 triples

Catalog system

Data

1

2Ontology 3

Entity

ID name
Id7 class … …
Id8 property

Meta-Schema 4

Triples

subj pred obj
Id1 type univ
Id2 type dpt

Triples

subj pred obj
Id1 type univ
Id2 type dpt

Class

ID name
Id3 dpt … …
Id4 univ

Fig. 2. Different Architectures of SDB

5

– Type 1 architecture: some SDB like Oracle or Jena use only one schema
to store all information. As a consequence, these SDB have two parts like
classical database: the data and system catalog parts.

– Type 2 architecture: other SDB like IBM SOR [5] have chosen to separate the
storage of ontology instances from the storage of the ontology (classes and
properties) in two different schemes. This separation leads to SDB composed
of three parts: data, ontology and system catalog.

– Type 3 architecture: SDB like OntoDB [1] have introduced a fourth part
to store the ontology formalism used. This part, called the metaschema in
OntoDB, is a specialized system catalog for the ontology part. With this
part, users can modify the ontology formalism used in the SDB.

3 Formalization of SDB and comparison features

3.1 Formalization of SDB

In the previous sections we have seen that SDB presents an important diversity
in terms of architecture, storage layouts and ontology formalisms supported. To
provide a general view of SDB that can be used as a basis for the physical design
of SDB, we propose the following formalization:
SDB : < MO, I, Sch, Pop, SMMO, SMInst, Ar > , where :

– MO represents the ontology (model part). It is formalized by the following
5-tuple: < C, P , Applic, Ref , Formalism > where :

• C represents the classes of the ontology.

• P represents the properties of the ontology.

• Applic : C → P 2 is a function returning all properties whose domain is
a given class.

• Ref : C → (operator, exp(C)) is a function that maps each class to an
operator (inclusion or equivalence) and an expression of other classes.
It is used to represent the relationship between classes (subsumption,
Boolean operators, etc.).

• Formalism is the ontology formalism used to define the ontology.

For example, an OWL ontology is defined by: < Classes, Properties, Applic,
descriptionlogicoperators, OWL> where descriptionlogicoperators is the
set of description logic operators supported by the given version of OWL.

– I: represents the set of ontology instances.

– Sch : C → P 2 is a function that maps each class to the set of properties
valued by at least one instance of this class.

– Pop : E → 2I is a function that associates a class to its instances.

– SMMO is the storage layout used to represent the ontology (vertical, hori-
zontal or binary).

– SMInst is the storage layout used to represent the ontology instances.

– Ar is the SDB architecture (Type1, Type2, Type3).

6

According to this formalization, the SDB Oracle is represented by:
SDBOracle :< MO :<Classes, Properties,Applic,Operators (RDFS,OWLSIF
or OWLPrime), (RDFS or OWL)>, RDFInstances, φ, tablesRDF link and
RDF values giving instances of each class, V ertical, V ertical, Type1>
This model gives a general view on the diversity of SDB. In the next section, we
gives a more precise comparison of SDB by defining some key futures of these
systems.

3.2 Key features of SDB

To deepen our study, we have compared six SDB: three coming from research
(OntoDB [1], Sesame [3] and Jena [2]) and three coming from industry (Oracle
[4], DB2RDF [6] and IBM SOR [5]). From our study, we have identified a set of
key features of SDB. These features include :

– Natural language support: this feature consists in using the linguistic infor-
mation (sometimes in several natural languages) available in an ontology.

– Query language: the query language supported by the SDB.

– Version and evolution of ontologies: this feature consists in providing a way
of modifying an ontology while keeping track of the modification done.

– Inference support: this feature consists in supporting the inference rule de-
fined for the ontology formalism supported.

– User-defined rules: this feature consists in allowing users to define their own
derivation rules.

Table 1 shows these key features of SDB (in addition to the previous identi-
fied criteria) and their availability in the SDB studied.

Table 1. Comparative study of SDB (V : vertical, H: horizontal, B: binary, H: hybrid)

Features Oracle SOR OntoDb Jena Sesame Db2rdf

Formalism supported RDF,
OWL

OWL PLIB RDF,
OWL

RDF,
OWL

RDF

Natural Language Support yes yes yes no no no

Query Languages sql,
sparql

sparql ontoql,
sparql

rql, Rdql,
sparql

serql,
sparql

sql,
sparql

Version and evolution no no yes no no no

Inference support yes yes no yes yes no

User-defined rules yes no no yes yes no

Ontology Storage layout V H H V, H V, H V

instances Storage layout V B H H V, B V

Architecture Type1 Type2 Type3 Type1 Type1 Type1
Underlying DBMS Oracle DB2,

Derby
Postgres Oracle,

Postgres,
Mysql

Oracle,
Postgres,
Mysql

DB2

7

The performance of current SDB is also an important feature. We propose
a theoretical comparison through a cost model (Section 4) and an empirical
comparison of six SDB to validate our cost model (section 5).

4 Cost Model

The cost model is an important component of a query optimizer. It can be
used for important tasks such as selecting the best query plan or using adaptive
optimization techniques. In this section we propose a cost model for SDB that
takes into account their diversity.

4.1 Assumptions

Following assumptions of classical cost models such as those made in System
R, we assume that (1) computing costs are lower than disk access costs, (2)
statistics about the ontology and their instances are available (e.g., the number
of instances by class) and (3) the distribution of values is uniform and attributes
are independent of each other.

We also need to make specific assumption for SDB. Indeed logical inference
plays an important role in SDB. A SDB is said to be saturated if it contains
initial instances and inferred instances, otherwise it is called unsaturated. Some
SDB are saturated during the data loading phase either automatically (e.g.,
IMB SOR) or on demand (e.g., Jena or Sesame). Other SDB (e.g., Oracle) can
be saturated at any time on demand. Our cost function relies on the saturated
SDB (it does not take into account the cost of logical inference).

4.2 Parameters of the Cost Function

As in traditional databases, the main parameters to be taken into account in
the cost function of SDB are: the cost of disk access, the cost of storing in-
termediate files and the computing cost. Let q be a query and sdb a semantic
database against which q will be executed and cost the cost function. In terms
of architecture model, we can see that compared to a traditional cost model, the
cost model in SDB is increased, resulting from the access cost to different parts
of the architecture:
Type1 : cost(q , sdb) = cost(syscatalog) + cost(data)
Type2 : cost(q , sdb) = cost(syscatalog) + cost(data) + cost(ontology)
Type3 : cost(q , sdb) = cost(syscatalog) + cost(data) + cost(ontology)

+ cost(ontology meta − schema)
The cost to access the system catalog (cost(syscatalog)) is part of the cost

model of classical databases. It is considered negligible because the system cat-
alog can be kept in memory. Thus, the query cost function depends on the
architecture and the storage model of SDB.

We assume that the meta-schema and the ontology-schema are small enough
to be also placed in memory. Hence in all architectures the cost can be re-
duced to the cost of data access, expressed as the number of inputs/outputs

8

(Cost(q , sdb) = cost(data)). The cost of queries execution is heavily influenced
by the operations done in the query, which are mainly projection, selection and
join. Our cost function focuses on these three operations.

4.3 Our Queries Template

We consider queries expressed according to template below. These queries can
be expressed in most semantic query languages like SPARQL, OntoQL, etc. If
C1 , . . . , Cn are ontology classes and p11 , . . . , pnn properties, the considered
query pattern is the following:
(?id1 , type,C1) (?id1 , p11 , ?val11) · · · (?id1 , pn1 , ?valn1) [FILTER()]
(?id2 , type,C2) (?id2 , p12 , ?val12) · · · (?id2 , pn2 , ?valn2) [FILTER()]
...
(?idn , type,Cn) (?idn , p1n , ?val1n) · · · (?idn , pnn , ?valnn) [FILTER()]

4.4 Cost of Selections and Projections

In our template, a selection is a query that involves a single class. It has the fol-
lowing form: (?id , type,C)(?id , p1 , ?val1) . . . (?id , pn , ?valn)[FILTER()]. We dis-
tinguish single-triple selections, which are queries consisting of a single triple
pattern, and multi-triples selections, consisting of more than one triple pattern
(all concerning a single class). In the vertical and binary representations only
single-triple selections are interpreted as selections, because multi-triples selec-
tions involve joins. We define the cost function as in relational databases. For
single-triple selection, our function is equal to the number of pages of the table
involved in the query:

– vertical layout: Cost (q, sdb) = |T |, where |T | is the number of pages of the
table T. If an index is defined on the triples table, cost(q, sdb) = P (index) +
sel(t) ∗ |T |, where P(index) is the cost of index scanning and sel(t) is the
selectivity of the triple pattern t as defined in [11].

– binary layout: the selection is done on the property tables. Cost(q, sdb) = |Tp|
where Tp is the property table of the property of the query triple pattern.
With an index on the selection predicate, cost(q, sdb) = P (index)+sel∗|Tp|,
where sel is the selectivity of the index.

– horizontal layout: the selection targets the tables of classes domain of the
property of the query triple pattern. Cost(q, sdb) =

∑
Tcp∈dom(p)(|Tcp|),

where Tcp are the tables corresponding to the classes domain of the property
of the query triple pattern. If there is an index defined on the selection
predicate, cost(q, sdb) =

∑
Tcp∈dom(p)(P (index) + sel ∗ |Tcp|) where sel is

the index selectivity.

Multi-triples selection queries are translated into joins in vertical and binary
layouts. In the horizontal layout, the cost function is the same as the one defined
for single-triple selection. A projection is a free filter selection having a list of
attributes whose size is less than or equal to the number of properties of the
class on which it is defined. Its cost is defined in the same way as the selection.

9

4.5 Cost of Joins

Join operations are done in queries that involve at least two triple patterns. In
the horizontal layout these triple patterns must belong to at least two classes
from different hierarchies. In the vertical layout, we note that self-join of triples
table can be done in two ways: (1) a naive join of two tables i.e., a Cartesian
product followed by a selection. We call this a classic join. (2) a selection for
each triple pattern followed by joins on selection results. We call that a delayed
join. We consider separately these two approaches of self-join of triples table.
Our cost function for other approaches is the same as in relational databases,
and depends on the join algorithm. Only the cost of hash join is presented in
this paper (Tab. 2 where V, B and H represent respectively the Vertical, Binary
and Horizontal layouts).

Table 2. Cost of joins (dom(p) : domain of p).

Hash join index delayed join classic join

V: join(T,T), T triples table 2 ∗ |T |+ 4 ∗ (|t1|+ |t2|) 6 ∗ |T |
B: join(T1, T2), Ti Tables of prop. not applicable 3 ∗ (|T1|+ |T2|)
H: join(T1, T2), Ti tables of classes not applicable

∑
T∈dom(p)

3(|T1|+ |T2|)

4.6 Application of Cost Model

To illustrate our cost function, we considered queries 2, 4 and 6 of the LUBM
benchmark. We have translated these queries according to the different storage
layouts. Then we have made an evaluation of their cost using statistics of the
Lubm01 dataset (given in the section 5). Figure 3 presents the results obtained.
It shows that processing a self-join query on the triples table with a classic join
requires more I/O than with a delayed join. We observe that for a single-triple
selection, the binary layout requires less I/O, so it is likely to be more efficient
than other storage layouts. In other types of queries (join queries and multi-
triples selections), the horizontal layout provides the best results. This theoretical
results have been partially confirmed by our experimental results presented in
the next section. Indeed as we will see, OntoDB (horizontal layout) provide
the best query response time followed by Oracle (vertical layout). However for
some SDB such as Jena, Sesame and DB2RDF, the evaluation results do not
clearly confirm these theoretical results. We believe this is due to the specific
optimization done in these systems.

5 Performance Evaluation

We have run experiments to evaluate the data loading and query response time
of the six considered SDB. As OntoDB was originally designed for the PLIB
formalism we have developed a module to load OWL ontologies.

10

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Single-triple selection multi-triples selection Join (hash join)

cost (I/O)

Type of queries

V.A. classic join

V.A. Delayed join

Binary Approach

Horizontal approach

Fig. 3. Queries costs provided by our cost model (V.A. : Vertical approach)

5.1 Dataset used in experiments

We used the benchmark of Lehigh University (denoted LUBM) to generate five
datasets with respectively 1, 5, 10, 50 and 100 universities (denoted respectively
Lubm01, Lubm05, Lubm10, Lubm50 and Lubm100). The number of instances
and triples generated are presented in Table 3. Our experiments were conducted
on a 3.10 GHZ Intel Xeon DELL personal computer with 4GB of RAM and
500GB of hard disk. We have used the following DBMS: Oracle 11g, IBM DB2
9.7 for SOR and DB2RDF and PosgresSQL 8.2 for OntoDB, Jena and Sesame.

Table 3. Generated datasets

Dataset Lubm01 Lubm05 Lubm10 Lubm50 Lubm100

instances 82415 516116 1052895 5507426 11096694

triples 100.851 625.103 1.273.108 6654856 13405675

5.2 Performance in Terms of Data Loading Time

We loaded and measured the loading time four times for each dataset on each
SDB and took the average time. Results are given in Table 4. Since Sesame
can be used as a SDB with vertical or binary approach, we tested these two
approaches. In the following, we call SesameSdbI and SesameSdbII the Sesame
system implemented respectively with the vertical and binary layout. For Oracle
we used the rule base owlprime.

11

Table 4. Summary of loading time (in sec).

Dataset Lubm01 Lubm05 Lubm10 Lubm50 Lubm100

Oracle 12 55 116 1562 39216

DB2RDF 11 53 109 2322 22605

Jena 25 188 558 40862 147109

SesameSdbI 16 158 391 23424 65127

SesameSdbII 27 231 522 33521 260724

OntoDB 15975 72699 146023 − −
IBM SOR 90 590 1147 − −

Interpretation of Results. In terms of loading time, as we can see in Table 4,
Oracle and DB2RDF provide the best results. This can be explained by the
specific and optimized loading mechanisms that have been build on the Oracle
and DB2 DBMS. Compared to DB2RDF, SOR is slower as it takes a lot of time
to make the inferences on the ontology and instances and we were not able to
load LUBM50 and LUBM100. For the other SDB, the results of the two versions
of Sesame and Jena are similar with a slight advantage for the vertical layout
of Sesame (the triple table which is a direct translation of the RDF model).
OntoDB is slower that the other SDB. This overhead is most probably due to
our added loading module that imposes a new layer on top of the loading engine.
Like with SOR, we were not able to load LUBM50 and LUBM100.

5.3 Performance in Terms of Queries Processing Time

We measured the query response time of queries on each SDB four times and we
kept the average time. We used the 14 queries of the LUBM benchmark, adjusted
to be accepted by our SDB. The datasets used are Lubm01 and Lubm100. The
results obtained led to the histograms presented Figure 4 and Figure 5. For
readability we present the results of the queries that have a long response time
in Table 5. As we were not able to load LUBM100 on OntoDB and SOR, the
query response times for these dataset are not shown.

Table 5. Query response time on LUBM100 (Q2,Q6,Q7,Q9,Q14) (in sec)

Q2 Q6 Q7 Q9 Q14

Oracle 240,75 1743 125,76 1973,32 473,23

DB2RDF 95552,5 12815,5 330454,67 692432 6477

Jena 372760,33 147696 224287,33 3538480 163798

SesameSDB1 32920,66 29922,66 21907,66 110498 16707,33

SesameSDB2 115819 70458 2266 242991 64107

Interpretation of Results. Regarding the queries response times, OntoDB
reacts better than the other SDB for most queries executed on LUBM01. In-

12

0200400600800100012001400

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Time(sec) OracleSOROntoDBDB2RDFJena 2SesameBds1SesameBds2

Fig. 4. Queries response time on LUBM01

deed, since OntoDB uses the horizontal layout and that queries involve several
property, it performs less join operations than other SDB. Indeed all queries on
properties of a same class can be reduced to selection operations on table corre-
sponding to this class, which is not the case when we use an other layout. Query 4
of the benchmark LUBM is a good illustration. This query is made of five triples
patterns having all the same domain (Professor). This query does not need a
join operation in OntoDB, but requires at least four joins in other systems. If
the query involves less property (e.g., query 6 of LUBM is a simple selection
query on a single property), the query response time is close to the SDB that
use a binary layout as this layout also requires a single scan of a unique property
table. For this query, the horizontal layout is the worse as it requires a scan of
the whole triple table (Oracle, DB2RDF). We notice that even if Oracle uses an
horizontal layout, the query response time are really close to OntoDB and better
than the other SDB. These good results are certainly due to the specific opti-
mization techniques set up in this system. Indeed, several materialized view are
used to reduce the need to scan the whole triple table. Considering the Sesame
SDB, we note that the binary layout implementation of Sesame (sesameBdsII)
outperforms slightly the vertical layout (sesameBdsI). For the SDB based on
DB2, the poor performance of DB2RDF can be explained by the fact that it
uses a horizontal layout with a lot of tables linked to the triples table (and so

13

0
10000
20000
30000
40000
50000

Q1 Q3 Q4 Q5 Q8 Q10 Q11 Q12 Q13

Time(sec)
OracleDB2RDFJenaSesameSDB1SesameSDB2

Fig. 5. Queries response time on LUBM100 (Q1,Q3,Q4,Q5,Q8,Q10,Q11,Q12,Q13)

need many joins in addition to the self-joins of the triple table). The result of
SOR for LUBM01 are slightly better than DB2RDF but worst than the other
SDB. Like for the loading part, this result is due to inference done by SOR
during the query processing. Indeed for the LUBM query 12, other SDB return
an empty result since there is no explicit statement of an instance of the Chair
class. On the contrary SOR returns several results thanks to a deductive process
(an instance of Professor is also an instance of Chair if it is at the headOf a
Department). If we add a rule reflecting this assertion to other SDB having an
inference engine they would also provide answers (but with a worse execution
time). Considering the deductive process, Jena and Sesame use inference engines
based on a central memory management or file system, but they do not work on
data stored in databases yet. It is also possible to use an inference engine during
the data loading phase and to store all inferred data in the database. But if we
do that the loading time will be worst.

6 Conclusion

In recent years, ontologies have been increasingly used in various domains. There-
fore a strong need to manage these ontologies in databases has been felt. As a
consequence, both academics and industrialists have proposed persistence solu-

14

tions based on existing DBMS. Unlike traditional DBMS, SDB are diverse in
terms of ontology formalisms supported, storage layouts and architectures used.
To facilitate the understanding of this diversity, we have studied six SDB and
proposed a model that captures this diversity. Considering the performance of
SDB, we have conducted a study both theoretically by the definition of a cost
model and empirically by measuring the data loading time and query processing
time on the LUBM benchmark. The results show that our cost model predict
the performance obtained for the SDB that do not use specific optimizations.
Regarding the performances, we first note the effectiveness of industrial seman-
tic databases in terms of data loading time. For the query response time, the
results are different. The SDB that uses an horizontal layout give good results
for most queries but the completeness of the inference process has to be taken
into account. As a further step in our study of SDB, we plan to modify the
data and queries used in our experiment to determine under what conditions a
storage layout and/or an architecture is better than an other. The application of
our cost model for specific query optimization problem in SDB (e.g. materialized
view selection) is also an important perspective for future work.

References

1. Dehainsala, H., Pierra, G., Bellatreche, L.: Ontodb: An ontology-based database for
data intensive applications. In: Proceedings of the 12th International Conference
on Database Systems for Advanced Applications (DASFAA’07). (2007) 497–508

2. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient rdf storage and re-
trieval in jena2. HP Laboratories Technical Report HPL-2003-266 (2003) 131–150

3. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: Proceedings of the 1st
International Semantic Web Conference (ISWC’02). (2002) 54–68

4. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan,
J.: Implementing an Inference Engine for RDFS/OWL Constructs and User-
Defined Rules in Oracle. In: Proceedings of the 24th International Conference
on Data Engineering (ICDE’08). (2008) 1239–1248

5. Lu, J., Ma, L., Zhang, L., Brunner, J.S., Wang, C., Pan, Y., Yu, Y.: Sor: a practical
system for ontology storage, reasoning and search. In: Proceedings of the 33rd
international conference on Very large data bases (VLDB’07). (2007) 1402–1405

6. IBM: Rdf application development for ibm data servers (2012)
7. Dean, M., Schreiber, G.: OWL Web Ontology Language Reference. World Wide

Web Consortium. (2004) http://www.w3.org/TR/owl-ref.
8. Pierra, G.: Context representation in domain ontologies and its use for semantic

integration of data. Journal Of Data Semantics (JoDS) 10 (2008) 174–211
9. Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I.: View Selection in Semantic

Web Databases. Proceedings of the VLDB Endowment 5(2) (2011) 97–108
10. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web

Data Management Using Vertical Partitioning. In: Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases (VLDB’07). (2007) 411–422

11. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: Sparql basic
graph pattern optimization using selectivity estimation. In: Proceedings of the
17th international conference on World Wide Web (WWW’08). (2008) 595–604

