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The Context  
Increased use of multicore platforms in Real-Time System 
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IMA Design X-by-wire  
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𝑇𝑖 
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Temporal modelling of a periodic task 

- 
Independa
nt 
- periodic 
- 𝑟𝑖 = 0 
- 𝐷𝑖 = 𝑇𝑖 



Context 
Scheduling by the Pfair algorithm PD2 
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- Optimal in our context 

- Feasibility condition on  m-cores :  𝑈 =  (𝑈𝑖=
𝐶𝑖

𝑇𝑖
)  ≤ 𝑚  

𝜏𝑖 < 𝐶𝑖 , 𝑇𝑖 > →  𝐶𝑖  subtasks τi
j
  ri

j
, di

j
  

𝑟𝑖=0 

𝐷𝑖=𝑇𝑖 

𝐶𝑖 

𝑟𝑖
𝑗
=

𝑗

𝑈𝑖
  𝑑𝑖

𝑗
=

𝑗 + 1

𝑈𝑖
 

Feasibility windows 

Pseudo-release date Pseudo-deadline 

- Priority order:  increasing pseudo-deadlines +  
                                 rules for ex-aequo. 



Problematic   
Failure occurrence on any core at any time 
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Several transistors on a single chip 

Feasibility condition may not longer be satisfied 

Increased 
processing 

capacity 

Cheap 

Low  weight 
Small size 

Low energy 
consumption 



Problematic   
Some tasks may be affected by the failure 
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Core 1 

Failing
Core  

Core m 

…
 

𝑡𝑑 𝑡𝑝 

x: delay 

l: lost execution 

failure time detection time 

1 core affected 
𝑥 = 1 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡 
𝑙 ≤ 1 𝑠𝑢𝑏𝑡𝑎𝑠𝑘 

 



State of the art 
Existing techniques are not suitable 
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 Classical approaches 

 Hardware redundancy [Pradhan 1996] 

 Provide each core with a spare or a twin 

 => Over redundant cores as needed 

 Software redundancy [Koren et al, 2007] 

 Provide to each  task 2 copies: a primary and a backup 

  => Increase of system load 

 Time redundancy [Kopetz et al. 2003] 

 Exploit the slack between task completion and deadline 

 => similar to our approach 

 => useful only for transient and intermittant failures 

 Most used in partitioned scheduling 

 



Our goals 
Avoid the limitations of the classical techniques 
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 Provide strictly the number of  cores needed 

 𝑚 =  𝑈 + 1 

 Limit the hardware redundancy to one core 

 Avoid the use of  backup copies 

 Resume only the lost execution 



Different scenarios 

 At any time, a failure may occur on any of the cores 
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Two Possible Scenarios 
Allocate or not additional time to affected tasks 
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 No task is affected 

 Continue the execution 

 One affected task 

 Partial completion is acceptable 

No further time allocation 

eg.  iterative tasks 

 Full completion is needed 

Additional time allocation 

[RTNS 2015] 

[VECOS 2016] 



No Further Time Allocation 
Limited Hardware Redundancy 
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 Provide an additional core 

 

𝑼 ≤ 𝒎 

0 𝑡𝑖𝑚𝑒 
𝒎 + 𝟏  
𝒄𝒐𝒓𝒆𝒔 

 
 

𝒎 
𝒄𝒐𝒓𝒆𝒔 

 
 

𝑡𝑝 



First Feasibility Result 
Limited Hardware Redundancy provide a valid schedule 
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 Notations 

 
- 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆  : PD2 schedule of S with limited hardware redundancy 

 Theorem  

 
∀𝜏𝑖

𝑗
, 𝑟𝑖

𝑗
≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆 < 𝑑𝑖
𝑗
 

The  resulting schedule 𝑺𝒄𝒉𝒆𝒅 𝒎+𝟏 →𝒎
𝑺  is valid and fair 

- 𝑈 ≤ 𝑚 => 𝑆𝑐ℎ𝑒𝑑𝑚
𝑆  and 𝑆𝑐ℎ𝑒𝑑𝑚+1

𝑆   are valid and fair 

- 𝑆𝑐ℎ𝑒𝑑𝑚
𝑆  : PD2 schedule of S on a m-core processor 

 Assumption 

- 𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝑆𝑐ℎ𝑒𝑑, 𝑡) : List of pending subtasks in schedule 𝑆𝑐ℎ𝑒𝑑 at time t 

- 𝐸𝑥𝑒𝑐(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑) : Execution time of subtask 𝜏𝑖

𝑗
 in schedule 𝑆𝑐ℎ𝑒𝑑 



Proof 
Based on two lemmas 
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 Lemma 1 
At any time, subtasks pending in are 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆  also pending in 𝑆𝑐ℎ𝑒𝑑𝑚
𝑆    

𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆  ) ⊆  𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆 ) 

 Proof of the theorem 

 Lemma 2 

Any subtask is scheduled earlier in  𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚
𝑆  than in 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆    

∀𝜏𝑖
𝑗
, 𝐸𝑥𝑒𝑐(𝜏𝑖

𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆  ) ≤ 𝐸𝑥𝑒𝑐(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆 ) 

- At  𝑡 ≤ 𝑡𝑝 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚
𝑆 = 𝑆𝑐ℎ𝑒𝑑 𝑚+1

𝑆  valid and fair 

- At 𝑡𝑝  ≤ 𝑡 ≤ 𝐻, ∀𝜏𝑖
𝑗
, 𝑟𝑖

𝑗
≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆  ≤ 𝐸𝑥𝑒𝑐(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆 ) < 𝑑𝑖
𝑗
 

(lemma2) 

- At  𝑡 > 𝐻 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚
𝑆 = 𝑆𝑐ℎ𝑒𝑑 𝑚

𝑆  valid and fair 



Additional Time Allocated  
Two combined techniques  

14 

 Limited hardware redundancy 

 Constrain and release 

 

Before the failure detection  After the failure detection  

𝑟𝑖=0 𝑇𝑖 

𝐶𝑖 

𝐷𝑖 𝑟𝑖=0 𝐷𝑖=𝑇𝑖 

𝐶𝑖 

Tolerance 
margin 



Deadlines computation 
Ghost subtasks method 
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1. Add one ghost subtask  

2. Compute the feasibility 
windows with the ghost 
subtasks 

3. Task deadline = pseudo-
deadline of the subtask 
before the last 



Dynamic Reconfiguration  
Subtasks switch from one system parameters to another 

16 

 Involved systems 

 - Initial System 𝑆: 𝝉𝒊 < 𝑪𝒊, 𝑫𝒊 = 𝑻𝒊 > 

- Constrained System 𝑆′:  𝝉𝒊
′ < 𝑪𝒊, 𝑫′𝒊 < 𝑻𝒊 > 

- Intermediate System  𝑆𝑖0:  𝝉𝒊≠𝒊𝟎 < 𝑪𝒊, 𝑫𝒊 = 𝑻𝒊 >,  
             𝜏𝑖0 < 𝐶𝑖0 + 1,𝐷𝑖0 = 𝑇𝑖0 > 

Resulting system notation: 𝑺′ →𝒕𝒑 𝑺𝒊𝟎 

𝑡𝑝 𝑡 𝑁𝑒𝑥𝑡𝐻   0 

m cores m+1 cores 

𝑡𝑑 

S’ S 𝑺𝒊𝟎 

Non-affected tasks Affected task 

− 𝑼𝑺 =  
𝑪𝒊

𝑻𝒊
≤ 𝒎 

− 𝑪𝑯𝑺′ =  
𝑪𝒊

𝑫′
𝒊
≤ 𝒎 + 𝟏 

− 𝑼𝑺𝒊𝟎
=  

𝑪𝒊

𝑻𝒊
𝒊≠𝒊𝟎

+
𝑪𝒊𝟎 + 𝟏

𝑻𝒊𝟎

≤ 𝒎 



Example  
𝑡𝑝 = 1,  x=1, 𝜏𝑖0

𝑗0
= 𝜏3

1 
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- 𝑆: 𝜏1 < 1, 3 >, 𝜏2 < 3, 6 >, 𝜏3 < 3, 4 >, 𝜏4 < 5, 12 >, 𝜏5 < 7, 12 >  



Scheduling analysis 
Comparison between 𝑺′ →𝒕𝒑 𝑺𝒊𝟎 and 𝑺𝒊𝟎 schedules 
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𝑡𝑝 𝑡 𝑁𝑒𝑥𝑡𝐻   0 

m+1 cores 

𝑡𝑑 

S’ S 𝑺𝒊𝟎 

m cores 

𝑼𝑺 =  
𝑪𝒊

𝑻𝒊
≤ 𝒎 𝑪𝑯𝑺′ =  

𝑪𝒊

𝑫′
𝒊
≤ 𝒎 + 𝟏 

Valid and fair Valid and fair 

Analysis area 

𝑺𝒊𝟎 

m cores 

𝑡 𝑁𝑒𝑥𝑡𝐻   

𝑼𝑺𝒊𝟎
=  

𝑪𝒊

𝑻𝒊
𝒊≠𝒊𝟎

+
𝑪𝒊𝟎 + 𝟏

𝑻𝒊𝟎
≤ 𝒎 

Valid and fair 



An issue 
Subtasks priority inversion 

19 

 2 kinds of subtasks at 𝒕𝒅 

 

- Pending subtasks at t=0 

• 𝑆′: 𝜏3
0 𝜏2

0 𝜏5
0 𝜏1

0 𝜏4
0  

• 𝑆𝑖0: 𝜏3
0 𝜏5

0 𝜏2
0 𝜏4

0 𝜏1
0 

In S’ In 𝑺𝒊𝟎 

𝜏2
0  >𝑃𝐷2 𝜏5

0 
 

𝜏5
0  >𝑃𝐷2 𝜏2

0 
 

𝜏1
0  >𝑃𝐷2 𝜏4

0 
 

𝜏4
0  >𝑃𝐷2 𝜏1

0 
 

>𝑷𝑫𝟐 i.e  has higher priority over 

𝑺𝒊𝟎  

𝑆′ →𝑡𝑝 𝑺𝒊𝟎 

𝑥 

𝑡𝑝 𝑡𝑑 

𝑡𝑑 + 1 
anticipated 

𝑡 𝑡 + 1 

Staggered 

No staggered subtasks  
- Swich directly from 𝑆′𝑡𝑜 𝑆𝑖0  

Otherwise 
- Transient period needed 



Example 1 
Without staggered subtasks 

20 

𝑆: 𝜏1 < 1, 3 >, 

𝜏2 < 3, 6 >, 

𝜏3 < 3, 4 >, 

 𝜏4 < 5, 12 >,  

𝜏5 < 7, 12 > 

Remark 1: No staggered 
At 𝑡 ≥ 𝑡𝑝 : a subtask is scheduled in 

𝑆′ → 𝑆𝑖0at the same time than in 𝑆𝑖0 or 

earlier 

anticipated 

Staggered 

affected 



Example 2 
With staggered subtasks 
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𝑺𝟏: 
 𝜏0−3 < 1, 20 >, 
𝜏4−7 < 1, 36 >, 
𝜏8−47 < 2, 38 >. 

 

𝑺𝟏′: 
𝜏0−3 < 1, 10,20 >, 
𝜏4−7 < 1, 18,36 >, 
𝜏8−47 < 2, 26,38 >. 

 

𝑺𝟏𝒊𝟑: 

𝜏0−2 < 1, 20 >, 
𝜏3 < 2, 20 >, 
𝜏4−7 < 1, 36 >, 

𝜏8−47 < 2, 38 >. 

Remarks 2: There are some staggered at  𝒕𝒅 
- 2 staggered =>3 anticipated 
- Staggered are scheduled at time 𝑡𝑑 => subtask postponement 
- Postponed at t => scheduled at  t+1 
- 2 anticipated are schedules in 𝑆𝑖0 =>postponement ends and 

Remark 1 is verified. 
 

Postponed anticipated Staggered affected 



Our Result 
The resulting scheduling is valid and fair 
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 Assumptions 

 - 𝑆 is feasible on m cores 

 Theorem  

 

∀𝜏𝑖
𝑗
, 𝑟𝑖

𝑗
≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 < 𝑑𝑖

𝑗
 

The  resulting scheduling of  𝑆′ →𝑡𝑝 𝑆𝑖0 on (𝑚 + 1) → 𝑚 cores is valid and fair 

- 𝑆′ is feasible on m+1 cores 

- 𝑆𝑖0is feasible on m cores 

- There is no staggered subtask and 𝑡𝑝 is arbitrary 

- Or there are some staggered subtasks and 𝑡𝑝 = 0[𝐻] 



Proof 
For any 𝑡𝑝 with no staggered subtasks 
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 Proposition 1 (Remark 1) 

 

 𝑟𝑖
𝑗

𝑆𝑖0 ≤ 𝐸𝑥𝑒𝑐 𝜏𝑖
𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 ≤  𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆𝑖0 < 𝑑𝑖

𝑗
(𝑆𝑖0) 

𝑅 𝑡 :  a subtask is not scheduled later in  𝑆′ →𝑡𝑝 𝑆𝑖0  than in 𝑆𝑖0  

Proof 

- 𝐏𝐫𝐨𝐩𝟏 𝐭 :  𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖
𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0) ⇒ 𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖

𝑗
, 𝑆𝑖0) 

- 𝐏𝐫𝐨𝐩𝟐 𝐭 :  

∃ 𝑘 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡ℎ𝑎𝑛 𝜏𝑖
𝑗
𝑖𝑛 𝑆′ →𝑡𝑝 𝑆𝑖0  

⇒ ∃ ≥ 𝑘 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡ℎ𝑎𝑛 𝜏𝑖
𝑗
𝑖𝑛 𝑆𝑖0  

At any time 𝑡 ≥ 𝑡𝑝:  

 Conclusion   



Proof 
For 𝑡𝑝 = 0[𝐻] with some staggered subtasks 
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 𝑟𝑖
𝑗

𝑆𝑖0 ≤ 𝐸𝑥𝑒𝑐 𝜏𝑖
𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 < 𝑑𝑖

𝑗
(𝑆𝑖0) 

 Conclusion   

 Proposition 2 (Remark 2)  

 - 𝑥 staggered subtasks => 𝑥 + 1 anticipated subtasks 

- The staggered subtasks meet their pseudo-deadlines 

𝐸𝑥𝑒𝑐 𝜏𝑠
𝑔
, 𝑆′ →𝑡𝑝 𝑆𝑖0 = 𝑡𝑑 < 𝑑𝑠

𝑔
(𝑆𝑖0) 

- The postponed subtasks meet their pseudo-deadlines 

𝐸𝑥𝑒𝑐 𝜏𝑢
𝑝
, 𝑆𝑖0 = 𝑡 ⇒ 𝐸𝑥𝑒𝑐 𝜏𝑢

𝑝
, 𝑆′ →𝑡𝑝 𝑆𝑖0 = 𝑡 + 1 < 𝑑𝑢

𝑝
(𝑆𝑖0)  

- When the postponement ends subtasks are scheduled earlier 

If  𝐸𝑥𝑒𝑐 𝜏𝑖
𝑗
, 𝑆𝑖0 ≤ 𝑡 ⇒ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 ≤ 𝑡   

Then 𝑅 𝑡  of Proposition 1 is true.  

𝜏𝑠
𝑔
: staggered subtask  𝜏𝑢

𝑝
: postponed subtask  

 Notations  

 𝜏𝑖
𝑗
: any subtask  



Future works 
Complete the proof and  explore other situations 

25 

 Proof: 𝑡𝑝 ≠ 𝐻 and there  are  staggered subtasks 

 The failure detection delay x is larger  

 Use an aperiodic flow 

 Several cores are affected  

 Reduce the system load (delete tasks or subtasks) 
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