
Failure Tolerance of Multicore Real-Time

Systems scheduled by a Pfair Algorithm

Yves MOUAFO

Supervisors
A. CHOQUET-GENIET, G. LARGETEAU-SKAPIN

OUTLINES

1. Context and Problematic

2. State of the art

3. Different scenarios

4. First feasibility result

5. Second feasibility result

6. Future works

2

The Context
Increased use of multicore platforms in Real-Time System

3

IMA Design X-by-wire

+

𝑇𝑖

𝐷𝑖

𝑟𝑖

𝐶𝑖

𝑟𝑖 + 𝐷𝑖 𝑟𝑖 + 𝑇𝑖

1st release
1st deadline

2nd release

Relative deadline

Period

WCET

time

Temporal modelling of a periodic task

-
Independa
nt
- periodic
- 𝑟𝑖 = 0
- 𝐷𝑖 = 𝑇𝑖

Context
Scheduling by the Pfair algorithm PD2

4

- Optimal in our context

- Feasibility condition on m-cores : 𝑈 = (𝑈𝑖=
𝐶𝑖

𝑇𝑖
) ≤ 𝑚

𝜏𝑖 < 𝐶𝑖 , 𝑇𝑖 > → 𝐶𝑖 subtasks τi
j
 ri

j
, di

j

𝑟𝑖=0

𝐷𝑖=𝑇𝑖

𝐶𝑖

𝑟𝑖
𝑗
=

𝑗

𝑈𝑖
 𝑑𝑖

𝑗
=

𝑗 + 1

𝑈𝑖

Feasibility windows

Pseudo-release date Pseudo-deadline

- Priority order: increasing pseudo-deadlines +
 rules for ex-aequo.

Problematic
Failure occurrence on any core at any time

5

Several transistors on a single chip

Feasibility condition may not longer be satisfied

Increased
processing

capacity

Cheap

Low weight
Small size

Low energy
consumption

Problematic
Some tasks may be affected by the failure

6

Core 1

Failing
Core

Core m

…

𝑡𝑑 𝑡𝑝

x: delay

l: lost execution

failure time detection time

1 core affected
𝑥 = 1 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡
𝑙 ≤ 1 𝑠𝑢𝑏𝑡𝑎𝑠𝑘

State of the art
Existing techniques are not suitable

7

 Classical approaches

 Hardware redundancy [Pradhan 1996]

 Provide each core with a spare or a twin

 => Over redundant cores as needed

 Software redundancy [Koren et al, 2007]

 Provide to each task 2 copies: a primary and a backup

 => Increase of system load

 Time redundancy [Kopetz et al. 2003]

 Exploit the slack between task completion and deadline

 => similar to our approach

 => useful only for transient and intermittant failures

 Most used in partitioned scheduling

Our goals
Avoid the limitations of the classical techniques

8

 Provide strictly the number of cores needed

 𝑚 = 𝑈 + 1

 Limit the hardware redundancy to one core

 Avoid the use of backup copies

 Resume only the lost execution

Different scenarios

 At any time, a failure may occur on any of the cores

9

Two Possible Scenarios
Allocate or not additional time to affected tasks

10

 No task is affected

 Continue the execution

 One affected task

 Partial completion is acceptable

No further time allocation

eg. iterative tasks

 Full completion is needed

Additional time allocation

[RTNS 2015]

[VECOS 2016]

No Further Time Allocation
Limited Hardware Redundancy

11

 Provide an additional core

𝑼 ≤ 𝒎

0 𝑡𝑖𝑚𝑒
𝒎 + 𝟏
𝒄𝒐𝒓𝒆𝒔

𝒎
𝒄𝒐𝒓𝒆𝒔

𝑡𝑝

First Feasibility Result
Limited Hardware Redundancy provide a valid schedule

12

 Notations

- 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆 : PD2 schedule of S with limited hardware redundancy

 Theorem

∀𝜏𝑖

𝑗
, 𝑟𝑖

𝑗
≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆 < 𝑑𝑖
𝑗

The resulting schedule 𝑺𝒄𝒉𝒆𝒅 𝒎+𝟏 →𝒎
𝑺 is valid and fair

- 𝑈 ≤ 𝑚 => 𝑆𝑐ℎ𝑒𝑑𝑚
𝑆 and 𝑆𝑐ℎ𝑒𝑑𝑚+1

𝑆 are valid and fair

- 𝑆𝑐ℎ𝑒𝑑𝑚
𝑆 : PD2 schedule of S on a m-core processor

 Assumption

- 𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝑆𝑐ℎ𝑒𝑑, 𝑡) : List of pending subtasks in schedule 𝑆𝑐ℎ𝑒𝑑 at time t

- 𝐸𝑥𝑒𝑐(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑) : Execution time of subtask 𝜏𝑖

𝑗
 in schedule 𝑆𝑐ℎ𝑒𝑑

Proof
Based on two lemmas

13

 Lemma 1
At any time, subtasks pending in are 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆 also pending in 𝑆𝑐ℎ𝑒𝑑𝑚
𝑆

𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆) ⊆ 𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆)

 Proof of the theorem

 Lemma 2

Any subtask is scheduled earlier in 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚
𝑆 than in 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆

∀𝜏𝑖
𝑗
, 𝐸𝑥𝑒𝑐(𝜏𝑖

𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆) ≤ 𝐸𝑥𝑒𝑐(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆)

- At 𝑡 ≤ 𝑡𝑝 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚
𝑆 = 𝑆𝑐ℎ𝑒𝑑 𝑚+1

𝑆 valid and fair

- At 𝑡𝑝 ≤ 𝑡 ≤ 𝐻, ∀𝜏𝑖
𝑗
, 𝑟𝑖

𝑗
≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆 ≤ 𝐸𝑥𝑒𝑐(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆) < 𝑑𝑖
𝑗

(lemma2)

- At 𝑡 > 𝐻 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚
𝑆 = 𝑆𝑐ℎ𝑒𝑑 𝑚

𝑆 valid and fair

Additional Time Allocated
Two combined techniques

14

 Limited hardware redundancy

 Constrain and release

Before the failure detection After the failure detection

𝑟𝑖=0 𝑇𝑖

𝐶𝑖

𝐷𝑖 𝑟𝑖=0 𝐷𝑖=𝑇𝑖

𝐶𝑖

Tolerance
margin

Deadlines computation
Ghost subtasks method

15

1. Add one ghost subtask

2. Compute the feasibility
windows with the ghost
subtasks

3. Task deadline = pseudo-
deadline of the subtask
before the last

Dynamic Reconfiguration
Subtasks switch from one system parameters to another

16

 Involved systems

 - Initial System 𝑆: 𝝉𝒊 < 𝑪𝒊, 𝑫𝒊 = 𝑻𝒊 >

- Constrained System 𝑆′: 𝝉𝒊
′ < 𝑪𝒊, 𝑫′𝒊 < 𝑻𝒊 >

- Intermediate System 𝑆𝑖0: 𝝉𝒊≠𝒊𝟎 < 𝑪𝒊, 𝑫𝒊 = 𝑻𝒊 >,
 𝜏𝑖0 < 𝐶𝑖0 + 1,𝐷𝑖0 = 𝑇𝑖0 >

Resulting system notation: 𝑺′ →𝒕𝒑 𝑺𝒊𝟎

𝑡𝑝 𝑡 𝑁𝑒𝑥𝑡𝐻 0

m cores m+1 cores

𝑡𝑑

S’ S 𝑺𝒊𝟎

Non-affected tasks Affected task

− 𝑼𝑺 =
𝑪𝒊

𝑻𝒊
≤ 𝒎

− 𝑪𝑯𝑺′ =
𝑪𝒊

𝑫′
𝒊
≤ 𝒎 + 𝟏

− 𝑼𝑺𝒊𝟎
=

𝑪𝒊

𝑻𝒊
𝒊≠𝒊𝟎

+
𝑪𝒊𝟎 + 𝟏

𝑻𝒊𝟎

≤ 𝒎

Example
𝑡𝑝 = 1, x=1, 𝜏𝑖0

𝑗0
= 𝜏3

1
17

- 𝑆: 𝜏1 < 1, 3 >, 𝜏2 < 3, 6 >, 𝜏3 < 3, 4 >, 𝜏4 < 5, 12 >, 𝜏5 < 7, 12 >

Scheduling analysis
Comparison between 𝑺′ →𝒕𝒑 𝑺𝒊𝟎 and 𝑺𝒊𝟎 schedules

18

𝑡𝑝 𝑡 𝑁𝑒𝑥𝑡𝐻 0

m+1 cores

𝑡𝑑

S’ S 𝑺𝒊𝟎

m cores

𝑼𝑺 =
𝑪𝒊

𝑻𝒊
≤ 𝒎 𝑪𝑯𝑺′ =

𝑪𝒊

𝑫′
𝒊
≤ 𝒎 + 𝟏

Valid and fair Valid and fair

Analysis area

𝑺𝒊𝟎

m cores

𝑡 𝑁𝑒𝑥𝑡𝐻

𝑼𝑺𝒊𝟎
=

𝑪𝒊

𝑻𝒊
𝒊≠𝒊𝟎

+
𝑪𝒊𝟎 + 𝟏

𝑻𝒊𝟎
≤ 𝒎

Valid and fair

An issue
Subtasks priority inversion

19

 2 kinds of subtasks at 𝒕𝒅

- Pending subtasks at t=0

• 𝑆′: 𝜏3
0 𝜏2

0 𝜏5
0 𝜏1

0 𝜏4
0

• 𝑆𝑖0: 𝜏3
0 𝜏5

0 𝜏2
0 𝜏4

0 𝜏1
0

In S’ In 𝑺𝒊𝟎

𝜏2
0 >𝑃𝐷2 𝜏5

0

𝜏5
0 >𝑃𝐷2 𝜏2

0

𝜏1
0 >𝑃𝐷2 𝜏4

0

𝜏4
0 >𝑃𝐷2 𝜏1

0

>𝑷𝑫𝟐 i.e has higher priority over

𝑺𝒊𝟎

𝑆′ →𝑡𝑝 𝑺𝒊𝟎

𝑥

𝑡𝑝 𝑡𝑑

𝑡𝑑 + 1
anticipated

𝑡 𝑡 + 1

Staggered

No staggered subtasks
- Swich directly from 𝑆′𝑡𝑜 𝑆𝑖0

Otherwise
- Transient period needed

Example 1
Without staggered subtasks

20

𝑆: 𝜏1 < 1, 3 >,

𝜏2 < 3, 6 >,

𝜏3 < 3, 4 >,

 𝜏4 < 5, 12 >,

𝜏5 < 7, 12 >

Remark 1: No staggered
At 𝑡 ≥ 𝑡𝑝 : a subtask is scheduled in

𝑆′ → 𝑆𝑖0at the same time than in 𝑆𝑖0 or

earlier

anticipated

Staggered

affected

Example 2
With staggered subtasks

21
𝑺𝟏:
 𝜏0−3 < 1, 20 >,
𝜏4−7 < 1, 36 >,
𝜏8−47 < 2, 38 >.

𝑺𝟏′:
𝜏0−3 < 1, 10,20 >,
𝜏4−7 < 1, 18,36 >,
𝜏8−47 < 2, 26,38 >.

𝑺𝟏𝒊𝟑:

𝜏0−2 < 1, 20 >,
𝜏3 < 2, 20 >,
𝜏4−7 < 1, 36 >,

𝜏8−47 < 2, 38 >.

Remarks 2: There are some staggered at 𝒕𝒅
- 2 staggered =>3 anticipated
- Staggered are scheduled at time 𝑡𝑑 => subtask postponement
- Postponed at t => scheduled at t+1
- 2 anticipated are schedules in 𝑆𝑖0 =>postponement ends and

Remark 1 is verified.

Postponed anticipated Staggered affected

Our Result
The resulting scheduling is valid and fair

22

 Assumptions

 - 𝑆 is feasible on m cores

 Theorem

∀𝜏𝑖
𝑗
, 𝑟𝑖

𝑗
≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 < 𝑑𝑖

𝑗

The resulting scheduling of 𝑆′ →𝑡𝑝 𝑆𝑖0 on (𝑚 + 1) → 𝑚 cores is valid and fair

- 𝑆′ is feasible on m+1 cores

- 𝑆𝑖0is feasible on m cores

- There is no staggered subtask and 𝑡𝑝 is arbitrary

- Or there are some staggered subtasks and 𝑡𝑝 = 0[𝐻]

Proof
For any 𝑡𝑝 with no staggered subtasks

23

 Proposition 1 (Remark 1)

 𝑟𝑖
𝑗

𝑆𝑖0 ≤ 𝐸𝑥𝑒𝑐 𝜏𝑖
𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 ≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆𝑖0 < 𝑑𝑖

𝑗
(𝑆𝑖0)

𝑅 𝑡 : a subtask is not scheduled later in 𝑆′ →𝑡𝑝 𝑆𝑖0 than in 𝑆𝑖0

Proof

- 𝐏𝐫𝐨𝐩𝟏 𝐭 : 𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖
𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0) ⇒ 𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖

𝑗
, 𝑆𝑖0)

- 𝐏𝐫𝐨𝐩𝟐 𝐭 :

∃ 𝑘 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡ℎ𝑎𝑛 𝜏𝑖
𝑗
𝑖𝑛 𝑆′ →𝑡𝑝 𝑆𝑖0

⇒ ∃ ≥ 𝑘 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡ℎ𝑎𝑛 𝜏𝑖
𝑗
𝑖𝑛 𝑆𝑖0

At any time 𝑡 ≥ 𝑡𝑝:

 Conclusion

Proof
For 𝑡𝑝 = 0[𝐻] with some staggered subtasks

24

 𝑟𝑖
𝑗

𝑆𝑖0 ≤ 𝐸𝑥𝑒𝑐 𝜏𝑖
𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 < 𝑑𝑖

𝑗
(𝑆𝑖0)

 Conclusion

 Proposition 2 (Remark 2)

 - 𝑥 staggered subtasks => 𝑥 + 1 anticipated subtasks

- The staggered subtasks meet their pseudo-deadlines

𝐸𝑥𝑒𝑐 𝜏𝑠
𝑔
, 𝑆′ →𝑡𝑝 𝑆𝑖0 = 𝑡𝑑 < 𝑑𝑠

𝑔
(𝑆𝑖0)

- The postponed subtasks meet their pseudo-deadlines

𝐸𝑥𝑒𝑐 𝜏𝑢
𝑝
, 𝑆𝑖0 = 𝑡 ⇒ 𝐸𝑥𝑒𝑐 𝜏𝑢

𝑝
, 𝑆′ →𝑡𝑝 𝑆𝑖0 = 𝑡 + 1 < 𝑑𝑢

𝑝
(𝑆𝑖0)

- When the postponement ends subtasks are scheduled earlier

If 𝐸𝑥𝑒𝑐 𝜏𝑖
𝑗
, 𝑆𝑖0 ≤ 𝑡 ⇒ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 ≤ 𝑡

Then 𝑅 𝑡 of Proposition 1 is true.

𝜏𝑠
𝑔
: staggered subtask 𝜏𝑢

𝑝
: postponed subtask

 Notations

 𝜏𝑖
𝑗
: any subtask

Future works
Complete the proof and explore other situations

25

 Proof: 𝑡𝑝 ≠ 𝐻 and there are staggered subtasks

 The failure detection delay x is larger

 Use an aperiodic flow

 Several cores are affected

 Reduce the system load (delete tasks or subtasks)

26

